Curvature theory of generalized second order gauge connections

By IRENA ČOMIĆ (Novi Sad)

Abstract

Lately a big attention has been paid to second order gauge connections, but the investigation are mostly restricted to the d-connection. Here this connection is generalized. The curvature tensors and the Ricci equations are obtained, which for the generalized connection have a rather simple form.

1. Adapted basis in TF

Let F be an $n+m+l$ dimensional C^{∞} manifold. Some point $v \in F$ in the local charts (U, φ) and $\left(U^{\prime}, \varphi^{\prime}\right)$ has coordinates $\left(x^{i}, y^{a}, z^{p}\right)$ and $\left(x^{i^{\prime}}, y^{a^{\prime}}, z^{p^{\prime}}\right)$ respectively. In $U \cap U^{\prime}$ the allowable coordinate transformations are given by the equations

$$
\begin{align*}
& x^{i^{\prime}}=x^{i^{\prime}}(x) \\
& y^{a^{\prime}}=y^{a^{\prime}}(x, y) \quad a, j, h, k=\overline{1, n}, \tag{1.1}\\
& z^{p^{\prime}}=z^{p^{\prime}}(x, z) \quad p, q, r, s, e=\overline{n+1, n+m}, \\
& n+m+1, n+m+l
\end{align*},
$$

where

$$
\begin{equation*}
\operatorname{rank}\left[\frac{\partial x^{i^{\prime}}}{\partial x^{i}}\right]=n, \operatorname{rank}\left[\frac{\partial y^{a^{\prime}}}{\partial y^{a}}\right]=m, \operatorname{rank}\left[\frac{\partial z^{p^{\prime}}}{\partial z^{p}}\right]=l . \tag{1.2}
\end{equation*}
$$

From (1.1) and (1.2) it follows that inverse transformations of the form

$$
\begin{equation*}
x^{i}=x^{i}\left(x^{\prime}\right), y^{a}=y^{a}\left(x^{\prime}, y^{\prime}\right), z^{p}=z^{p}\left(x^{\prime}, z^{\prime}\right) \tag{1.1}
\end{equation*}
$$

exist.
Proposition 1.1. The coordinate transformations of type (1.1) form a group.

The tangent space $T F$ is spanned at any point $v \in F$ by $n+m+l$ basis vectors, which form the basis

$$
\begin{equation*}
\bar{B}=\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{a}}, \frac{\partial}{\partial z^{p}}\right\} \tag{1.3}
\end{equation*}
$$

The elements of \bar{B} with respect to (1.1) are transformed in the following way:

$$
\begin{gather*}
\frac{\partial}{\partial x^{i}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial}{\partial x^{i^{\prime}}}+\frac{\partial y^{a^{\prime}}}{\partial x^{i}} \frac{\partial}{\partial y^{a^{\prime}}}+\frac{\partial z^{p^{\prime}}}{\partial x^{i}} \frac{\partial}{\partial z^{p^{\prime}}} \tag{1.4}\\
\frac{\partial}{\partial y^{a}}=\frac{\partial y^{a^{\prime}}}{\partial y^{a}} \frac{\partial}{\partial y^{a^{\prime}}}, \quad \frac{\partial}{\partial z^{p}}=\frac{\partial z^{p^{\prime}}}{\partial z^{p}} \frac{\partial}{\partial z^{p^{\prime}}} \tag{1.5}
\end{gather*}
$$

The functions $\mathcal{N}_{i^{\prime}}^{b^{\prime}}\left(x^{\prime}, y^{\prime}\right)$ and $\mathcal{M}_{i^{\prime}}^{p^{\prime}}\left(x^{\prime}, z^{\prime}\right)$ are the coefficients of nonlinear connections of the second order if they satisfy the following law of transformation:

$$
\begin{align*}
& \text { (a) } \mathcal{N}_{i}^{b}(x, y)=\mathcal{N}_{i^{\prime}}^{b^{\prime}}\left(x^{\prime}, y^{\prime}\right) \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial y^{b}}{\partial y^{b^{\prime}}}+\frac{\partial y^{a^{\prime}}}{\partial x^{i}} \frac{\partial y^{b}}{\partial y^{a^{\prime}}} \tag{1.6}\\
& \text { (b) } \mathcal{M}_{i}^{p}(x, z)=\mathcal{M}_{i^{\prime}}^{p^{\prime}}\left(x^{\prime}, z^{\prime}\right) \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial z^{p}}{\partial z^{p^{\prime}}}+\frac{\partial z^{p^{\prime}}}{\partial x^{i}} \frac{\partial z^{p}}{\partial z^{p^{\prime}}}
\end{align*}
$$

Remark. In many papers as in [11], [13], [14] \mathcal{N} and \mathcal{M} are interchanged. The reason for this change is the fact that for $n+m$ dimensional F, \mathcal{N} is reduced to N used before as in [6]-[10].

