Nagata’s metric for uniformities

By S. BUZASI (Debrecen)

J.-I. Nagata’s monograph on dimension theory contains his theorem charac-
terizing the dimension of a metric space by property of its metric function ([1], pp.
138—149). J.-1. NAGATA remarks (p. 138) that it is an open problem to find a
simpler proof of the theorem. This paper gives a much shorter proof of Nagata’s
theorem. The relative shortness of our proof is due to formula (2) which helps
to avoid Nagata’s notations like (9) on p. 142 of [1]. The paper contains also a
corollary about n-dimensional uniformities which generate a given n-dimensional
metric topology.?)

The auther wishes to express her warmest thanks to Professor A. CSASzZAR
who carefully read the paper and gave valuable advises.

Theorem (NAGATA [1]). 4 metric space R has dimension =n iff there exists
a topology preserving metric ¢ in R such that, for every e¢=0 and for every point
XER,
(n) o(See(x), yi) <&, yi€R, i=1,..,n+2

imply o(y; y;)<e for some i, j with i#j.

PrOOF. Necessity. Let dim R=n; then every open covering 4 of R can be
refined by an open covering consisting at most of n+1 discrete collections (see [3],
theorem 1.), so there exists an open covering # such that #***<A4 and each
Bc#*** intersects at most n+1 elements of A (we denote #*={S(B, #)|Bc %)
and ‘ﬂsxt:((‘lyt)#)#)-

In view of this we can construct a sequence

(1 U, = ;”:-—Jﬂl.z}',;*’},_.

of open coverings of R such that
(i) mesh #, -0 as m-—-< and
(ii) S2%(x, %,,,,) intersects at most n+1 sets of %,, for every xé R, m=1,2, ....
We shall often make use of the fact (easy to check by induction on p) that,
for #,, from (1). XCR and integers l=my<...<m,,

) S2(... S2(X, Upy), - Upy ) =S (X, U,

1) In the case of a topological space R. dim R is the covering dimension of R: for a uniform
space R, 4 dR denotes the large covering dimension of R (see [2]. p. 78).
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Now we define a new sequence of coverings of R: for Uc#,, and integers
l=my<my=...<m, let
Sm(U)=U,

Spy...m,(U) = S BN, s .)
Oy ™ {8y (O UL
It follows from (2) and (1) that S,,,_‘__,,,p(U')C S*U, Up,)=S(U, U,,), so we have
(3) Oy =¥y <0 < Up,-

It is obvious that a,,

ml...l'!ll..

<Opmy..m..m, and easy to check that

’ 1 | 1 1 : )
4) wmteton <mgmtetom always implies
Oly...lg < Omy...m,« 1 fact, let

(5) my=bh,.omy_y=ly m=<l

for some 1=i=p,q and C=S, ,_,(U)(C=U if i=1) forany Uc#,,. It follows
from (2), (1) and (5) that

Sh,‘..*q(U)CSa(CD q)[L)C'Sg(civ Q"m,-)Eo-ml ves My =2 am;... my*

P

Let us now define a function ¢o(x, y) over RXR by

(6) o(x, y) = inf{z—:.,+ +% YES(X, Op, ...m,,)}.
e(x,y)=1 if y¢S(x,o,,. ,) forevery o, ...

Since

(7) S(X, Up+1) € Su(x) = {yle(x, y) < 27"} S (x, %),

we conclude that ¢(x,y)=0 iff x=y. From (7) and (i) it follows that
{S,(x)m=1,2, ..} is, for x€R, a neighbourhood basis of x. Next we prove the
triangle axiom for g. Suppose 1=>¢(x,y)=a=b=g(z,y) (the case of ¢o(x,y)=1
is trivial). In view of (4) and (6) for a given £¢>0 we can choose 7, .m, and o,
such that

2 = p’ q: Il e "zp- -YES{}", o‘m....mp)" ZES(.}" all...!q)’

(8)
I 1 I 1
aﬁﬁ"‘---*‘w‘ﬂ—l—a, b‘ﬁiﬂ*+...+~27q<:b+£,
1 1 1 1

It follows from (8) and (9) that m;=1/,=m;,, for some 1=i<p. First consider
the case of my<h<=m;,,. Let UE%,,, VEU,,

