Nagata's metric for uniformities

By S. BUZÁSI (Debrecen)

J.-I. Nagata's monograph on dimension theory contains his theorem characterizing the dimension of a metric space by property of its metric function ([1], pp. 138-149). J.-I. NAGATA remarks (p. 138) that it is an open problem to find a simpler proof of the theorem. This paper gives a much shorter proof of Nagata's theorem. The relative shortness of our proof is due to formula (2) which helps to avoid Nagata's notations like (9) on p. 142 of [1]. The paper contains also a corollary about n-dimensional uniformities which generate a given n-dimensional metric topology.1)

The auther wishes to express her warmest thanks to Professor Á. Császár who carefully read the paper and gave valuable advises.

Theorem (NAGATA [1]). A metric space R has dimension $\leq n$ iff there exists a topology preserving metric ϱ in R such that, for every $\varepsilon > 0$ and for every point $x \in R$.

(n)
$$\varrho(S_{\varepsilon/2}(x), y_i) < \varepsilon, y_i \in \mathbb{R}, i = 1, ..., n+2$$

imply $\varrho(y_i, y_i) < \varepsilon$ for some i, j with $i \neq j$.

PROOF. Necessity. Let dim $R \le n$; then every open covering A of R can be refined by an open covering consisting at most of n+1 discrete collections (see [3], theorem 1.), so there exists an open covering \mathcal{B} such that $\mathcal{B}^{***} < A$ and each $B \in \mathcal{B}^{***}$ intersects at most n+1 elements of A (we denote $\mathcal{B}^* = \{S(B, \mathcal{B}) | B \in \mathcal{B}\}$ and $\mathscr{B}^{***} = ((\mathscr{B}^*)^*)^*$).

In view of this we can construct a sequence

$$\mathcal{U}_1 > \mathcal{U}_2^{***} > \mathcal{U}_2 > \mathcal{U}_3^{***} > \dots$$

of open coverings of R such that

- (i) mesh $\mathcal{U}_m \to 0$ as $m \to \infty$ and (ii) $S^2(x, \mathcal{U}_{m+1}^*)$ intersects at most n+1 sets of \mathcal{U}_m for every $x \in R$, m=1, 2, ...We shall often make use of the fact (easy to check by induction on p) that, for \mathcal{U}_{m_1} from (1), $X \subset R$ and integers $1 \leq m_2 < ... < m_p$,

$$(2) S2(... S2(X, \mathcal{U}_{m_2}), ..., \mathcal{U}_{m_n}) \subset S3(X, \mathcal{U}_{m_2}).$$

¹⁾ In the case of a topological space R, dim R is the covering dimension of R; for a uniform space R, ΔdR denotes the large covering dimension of R (see [2], p. 78).

92 S. Buzási

Now we define a new sequence of coverings of R: for $U \in \mathcal{U}_{m_1}$ and integers $1 \le m_1 < m_2 < ... < m_p$ let

$$\begin{split} S_{m_1}(U) &= U, \\ S_{m_1...m_p}(U) &= S^2\big(...S^2(U,\mathcal{U}_{m_2}), \ldots, \mathcal{U}_{m_p}\big), \\ \sigma_{m_1...m_p} &= \{S_{m_1...m_p}(U) | U \in \mathcal{U}_{m_1}\}. \end{split}$$

It follows from (2) and (1) that $S_{m_1...m_n}(U) \subset S^3(U, \mathcal{U}_{m_2}) \subset S(U, \mathcal{U}_{m_1})$, so we have

(3)
$$\sigma_{m_1} = \mathcal{U}_{m_1} < \sigma_{m_1 \dots m_n} < \mathcal{U}_{m_1}^*.$$

It is obvious that $\sigma_{m_1...m_i} < \sigma_{m_1...m_i}$ and easy to check that

(4)
$$\frac{1}{2^{l_1}} + \dots + \frac{1}{2^{l_q}} < \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_p}} \text{ always implies}$$

 $\sigma_{l_1...l_q} < \sigma_{m_1...m_p}$. In fact, let

(5)
$$m_1 = l_1, ..., m_{i-1} = l_{i-1}, m_i < l_i$$

for some $1 \le i \le p$, q and $C = S_{l_1 \dots l_{i-1}}(U)$ (C = U if i = 1) for any $U \in \mathcal{U}_{m_1}$. It follows from (2), (1) and (5) that

$$S_{l_1...l_q}(U) \subset S^3(C, \mathcal{U}_l) \subset S^2(C, \mathcal{U}_{m_l}) \in \sigma_{m_1...m_l} < \sigma_{m_1...m_p}$$

Let us now define a function $\varrho(x,y)$ over $R\times R$ by

(6)
$$\varrho(\bar{x}, y) = \inf \left\{ \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_p}} \middle| y \in S(x, \sigma_{m_1 \dots m_p}) \right\},$$

$$\varrho(x, y) = 1$$
 if $y \in S(x, \sigma_{m_1...m_p})$ for every $\sigma_{m_1...m_p}$.