Using the notation

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-\mathcal{N}_{i}^{b}(x, y) \frac{\partial}{\partial y^{b}}-\mathcal{M}_{i}^{p}(x, z) \frac{\partial}{\partial z^{p}} \tag{1.7}
\end{equation*}
$$

from (1.6) and (1.7) we obtain

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\delta}{\delta x^{i^{\prime}}} \tag{1.8}
\end{equation*}
$$

Thus the adapted basis

$$
\begin{equation*}
B(\mathcal{N}, \mathcal{M})=\left\{\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{a}}, \frac{\partial}{\partial z^{p}}\right\} \tag{1.9}
\end{equation*}
$$

of $T F$ is obtained. It is clear that as many adapted bases can be formed, as functions \mathcal{N} and \mathcal{M} satisfying (1.6)(a) and (1.6)(b) can be found. The transformations of the elements of $B(\mathcal{N}, \mathcal{M}), T_{H} F, T_{V_{1}} F, T_{V_{2}} F$ are determined by (1.5) and (1.8).

Let us denote by $T_{H} F, T_{V_{1}} F, T_{V_{2}} F$ the subspaces of $T F$ spanned by $\left\{\frac{\delta}{\delta x^{i}}\right\},\left\{\frac{\partial}{\partial y^{a}}\right\},\left\{\frac{\partial}{\partial z^{p}}\right\}$ respectively, then

$$
\begin{equation*}
T F=T_{H} F \oplus T_{V_{1}} F \oplus T_{V_{2}} F \tag{1.10}
\end{equation*}
$$

Any vector field X in $T F$ can be written in the form

$$
\begin{equation*}
X=X^{i} \frac{\delta}{\delta x^{i}}+X^{a} \frac{\partial}{\partial y^{a}}+X^{p} \frac{\partial}{\partial z^{p}} . \tag{1.11}
\end{equation*}
$$

The coordinates of X under (1.1) are transformed in the following way:

$$
\begin{equation*}
X^{i^{\prime}}=X^{i} \frac{\partial x^{i^{\prime}}}{\partial x^{i}}, X^{a^{\prime}}=X^{a} \frac{\partial y^{a^{\prime}}}{\partial y^{a}}, X^{p^{\prime}}=X^{p} \frac{\partial z^{p^{\prime}}}{\partial z^{p}} . \tag{1.12}
\end{equation*}
$$

The adapted basis of $T^{*} F$ is

$$
\begin{equation*}
B^{*}(\mathcal{N}, \mathcal{M})=\left\{d x^{i}, \delta y^{a}, \delta z^{p}\right\} \tag{1.13}
\end{equation*}
$$

where

$$
\begin{gather*}
\delta y^{a}=d y^{a}+\mathcal{N}_{i}^{a}(x, y) d x^{i} \tag{1.14}\\
\delta z^{p}=d z^{p}+\mathcal{M}_{i}^{p}(x, z) d x^{i} . \tag{1.15}
\end{gather*}
$$

The elements of B^{*} are transformed in the following way:

$$
\begin{equation*}
d x^{i}=\frac{\partial x^{i}}{\partial x^{i^{\prime}}} d x^{i^{\prime}}, \delta y^{a}=\frac{\partial y^{a}}{\partial y^{a^{\prime}}} \delta y^{a^{\prime}}, \delta z^{p}=\frac{\partial z^{p}}{\partial z^{p^{\prime}}} \delta z^{p^{\prime}} . \tag{1.16}
\end{equation*}
$$

Let us denote the subspaces of $T^{*} F$ spanned by $\left\{d x^{i}\right\},\left\{\delta y^{a}\right\},\left\{\delta z^{p}\right\}$ respectively by $T_{H}^{*} F, T_{V_{1}}^{*} F, T_{V_{2}}^{*} F$, then

$$
\begin{equation*}
T^{*} F=T_{H}^{*} F \oplus T_{V_{1}}^{*} F \oplus T_{V_{2}}^{*} F \tag{1.17}
\end{equation*}
$$

Any 1-form field $\omega \in T^{*} F$ can be written in the form:

$$
\begin{equation*}
\omega=\omega_{i} d x^{i}+\omega_{a} \delta y^{a}+\omega_{p} \delta z^{p} \tag{1.18}
\end{equation*}
$$

The coordinates of the 1-form ω with respect to (1.1) are transformed in the following way:

$$
\begin{equation*}
\omega_{i}=\omega_{i^{\prime}} \frac{\partial x^{i^{\prime}}}{\partial x^{i}}, \omega_{a}=\omega_{a^{\prime}} \frac{\partial y^{a^{\prime}}}{\partial y^{a}}, \omega_{p}=\omega_{p^{\prime}} \frac{\partial z^{p^{\prime}}}{\partial z^{p}} . \tag{1.19}
\end{equation*}
$$

2. Gauge covariant derivatives of the second order

Let $\nabla: T F \times T F \rightarrow T F(\times$ is the Descartes product) be a linear connection, such that $\nabla:(X, Y) \rightarrow \nabla_{X} Y \in T F, \forall X, Y \in T F$. The operator ∇ is called generalized gauge connection of the second order. It is called d-gauge connection of the second order if $\nabla_{X} Y$ is in $T_{H} F, T_{V_{1}} F$ or $T_{V_{2}} F$ provided Y is in $T_{H} F, T_{V_{1}} F$ or $T_{V_{2}} F$ respectively, $\forall X \in T F$. It has been studied by many authors, mostly romanian geometers.

