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An antidemocratic representation

By IMRE Z. RUZSA (Budapest)

1. Introduction

Let A be a set of positive integers and write

r(n) = #{(a, a′) : a, a′ ∈ A, a + a′ = n},
B = A + A = {n : r(n) ≥ 1}.

P. Erdős and A. Ivič asked whether it is possible to have d(B) = 0 and at
the same time r(n) → ∞ when n is restricted to n ∈ B. We construct a
class of such sets.

We write
A(x) = #

(
A ∩ [1, x]

)

and similarly for B.

Theorem 1. There is a set A such that B(x) ¿ x1−α while r(n) À nβ

for all n ∈ B with certain absolute constants α, β.

Obviously r(n) ≤ A(n) ≤ B(n) + O(1) for all n, thus we have nec-
essarily α + β ≤ 1. I cannot decide whether β can be arbitrarily near
to 1.

Theorem 2. If ω(x) → ∞ arbitrarily slowly, then there is a set A
such that

A(x) ¿ B(x) ¿ (log x)ω(x)

while r(n) →∞ for n ∈ B.

I cannot decide whether A(x) ¿ (log x)O(1) is possible for such a set.
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The construction is described in the next section. The proof that
these sequences have the desired properties is given in Section 3.

2. The construction

For a positive integer n let s(n) denote the number of 1’s in the binary
representation of n.

Let t : N→ N ∪ {0} be a nondecreasing function with the properties

t(k) ≤ 3
8
k, t(k + 1) ≤ 1 + t(k).

We consider, for each such function t, the set

A = At = {n : 2k ≤ n < 2k+1 and s(n) ≤ t(k) for some k}.
The sets in Theorems 1 and 2 will be particular cases of this construction
for suitable choices of the function t. In this section we establish a general
property of these sequences.

Take an integer n, and define k by

(2.1) 2k ≤ n < 2k+1.

Develop n in base 2. Either n = 2k, or we can write this development as

(2.2) n = 2k + 2l +
l−1∑

i=0

εi2i (k > l).

Throughout this section k and l will denote the numbers determined
by (2.1) and (2.2). Now put

T (n) = max
(
t(k) + t(l), 2t(k − 1)− 1

)
.

For n = 2k, we define T (n) = 2t(k − 1)− 1.

Theorem 3. If n ∈ B, then s(n) ≤ T (n), and

(2.3) r(n) ≥ c
2(2/3)t(k)

√
t(k)

with a positive absolute constant c and k defined by (2.1).

We shall need the following property of the function s.



An antidemocratic representation 109

Lemma 2.1. For arbitrary positive integers m,n we have

s(m + n) ≤ s(m) + s(n),

with equality if there is no i such that the i’th digits in the binary repre-
sentations of m and n are both equal to 1 and strict inequality otherwise.

We leave the simple proof to the reader.

Lemma 2.2. If n ∈ B, then

s(n) ≤ T (n).

Proof. We use representation (2.2). Assume n = a + a′, a, a′ ∈ A,
a ≥ a′. If a ≥ 2k, then a′ < 2l+1, hence

s(a) ≤ t(k), s(a′) ≤ t(l),

and so
s(n) ≤ s(a) + s(a′) ≤ t(k) + t(l) ≤ T (n).

If a < 2k, then
s(a) ≤ t(k − 1), s(a′) ≤ t(k − 1),

and there must be a common 1 in the representations of a and a′, since
otherwise we could add them without carry and n = a + a′ would not
contain 2k. Consequently we have

s(n) ≤ s(a) + s(a′)− 1 ≤ 2t(k − 1)− 1 ≤ T (n).

If n = 2k, then only the second case is possible and we get the result by
the second argument. ¤

From now on we fix the following notation: s(n) = s and

(2.4) n =
s∑

i=1

2ui , u1 > u2 > · · · > us, u1 = k, u2 = l.

Lemma 2.3. If 4 ≤ s ≤ T (n), then

(2.5) r(n) ≥
(

s− 2
[s/2]− 2

)
≥ c2s

√
s
.

Proof. First case: t(k) + t(l) ≥ 2t(k − 1).
Here

t(l) ≥ 2t(k − 1)− t(k) ≥ t(k)− 2
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and so
s ≤ t(k) + t(l) ≤ 2t(l) + 2.

Since s ≤ t(k) + t(l), we can find integers q and r such that s = q + r,
q ≤ t(k), r ≤ t(l). Moreover, we can achieve

[s

2
− 1

]
≤ r ≤

[s

2

]
.