(10) - yES,,,lm,,,p(U) =A and z, yES,l_,_,q(V) = B,
Denote
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D=S,, .(U), then AcS%D, U, )<S(D, %;, )=S(DD, Uf,,). Since

BC S3(V, U)=S(V, U, 1), so y€V or yeWEU,,, and WV #0, therefore
AUV S(S*(D, U ,,), ;)= S*(D, %,) and hence x,z€S,, .1 (U) e

1 1 | |
o(x,2) = S T +F+§?+ +E < a+b+2e.

Now let m;=/, and 1=m,, ..., m; be successing integers. If m,=1 we have

1 1 1
a(x,z)gl=§,;+...+-27‘+?<a+b+2s. In the case of 1<=m, we conclude

from (8) and (3) that x€S(y, %m), z€S(y, U,) s0 x€S(z, Um ) Sz, Upy-1)=
=8(z, 0,,,-,). Hence
| l

1
e(%,2) S s =5+...+

1
= ZmT = 3m +=r <a+b+2.

2T

It remains to consider the case of m;,=/, while m,, ..., m; are successing integers
but m,_, +1<m;, for some 2=s=i. Using the notations of (10) and F=S,, .. _,(U)
we conclude that ACS3(F, %, )< S(F,,, -,) and BC SV, U,) U, =Um,< U, -1
hence AUBC S*(F, Um,-1)=Sm,...m,_,,m,-1(U) and therefore

(x,)-:_l++l+l—l+ -|-l+l a+b+2e
elx, 2) = oMy PV oy Y AEy=L T oey T UaE T ol o). 2

It is clear now that ¢ is a topology preserving metric in R. Let us prove that g is
of the property (n). We can choose x; (i=1,2,...,n+2) and l=m—=...<m,
£
3

...+2—,l,,;-:s. Then for some U,€#,, we have x;,y,€S,, m (U)VSSU;, U, 1)

and X;€S8(x, Oy, 11, mp+ ) S(X, Upy11) 50 S*(X, Up, ) U;#0 for i=1,2,
...y n+2. In view of (ii), for some i=j, we have U;=U;=W 50 y;, y;€Sp, . m, (W),

1
such that x;€S(y;, On,..m,) and (¥, x) =<5, o(x, y)=<e, 20(x, %)<z +...

=E.

: 1 1
that is Q(y,-,}j)éyn-l—+...+ S

Sufficiency. Let ¢ be a metric in R of the property (n). For a given =0 let
M be a maximal subset of R such that

(11) o(x,y) =¢ for every x,yeEM, x #y.

Now put o, ={U{S,:(x)\xeS,(»}lyeM}. If for some zER,ord o (z)=n+]1,
then there exist distinct y,€ M (i=1, ..., n+2) such that ¢(S,.(2), y;)<& and hence
by (n), e(y;,y;)<e¢ for some i=j which contradicts (11). Therefore ord o/ ,=n+1
for every &=0, and so 4d(R, ¢)=n. Since dim R is the minimum of Ad(R, )
for all topology preserving metrics ¢ (see [2], theorem 15. on p. 153), we conclude
that dim R=n.

Corollary. Every topology preserving metrizable uniformity on a topological
space R of dim R=n can be refined by a topology preserving metric uniformity p
such that Ad(R, p)=n.
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PROOF. The metric ¢ of property (n) gives a uniformity on R with 4dR=n
and finer than the uniformity induced by the original metric d in R: in view of (i)
for every &=0 there exists %,, in (1) such that mesh %, <& and therefore ¢(x, y)=
<27" x,y€R implies x€S(y, %,). i.e. d(x,y)<e, which completes the proof
of the corollary.

Let us note that our corollary gives more information that the theorem 15.
([2], p. 153) about n-dimensional compatible metrizable uniformities on a metric
space R of dim R=n. According to the theorem 15. all compatible metric uni-
formities on R are refined by the same, at most n-dimensional uniformity on R,
namely by the fine uniformity of R, which however is not metrizable in general.
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