Here we shall not make this restriction on ∇. In the following we shall use the abbreviations: $\delta_{k}=\frac{\delta}{\delta x^{k}}, \partial_{k}=\frac{\partial}{\partial x^{k}}, \partial_{a}=\frac{\partial}{\partial y^{a}}, \partial_{p}=\frac{\partial}{\partial z^{p}}$.

Definition 2.1. The generalized gauge connection ∇ of the second order is defined by

$$
\begin{align*}
& \text { (a) } \nabla_{\delta_{i}} \delta_{\beta}=F_{\beta}{ }_{\beta}{ }_{i} \delta_{\kappa}, \\
& \text { (b) } \nabla_{\partial_{a}} \delta_{\beta}=C_{\beta}^{\kappa}{ }_{a} \delta_{\kappa} \tag{2.1}\\
& \text { (c) } \nabla_{\partial_{p}} \delta_{\beta}=L_{\beta}^{\kappa}{ }_{\beta}{ }_{p} \delta_{\kappa},
\end{align*}
$$

where $\beta=j$ or $\beta=b$ or $\beta=q$ and

$$
\begin{equation*}
T_{. .}^{.{ }^{\kappa}} \delta_{\kappa}=T_{. .}^{. k} \delta_{k}+T_{. . .}^{\ldots c} \partial_{c}+T_{\ldots .}^{. . r} \partial_{r} . \tag{2.2}
\end{equation*}
$$

We shall use the abbreviated form of (2.1):

$$
\begin{equation*}
\nabla_{\delta_{\alpha}} \delta_{\beta}=\Gamma_{\beta}^{\kappa}{ }_{\alpha} \delta_{\kappa} . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) it follows:
If $\alpha=i$, then $\Gamma=F$; if $\alpha=a$, then $\Gamma=C$; if $\alpha=p$, then $\Gamma=L$.
Proposition 2.1. If X is the vector field (1.11) defined on F, then the following equations are valid:

$$
\begin{array}{ll}
\nabla_{\delta_{i}} X=X_{\mid i}^{\alpha} \delta_{\alpha}, & X_{\mid i}^{\alpha}=\delta_{1} X^{\alpha}+F_{\beta}{ }^{\alpha}{ }_{i} X^{\beta} \\
\nabla_{\partial_{a}} X=\left.X^{\alpha}\right|_{a} \delta_{\alpha}, & \left.X^{\alpha}\right|_{a}=\partial_{a} X^{\alpha}+C_{\beta}{ }^{\alpha}{ }_{a} X^{\beta} \tag{2.4}\\
\nabla_{\partial_{p}} X=X^{\alpha} \|_{p} \delta_{\alpha}, & X^{\alpha} \|_{p}=\partial_{p} X^{\alpha}+L_{\beta}{ }^{\alpha}{ }_{p} X^{\beta},
\end{array}
$$

where

$$
\begin{equation*}
\Gamma_{\dot{\beta}, X^{\beta}}=\Gamma_{j}, X^{j}+\Gamma_{\dot{b}} . X^{b}+\Gamma_{q} . X^{q} . \tag{2.5}
\end{equation*}
$$

Theorem 2.1. If X and Y are vector fields in $T F$ expressed in the basis B, and ∇ the second order gauge connection defined by (2.1), then the following equation is valid:

$$
\begin{equation*}
\nabla_{Y} X=\left(X_{\mid \beta}^{\alpha}\right) Y^{\beta} \delta_{\alpha} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\cdots{ }_{\cdots \mid \beta} Y^{\beta}=\cdots{ }_{\cdots j} Y^{j}+\left.\cdots\right|_{b} Y^{b}+\cdots{ }_{\cdots} \|_{q} Y^{q} \tag{2.7}
\end{equation*}
$$

Theorem 2.2. All covariant derivatives $X_{\mid i}^{\alpha},\left.X^{\alpha}\right|_{a}, X^{\alpha} \|_{p}(\alpha=j$, or $\alpha=b$, or $\alpha=p$) from (2.4) are transformed as tensors with respect to (1.1) if all connection coefficients from (2.1) are transformed as tensors, except the following which have the form:

$$
\begin{equation*}
F_{j}^{k}{ }_{i}^{k}=F_{j^{\prime}}^{k^{\prime}{ }_{i}^{\prime}} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \frac{\partial x^{j^{\prime}}}{\partial x^{j}}+\frac{\partial^{2} x^{k^{\prime}}}{\partial x^{i} \partial x^{j}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \tag{2.8}
\end{equation*}
$$