Since

(7)
$$S(x, \mathcal{U}_{m+1}) \subset S_m(x) = \{ y | \varrho(x, y) < 2^{-m} \} \subset S(x, \mathcal{U}_m),$$

we conclude that $\varrho(x,y)=0$ iff x=y. From (7) and (i) it follows that $\{S_m(x)|m=1,2,\ldots\}$ is, for $x\in R$, a neighbourhood basis of x. Next we prove the triangle axiom for ϱ . Suppose $1>\varrho(x,y)=a\geq b=\varrho(z,y)$ (the case of $\varrho(x,y)=1$ is trivial). In view of (4) and (6) for a given $\varepsilon>0$ we can choose $\sigma_{m_1...m_p}$ and $\sigma_{l_1...l_q}$ such that

(8)
$$2 \leq p, q; \quad l_1 < m_p, \quad x \in S(y, \sigma_{m_1 \dots m_p}), \quad z \in S(y, \sigma_{l_1 \dots l_q}),$$
$$a < \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_p}} < a + \varepsilon, \quad b < \frac{1}{2^{l_1}} + \dots + \frac{1}{2^{l_q}} < b + \varepsilon,$$

(9)
$$\frac{1}{2^{l_1}} + \dots + \frac{1}{2^{l_q}} < \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_p}}.$$

It follows from (8) and (9) that $m_i \le l_1 \le m_{i+1}$ for some $1 \le i < p$. First consider the case of $m_i < l_1 < m_{i+1}$. Let $U \in \mathcal{U}_{m_1}$, $V \in \mathcal{U}_{l_1}$,

(10)
$$x, y \in S_{m_1 \dots m_p}(U) = A \quad \text{and} \quad z, y \in S_{l_1 \dots l_q}(V) = B.$$
 Denote

$$\varrho(x,z) \leq \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_i}} + \frac{1}{2^{l_1}} + \dots + \frac{1}{2^{l_q}} < a + b + 2\varepsilon.$$

Now let $m_i = l_1$ and $1 \le m_1, ..., m_i$ be successing integers. If $m_1 = 1$ we have $\varrho(x, z) \le 1 = \frac{1}{2^{m_1}} + ... + \frac{1}{2^{m_i}} + \frac{1}{2^{l_1}} < a + b + 2\varepsilon$. In the case of $1 < m_1$ we conclude from (8) and (3) that $x \in S(y, \mathcal{U}_{m_1}^*)$, $z \in S(y, \mathcal{U}_{l_1}^*)$ so $x \in S(z, \mathcal{U}_{m_1}^{**}) \subset S(z, \mathcal{U}_{m_1-1}) = S(z, \sigma_{m_1-1})$. Hence

$$\varrho(x,z) \leq \frac{1}{2^{m_1-1}} = \frac{1}{2^{m_1}} + \dots + \frac{1}{2^{m_i}} + \frac{1}{2^{l_1}} < a+b+2\varepsilon.$$

It remains to consider the case of $m_i = l_1$ while m_s, \ldots, m_l are successing integers but $m_{s-1} + 1 < m_s$ for some $2 \le s \le i$. Using the notations of (10) and $F = S_{m_1 \ldots m_{s-1}}(U)$ we conclude that $A \subset S^3(F, \mathcal{U}_{m_s}) \subset S(F, \mathcal{U}_{m_s-1})$ and $B \subset S(V, \mathcal{U}_{l_1}) \in \mathcal{U}_{l_1}^* = \mathcal{U}_{m_l}^* < \mathcal{U}_{m_s-1}$, hence $A \cup B \subset S^2(F, \mathcal{U}_{m_s-1}) = S_{m_1 \ldots m_{s-1}, m_s-1}(U)$ and therefore

$$\varrho(x,z) \leq \frac{1}{2^{m_1}} + \ldots + \frac{1}{2^{m_{s-1}}} + \frac{1}{2^{m_s-1}} = \frac{1}{2^{m_1}} + \ldots + \frac{1}{2^{m_i}} + \frac{1}{2^{l_1}} < a+b+2\varepsilon.$$