$F_{b}{ }^{c}=F_{b^{\prime}}{ }^{c^{\prime}}{ }^{\prime} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial y^{b^{\prime}}}{\partial y^{b}} \frac{\partial y^{c}}{\partial y^{c^{\prime}}}+\frac{\partial^{2} y^{c^{\prime}}}{\partial x^{i} \partial y^{b}} \frac{\partial y^{c}}{\partial y^{c^{\prime}}}-\mathcal{N}_{i}^{a} \frac{\partial^{2} y^{c^{\prime}}}{\partial y^{b} \partial y^{a}} \frac{\partial y^{c}}{\partial y^{c^{\prime}}}$
2.10) $F_{q}^{r}=F_{q^{\prime}}^{r^{\prime}}{ }_{i}^{\prime} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial z^{q^{\prime}}}{\partial z^{q}} \frac{\partial z^{r}}{\partial z^{r^{\prime}}}+\frac{\partial^{2} z^{r^{\prime}}}{\partial x^{i} \partial z^{q}} \frac{\partial z^{r}}{\partial z^{r^{\prime}}}-\mathcal{M}_{i}^{s} \frac{\partial^{2} z^{r^{\prime}}}{\partial z^{s} \partial z^{q}} \frac{\partial z^{r}}{\partial z^{r^{\prime}}}$

$$
\begin{align*}
& C_{b}^{c}{ }_{a}^{c}=C_{b^{\prime}}^{c^{\prime}} \tag{2.11}\\
& a^{\prime} \frac{\partial y^{b^{\prime}}}{\partial y^{b}} \frac{\partial y^{a^{\prime}}}{\partial y^{a}} \frac{\partial y^{c}}{\partial y^{c^{\prime}}}+\frac{\partial^{2} y^{c^{\prime}}}{\partial y^{a} \partial y^{b}} \frac{\partial y^{c}}{\partial y^{c^{\prime}}} \\
& L_{q}^{r}{ }_{p}=L_{q^{\prime}}^{r^{\prime}}{ }_{p^{\prime}} \frac{\partial z^{q^{\prime}}}{\partial z^{q}} \frac{\partial z^{p^{\prime}}}{\partial z^{p}} \frac{\partial z^{r}}{\partial z^{r^{\prime}}}+\frac{\partial^{2} z^{r^{\prime}}}{\partial z^{q} \partial z^{p}} \frac{\partial z^{r}}{\partial z^{r^{\prime}}}
\end{align*}
$$

The proof is given in [7]
Theorem 2.3. The torsion tensor T for the second order gauge connection ∇ has the form:

$$
\begin{equation*}
T(X, Y)=T_{\alpha}{ }_{\beta}^{\kappa} Y^{\alpha} X^{\beta} \delta_{\kappa} \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\alpha \beta}^{\kappa}=\Gamma_{\alpha \beta}^{\kappa}-\Gamma_{\beta \alpha}^{\kappa} \tag{2.14}
\end{equation*}
$$

except the following components:
(a) $T_{j}{ }^{c}{ }_{i}=F_{j}{ }^{c}{ }_{i}-F_{i}{ }^{c}{ }_{j}-\mathcal{N}_{i}{ }^{c}{ }_{j}$
(b) $T_{j}{ }^{c}=C_{j b}^{c}-F_{b j}^{c}+\partial_{b} \mathcal{N}_{j}^{c}=-T_{b}{ }^{c}{ }_{j}$
(c) $T_{j}^{r}{ }_{i}=F_{j}^{r}{ }_{i}-F_{i}^{r}{ }_{j}-\mathcal{M}_{i}{ }^{q}{ }_{j}$
(d) $T_{p}^{r}{ }_{i}=F_{p}^{r}{ }_{i}-L_{i}^{r}{ }_{p}-\partial_{p} \mathcal{M}_{i}^{r}=-T_{p}^{r}{ }_{i}$,
where
(a) $\mathcal{N}_{i}^{c}{ }_{j}=\left(\partial_{j} \mathcal{N}_{i}^{c}-\mathcal{N}_{j}^{b} \partial_{b} \mathcal{N}_{i}^{c}\right)-(i, j)$
(b) $\mathcal{M}_{i}{ }^{q}{ }_{j}=\left(\partial_{j} \mathcal{M}_{i}^{q}-\mathcal{M}_{j}^{p} \partial_{p} \mathcal{M}_{i}^{q}\right)-(i, j)$

The proof is given in [7].

3. The curvature theory of ∇

The curvature tensor for the second order gauge connection ∇ is defined as usual

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z . \tag{3.1}
\end{equation*}
$$

If we use the notation

$$
X=X^{\alpha} \partial_{\alpha}, Y=Y^{\beta} \partial_{\beta}, Z=Z^{\gamma} \partial_{\gamma},
$$

then we have

$$
\begin{align*}
\nabla_{X} \nabla_{Y} Z= & \nabla_{X^{\alpha} \partial_{\alpha}} \nabla_{Y^{\beta} \partial_{\beta}} Z^{\gamma} \partial_{\gamma} \\
= & \nabla_{X^{\alpha} \partial_{\alpha}}\left[Y^{\beta}\left(\partial_{\beta} Z^{\gamma}\right) \partial_{\gamma}+Y^{\beta} Z^{\gamma} \Gamma_{\gamma}^{\kappa}{ }_{\beta} \partial_{\kappa}\right] \\
= & X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right)\left(\partial_{\beta} Z^{\gamma}\right) \partial_{\gamma}+X^{\alpha} Y^{\beta}\left(\partial_{\alpha} \partial_{\beta} Z^{\gamma}\right) \partial_{\gamma} \\
& +X^{\alpha} Y^{\beta}\left(\partial_{\beta} Z^{\gamma}\right) \Gamma_{\gamma}^{\kappa}{ }_{\alpha} \partial_{\kappa}+X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right) Z^{\gamma} \Gamma_{\gamma}{ }^{\kappa} \partial_{\kappa} \tag{3.2}\\
& +X^{\alpha} Y^{\beta}\left(\partial_{\alpha} Z^{\gamma}\right) \Gamma_{\gamma}{ }^{\kappa} \partial_{\kappa}+X^{\alpha} Y^{\beta} Z^{\gamma}\left(\partial_{\alpha} \Gamma_{\gamma \beta}^{\kappa}\right) \partial_{\kappa} \\
& +X^{\alpha} Y^{\beta} Z^{\gamma} \Gamma_{\gamma}^{\theta}{ }_{\beta} \Gamma_{\theta}^{\kappa}{ }_{\alpha} \partial_{\kappa} .
\end{align*}
$$

From

$$
\begin{equation*}
[X, Y]=X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right) \partial_{\beta}-Y^{\alpha}\left(\partial_{\alpha} X^{\beta}\right) \partial_{\beta}+X^{\alpha} Y^{\beta}\left(\partial_{\alpha} \partial_{\beta}-\partial_{\beta} \partial_{\alpha}\right), \tag{3.3}
\end{equation*}
$$

where

$$
\begin{gather*}
X^{\alpha} Y^{\beta}\left(\partial_{\alpha} \partial_{\beta}-\partial_{\beta} \partial_{\alpha}\right)=X^{\alpha} Y^{\beta} K_{\alpha}^{\kappa} \partial_{\kappa} \\
=X^{i} Y^{j}\left(\mathcal{N}_{i}{ }^{c} \partial_{c}+\mathcal{M}_{i}^{q}{ }_{j} \partial_{q}\right)+\left(X^{i} Y^{b}-Y^{i} X^{b}\right)\left(\partial_{b} \mathcal{N}_{i}^{c}\right) \partial_{c} \tag{3.4}\\
+\left(X^{i} Y^{q}-Y^{i} X^{q}\right)\left(\partial_{q} \mathcal{M}_{i}^{p}\right) \partial_{p},
\end{gather*}
$$

it follows:

$$
\begin{align*}
\nabla_{[X Y]} Z= & X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right)\left(\partial_{\beta} Z^{\gamma}\right) \partial_{\gamma}+X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right) Z^{\gamma} \Gamma_{\gamma}{ }^{\kappa} \partial_{\kappa} \\
& -Y^{\alpha}\left(\partial_{\alpha} X^{\beta}\right)\left(\partial_{\beta} Z^{\gamma}\right) \partial_{\gamma}-Y^{\alpha}\left(\partial_{\alpha} X^{\beta}\right) Z^{\gamma} \Gamma_{\gamma}{ }_{\beta}{ }_{\beta} \partial_{\kappa} \\
& +X^{\alpha} Y^{\beta}\left[\left(\partial_{\alpha} \partial_{\beta}-\partial_{\beta} \partial_{\alpha}\right) Z^{\gamma}\right] \partial_{\gamma} \tag{3.5}\\
& +X^{\alpha} Y^{\beta} Z^{\gamma} K_{\alpha}^{\theta}{ }_{\beta} \Gamma_{\gamma}{ }_{\gamma}{ }_{\theta} \partial_{\kappa} .
\end{align*}
$$

Substituting (3.2) and (3.5) into (3.1) we obtain

$$
\begin{align*}
R(X, Y) Z= & {\left[K_{\gamma}{ }^{\kappa}{ }_{\beta \alpha} X^{\alpha} Y^{\beta}-\left(\mathcal{N}_{i}{ }_{j} C_{\gamma}{ }^{\kappa}{ }_{c}+\mathcal{M}_{i}{ }^{q} L_{\gamma}{ }_{\gamma}{ }_{q}\right) X^{i} Y^{j}\right.} \\
& -\partial_{b} \mathcal{N}_{i}^{c} C_{\gamma c}^{\kappa}\left(X^{i} Y^{b}-Y^{i} X^{b}\right) \tag{3.6}\\
& \left.-\partial_{q} \mathcal{M}_{i}^{p} L_{\gamma}^{\kappa}{ }^{\kappa}\left(X^{i} Y^{q}-Y^{i} X^{q}\right)\right] Z^{\gamma} \partial_{\kappa},
\end{align*}
$$

where

$$
\begin{equation*}
K_{\gamma \beta \alpha}^{\kappa}=\left(\partial_{\alpha} \Gamma_{\gamma \beta}^{\kappa}-\Gamma_{\gamma \alpha}^{\theta}{ }_{\theta}{ }_{\theta \beta \beta}^{\kappa}\right)-(\alpha, \beta) . \tag{3.7}
\end{equation*}
$$

As the indices $\alpha, \beta, \gamma, \kappa$ belong to one of the sets $\{i, j, k, l, \ldots\}$, $\{a, b, c, d, \ldots\},\{p, q, r, s, t, \ldots\}$ (corresponding to $T_{H} F, T_{V_{1}} F, T_{V_{2}} F$ respectively), so on the $T F$ we have $3^{4}=81$ types of curvature tensors. It is meaningless to introduce different letters as R, P, S for the curvature tensors as in Finsler geometry.