It is clear now that ϱ is a topology preserving metric in R. Let us prove that ϱ is of the property (n). We can choose x_i $(i=1,2,\ldots,n+2)$ and $1 \leq m_1 < \ldots < m_p$ such that $x_i \in S(y_i,\sigma_{m_1\ldots m_p})$ and $\varrho(x,x_i) < \frac{\varepsilon}{2}$, $\varrho(x_i,y_i) < \varepsilon$, $2\varrho(x,x_i) < \frac{1}{2^{m_1}} + \ldots + \frac{1}{2^{m_p}} < \varepsilon$. Then for some $U_i \in \mathcal{U}_{m_1}$ we have $x_i,y_i \in S_{m_1\ldots m_p}(U_i) \subset S(U_i,\mathcal{U}_{m_1+1}^*)$ and $x_i \in S(x,\sigma_{m_1+1,\ldots,m_p+1}) \subset S(x,\mathcal{U}_{m_1+1}^*)$ so $S^2(x,\mathcal{U}_{m_1+1}^*) \cap U_i \neq \emptyset$ for $i=1,2,\ldots,n+2$. In view of (ii), for some $i\neq j$, we have $U_i=U_j=W$ so $y_i,y_j \in S_{m_1\ldots m_p}(W)$, that is $\varrho(y_i,y_j) \leq \frac{1}{2^{m_1}} + \ldots + \frac{1}{2^{m_p}} < \varepsilon$.

Sufficiency. Let ϱ be a metric in R of the property (n). For a given $\varepsilon > 0$ let M be a maximal subset of R such that

(11)
$$\varrho(x, y) \ge \varepsilon$$
 for every $x, y \in M$, $x \ne y$.

Now put $\mathscr{A}_{\varepsilon} = \{ \bigcup \{ S_{\varepsilon/2}(x) | x \in S_{\varepsilon}(y) \} | y \in M \}$. If for some $z \in R$, ord $\mathscr{A}_{\varepsilon}(z) > n+1$, then there exist distinct $y_i \in M$ $(i=1,\ldots,n+2)$ such that $\varrho(S_{\varepsilon/2}(z),y_i) < \varepsilon$ and hence by (n), $\varrho(y_i,y_j) < \varepsilon$ for some $i \neq j$ which contradicts (11). Therefore ord $\mathscr{A}_{\varepsilon} \leq n+1$ for every $\varepsilon > 0$, and so $\Delta d(R,\varrho) \leq n$. Since dim R is the minimum of $\Delta d(R,\varrho)$ for all topology preserving metrics ϱ (see [2], theorem 15. on p. 153), we conclude that dim $R \leq n$.

Corollary. Every topology preserving metrizable uniformity on a topological space R of dim $R \le n$ can be refined by a topology preserving metric uniformity μ such that $\Delta d(R, \mu) \le n$.

PROOF. The metric ϱ of property (n) gives a uniformity on R with $\Delta dR \leq n$ and finer than the uniformity induced by the original metric d in R: in view of (i) for every $\varepsilon > 0$ there exists \mathscr{U}_m in (1) such that mesh $\mathscr{U}_m < \varepsilon$ and therefore $\varrho(x,y) < e^{-m}$, $x,y \in R$ implies $x \in S(y,\mathscr{U}_m)$, i.e. $d(x,y) < \varepsilon$, which completes the proof of the corollary.

Let us note that our corollary gives more information that the theorem 15. ([2], p. 153) about n-dimensional compatible metrizable uniformities on a metric space R of dim $R \le n$. According to the theorem 15. all compatible metric uniformities on R are refined by the same, at most n-dimensional uniformity on R, namely by the fine uniformity of R, which however is not metrizable in general.

References

[1] J. NAGATA, Modern dimension theory, Amsterdam (1965).

[2] J. Isbell, Uniform spaces, Amer. Math. Soc. Math. Surveys 12 (1964).
[3] P. Ostrand, Dimension of metric spaces and Hilbert's problem, Bull. Amer. Math. Soc. 71

(1965), 619—625.

(Received December 20, 1975.)