We shall denote

$$
\begin{equation*}
R_{\gamma \beta \alpha}^{\kappa}=K_{\gamma \beta \alpha}^{\kappa} \tag{3.8}
\end{equation*}
$$

for all (β, α) except when $(\beta, \alpha)=(j, i),(\beta, \alpha)=(b, i),(\beta, \alpha)=(i, b)$, $(\beta, \alpha)=(q, i)$ and $(\beta, \alpha)=(i, q)$. In these cases we have

$$
\begin{align*}
R_{\gamma j i}^{\kappa} & =K_{\gamma j i}^{\kappa}-\mathcal{N}_{i}^{c}{ }^{c} C_{\gamma c}^{\kappa}-\mathcal{M}_{i j}^{q} L_{\gamma q}{ }^{\kappa}, \\
R_{\gamma i b}^{\kappa} & =K_{\gamma i b}^{\kappa}+\partial_{b} \mathcal{N}_{i}^{c} C_{\gamma c}^{\kappa}, \\
R_{\gamma b i}^{\kappa} & =K_{\gamma b i}^{\kappa}-\partial_{b} \mathcal{N}_{i}^{c} C_{\gamma c}^{\kappa}, \tag{3.9}\\
R_{\gamma i q}^{\kappa} & =K_{\gamma i q}^{\kappa}+\partial_{q} \mathcal{M}_{i}^{p} L_{q p}^{\kappa}, \\
R_{\gamma q i}^{\kappa} & =K_{\gamma}^{\kappa}{ }_{q i}^{\kappa}-\partial_{q} \mathcal{M}_{i}^{p} L_{\gamma p}^{\kappa} .
\end{align*}
$$

From (3.7), (3.8) and (3.9) it is obvious that

$$
\begin{equation*}
R_{\gamma \beta \alpha}^{\kappa}=-R_{\gamma \alpha \beta}^{\kappa} . \tag{3.10}
\end{equation*}
$$

We can write (3.6) in the form:

$$
\begin{align*}
R(X, Y) Z= & {\left[\frac{1}{2} K_{\gamma}^{\kappa}{ }_{\beta \beta \alpha}\left(X^{\alpha} Y^{\beta}-Y^{\alpha} X^{\beta}\right)\right.} \\
& -\frac{1}{2}\left(\mathcal{N}_{i}{ }_{j} C_{\gamma}{ }_{\gamma}{ }_{c}+\mathcal{M}_{i}^{q}{ }_{j} L_{\gamma}{ }^{\kappa}\right)\left(X^{i} Y^{j}-Y^{i} X^{j}\right) \\
& -\frac{1}{2} \partial_{b} \mathcal{N}_{i}^{c} C_{\gamma}^{\kappa}{ }_{c}\left(X^{i} Y^{b}-Y^{i} X^{b}\right) \\
& +\frac{1}{2} \partial_{b} \mathcal{N}_{i}^{c} C_{\gamma}^{\kappa}{ }_{c}\left(Y^{i} X^{b}-X^{i} Y^{b}\right) \tag{3.11}\\
& -\frac{1}{2} \partial_{q} \mathcal{M}_{i}^{p} L_{\gamma}^{\kappa}{ }_{p}\left(X^{i} Y^{q}-Y^{i} X^{q}\right) \\
& \left.+\frac{1}{2} \partial_{q} \mathcal{M}_{i}^{p} L_{\gamma}^{\kappa}{ }_{p}\left(Y^{i} X^{q}-X^{i} Y^{q}\right)\right] Z^{\gamma} \delta_{\kappa}
\end{align*}
$$

For $(\beta, \alpha)=(j, i)$ the sum of the first and the second line in (3.11) is equal to $\frac{1}{2} R_{\gamma}^{\kappa}{ }_{j i}\left(X^{i} Y^{j}-Y^{i} X^{j}\right)$, for $(\beta, \alpha)=(b, i)$ the sum of the first and the third line in (3.11) is equal to $\frac{1}{2} R_{\gamma b i}^{\kappa}\left(X^{i} Y^{b}-Y^{i} X^{b}\right)$ etc.

From (3.8)-(3.11) follows
Theorem 3.1. The curvature tensor of the second order gauge connection ∇ has the form

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2} R_{\gamma \beta \alpha}^{\kappa}\left(X^{\alpha} Y^{\beta}-Y^{\alpha} X^{\beta}\right) Z^{\gamma} \delta_{\kappa}, \tag{3.12}
\end{equation*}
$$

where the components of R are determined by (3.8) and (3.9).
Formula (3.12) is short and elegant, but the explicit form of the curvature tensor is much longer, for instance if $(\beta, \alpha)=(b, i)$ then from (3.7) and (3.9) we have:

$$
\begin{aligned}
& R_{\gamma b i}^{\kappa}=\delta_{i} C_{\gamma b}^{\kappa}-F_{\gamma}{ }_{i} C_{\theta}{ }^{\kappa}{ }_{b}-\partial_{b} F_{\gamma}{ }^{\kappa}{ }_{i}+C_{\gamma}{ }^{\theta}{ }_{b} F_{\theta}{ }^{\kappa}{ }_{i}-\partial_{b} \mathcal{N}_{i}^{c} C_{\gamma}{ }^{\kappa}{ }_{c} \\
& =\delta_{i} C_{\gamma}{ }^{\kappa}{ }_{b}-F_{\gamma}{ }_{i}^{k} C_{k}{ }^{\kappa}{ }_{b}-F_{\gamma}{ }^{c} C_{c}{ }_{c}{ }^{\kappa}-F_{\gamma}{ }_{i}{ }_{i} C_{r}{ }^{\kappa}{ }_{b} \\
& -\partial_{b} F_{\gamma}{ }^{\kappa}{ }_{i}+C_{\gamma}{ }^{k} F_{k}{ }_{k}{ }_{i}+C_{\gamma}{ }^{c}{ }_{b} F_{c}{ }_{i}{ }_{i}+C_{\gamma}{ }^{r}{ }_{b} F_{r}{ }^{\kappa}{ }_{i}-\partial_{b} \mathcal{N}_{i}^{c} C_{\gamma}{ }^{\kappa} .
\end{aligned}
$$

4. Ricci identities for ∇

From (2.6) it follows

$$
\begin{align*}
\nabla_{X} \nabla_{Y} Z & =\left[\left(Z_{\mid \beta}^{\gamma}\right) Y^{\beta}\right]_{\mid \alpha} X^{\alpha} \delta_{\gamma} \tag{4.1}\\
& =\left(Z_{|\beta| \alpha}^{\gamma} Y^{\beta}+Z_{\mid \beta}^{\gamma} Y_{\mid \alpha}^{\beta}\right) X^{\alpha} \delta_{\gamma} .
\end{align*}
$$

From (2.6), (3.3) and (3.4) we obtain

$$
\begin{equation*}
\nabla_{[X, Y]} Z=Z_{\beta}^{\gamma}[X, Y]^{\beta} \delta_{\gamma}=A+B \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
A= & Z_{\mid \beta}^{\gamma}\left[X^{\alpha}\left(\partial_{\alpha} Y^{\beta}\right)-Y^{\alpha}\left(\partial_{\alpha} X^{\beta}\right)\right] \delta_{\gamma} \tag{4.3}\\
= & Z_{\mid \beta}^{\gamma}\left[X^{\alpha} Y_{\mid \alpha}^{\beta}-Y^{\alpha} X_{\mid \alpha}^{\beta}-\left(\Gamma_{\theta \alpha}^{\beta}-\Gamma_{\alpha \theta}^{\beta}\right) X^{\alpha} Y^{\theta}\right] \delta_{\gamma} \\
B= & X^{i} Y^{j}\left[\left.Z^{\gamma}\right|_{c} \mathcal{N}_{i j}^{c}+Z^{\gamma} \|_{q} \mathcal{M}_{i j}^{q}\right] \delta_{\gamma} \tag{4.4}\\
& +\left.\left(X^{i} Y^{b}-Y^{i} X^{b}\right) Z^{\gamma}\right|_{c}\left(\partial_{b} \mathcal{N}_{i}^{c}\right) \delta_{\gamma} \\
& +\left(X^{i} Y^{q}-Y^{i} X^{q}\right) Z^{\gamma} \|_{p}\left(\partial_{q} \mathcal{M}_{i}^{p}\right) \delta_{\gamma} .
\end{align*}
$$

Taking into account (2.14) and (2.15) we obtain

$$
\begin{equation*}
A+B=\left[Z_{\mid \beta}^{\gamma}\left(X^{\alpha} Y_{\mid \alpha}^{\beta}-Y^{\alpha} X_{\mid \alpha}^{\beta}\right)-Z_{\mid \kappa}^{\gamma} T_{\beta}^{\kappa}{ }_{\alpha} X^{\alpha} Y^{\beta}\right] \delta_{\gamma} . \tag{4.5}
\end{equation*}
$$

From (4.1), (4.2) and (4.5) we obtain

$$
\begin{align*}
R(X, Y) Z & =\left(Z_{|\beta| \alpha}^{\gamma}-Z_{|\alpha| \beta}+Z_{\mid \kappa}^{\gamma} T_{\beta \alpha}^{\kappa}\right) X^{\alpha} Y^{\beta} \delta_{\gamma} \\
& =\frac{1}{2}\left(Z_{|\beta| \alpha}^{\gamma}-Z_{|\alpha| \beta}^{\gamma}+Z_{\mid \kappa}^{\gamma} T_{\beta}^{\kappa}{ }_{\alpha}\right)\left(X^{\alpha} Y^{\beta}-Y^{\alpha} X^{\beta}\right) \delta_{\gamma} . \tag{4.6}
\end{align*}
$$

From (4.6) and (3.12) it follows:
Theorem 4.1. The Ricci equations for the second order gauge connection ∇ have the form:

$$
\begin{equation*}
Z_{|\beta| \alpha}^{\gamma}-Z_{|\alpha| \beta}^{\gamma}+Z_{\mid \kappa}^{\gamma} T_{\beta \alpha}^{\kappa}=R_{\kappa \beta \alpha}^{\gamma} Z^{\kappa} . \tag{4.7}
\end{equation*}
$$

(4.7) contains 3^{3} types of Ricci equations, because each Greek index may be an element from one of the sets: $\{i, j, h, k, l\},\{a, b, c, d, e\}$, $\{p, q, r, s, t\}$.

For $(\beta, \alpha)=(j, i)$ (4.7) becomes

$$
\begin{aligned}
& Z_{|j| i}^{\gamma}-Z_{|i| j}^{\gamma}+Z_{\mid k}^{\gamma} T_{j}^{k}+\left.Z^{\gamma}\right|_{c} T_{j}^{c}{ }_{i}+Z^{\gamma} \|_{p} T_{j i}^{p} \\
&=R_{k j i}^{\gamma} Z^{k}+R_{c j i}^{\gamma} Z^{c}+R_{p j i}^{\gamma} Z^{p},
\end{aligned}
$$

for $(\beta, \alpha)=(p, i)(4.7)$ takes the form

$$
\begin{gathered}
Z^{\gamma}\left\|_{p \mid i}-Z_{\mid i}^{\gamma}\right\|_{p}+Z_{\mid k}^{\gamma} T_{p i}^{k}+\left.Z^{\gamma}\right|_{c} T_{p i}^{c}+Z^{\gamma} \|_{r} T_{p i}^{r} \\
=R_{k p i}^{\gamma} Z^{k}+R_{c p i}^{\gamma} Z^{c}+R_{r p i}^{\gamma} Z^{r}, \text { e.t.c. }
\end{gathered}
$$

References

[1] G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reider Publ. Comp., 1985.
[2] R. Bawman, Second order connections, J. Diff. Geom. 7 (1972), 549-561.
[3] V. Balan, A class of solutions for the generalized gauge Asanov equations, Studii si Cercetáni Math. 45 (1993), 287-292.
[4] A. Bejancu, Fundations of direction-dependent gauge theory, Seminarul de Mecanica, Univ. Timisoara 13 (1988), 1-60.
[5] I. C̆омıć, The curvature theory of strongly distinguished connection in the recurrent K-Hamilton space, Indian Journal of Applied Math. 23(3) (1992), 189-202.
[6] I. Čomıć, Curvature theory of recurrent Hamilton space with generalized connection, Analele Stiintifice Univ. Al. J. Cuza din Iaşi 37 s.I a. Mat. (1991), 467-476.
[7] I. Čомıć, Generalized second order gauge connections, (to be published).
[8] I. C̆omić, Curvature theory of vector bundles and subbundles, Filomat, (Niš), 1993, pp. 55-66.
[9] I. Comı́́, The Ricci and Bianchi identities in the recurrent K-Hamilton spaces, Proc. of the Third Conf. of Geom., Thesaloniki, 1991, pp. 137-147.
[10] I. Čomić and H. Kawaguchi, The curvature theory of dual vector bundles and subbundles, Tensor N. S. 55 (1994), 20-31.
[11] S. Ikeda, On the theory of gravitational field in Finsler space, Tensor N. S. 50 (1991), 256-262.
[12] R. Miron and M. Anastasiei, The Geometry of Lagrange Space, Theory and Applications, Kluwer Academic Publishers, 1993.
[13] Gh. Munteanu and Gh. Atanasiu, On Miron-connections in Lagrange spaces of second order, Tensor N. S. 50 (1991).
[14] Gh. Munteanu, Metric almost tangent structure of second order, Bull. Math. Soc. Sci. Mat. Roumanie 34 (1) (1990), 49-54.
[15] D. Opris, Fibres vectorials de Finsler et connexions associés, The Proc. of Mat. Sem. on Finsler Spaces, Brasov, 1980, pp. 185-193.
[16] G. Sardanshvily and O. Zakharov, Gauge Gravitation Theory, World Sci. Publ. Co., 1992.
[17] A. Trautman, Differential Geometry for Physicists, Bibliophis Naples, 1984.
[18] K. Yano and S. Isihara, Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.

IRENA ČOMIĆ

FACULTY OF TECHNICAL SCIENCES
21000 NOVI SAD
YUGOSLAVIA