Indeed, if s ≥ 2t(l), then r = t(l), q = s − t(l) is such a choice, while if
s < 2t(l), then r = [s/2], q = s− [s/2] works.

Now for each decomposition

{3, 4, . . . , s} = X ∪ Y

into disjoint sets X,Y such that |X| = q − 1, |Y | = r − 1 we can set

a = 2k +
∑

i∈X

2ui , a′ = 2l +
∑

i∈Y

2ui .

This will be a valid decomposition of n, since s(a) = q ≤ t(k), s(a′) = r ≤
t(l). The number of such decompositions is

(
s− 2
r − 1

)
≥

(
s− 2

[s/2]− 2

)
.

Second case: t(k)+ t(l) ≤ 2t(k− 1)− 1 . Then also s ≤ 2t(k− 1)− 1.
If we put now

r =
[
s− 1

2

]
, q =

[s

2

]
,

then we have r ≤ q ≤ t(k − 1)− 1 and r + q = s− 1.
Again we write n in the form (2.4). If we put

{2, 3, . . . , s} = X ∪ Y

with disjoint sets X,Y such that |X| = q, |Y | = r, then the numbers

a = 2k−1 +
∑

i∈X

2ui , a′ = 2k−1 +
∑

i∈Y

2ui

satisfy s(a) ≤ q + 1 ≤ t(k − 1), s(a′) ≤ r + 1 ≤ t(k − 1) (if u2 = k − 1,
then a carry may occur so strict inequality is possible), hence a, a′ ∈ A
and a + a′ = n. The number of such decompositions is

(
s− 1

r

)
=

(
s− 1

[(s− 1)/2]

)
>

(
s− 2

[s/2]− 2

)
. ¤
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Lemma 2.3 provides many representations for an n ∈ B if s is not too
small. For small values of s we use a different method.

Consider the representations of n in the form

(2.6) n =
k∑

i=0

δi2i,

with δi = 0, 1 or 2.

Lemma 2.4. Suppose 3s < k. For every integer

(2.7) 0 ≤ p ≤ k − 3s

4

there is a representation of n in the form (2.6) such that the number of
δi = 1 is s + p and the number of δi = 2 is at most p. Moreover, if k′ is
the largest subscript such that δk′ 6= 0, then k′ = k or k − 1, δk′ = 1 and
δk′−1 = 0 or 1.

Proof. We construct these representations recursively. The usual
binary representation provides such a representation for p = 0.

Now we make changes to a given representation, in each step increas-
ing the number of ones by one and the number of twos by at most one.

To achieve this, we do one of the following two operations.
If there is a substring 20 in the sequence δk, . . . , δ0, we change it into

12. This increases the number of ones by 1 and does not change the number
of twos.

If there is a 1000, we change it into 0112. This increases both the
number of ones and the number of twos by 1.

The property that the first two nonzero δ’s are 10 or 11 holds in the
starting representation and it is preserved by these operations.

We repeat these steps as long as we can. Suppose that after p steps
we stop. We have now s+p ones, ≤ p twos, and blocks of 0’s between them
(and possibly a block of zeros before them). Since none of the described
operations is possible, a block of 0’s (not in the initial position) can only
follow a 1 and its length is at most 2, hence these give at most 2(s + p)
zeros. Thus altogether we have at most

(s + p) + p + 2(s + p) = 3s + 4p

digits from δk′ on. This means that

3s + 4p ≥ k′ + 1.
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Since

n ≥ 2k >

k−2∑

i=0

2 · 2i = 2k − 2,

we have necessarily k′ ≥ k − 1 and we obtain

3s + 4p ≥ k,

hence the range in (2.7) is indeed covered. ¤

Proof of Theorem 3. From Lemma 2.2 we know that s(n) ≤ T (n)
is necessary for n ∈ B. Now we prove the lower estimation.

Write t = t(k). We may suppose that t ≥ 9, otherwise the theorem is
obvious. If s > (2/3)t−2, we apply Lemma 2.3. Assume now s ≤ (2/3)t−2.
We use Lemma 2.4 with

p =
[
2
3
t

]
− s− 2.

The condition p ≤ (k − 3s)/4 follows from the assumption t ≤ (3/8)k.
Take representation (2.6), where there are s + p = [(2/3)t] − 2 ones

and at most p twos. Let k′ be the largest subscript with δi 6= 0; we know
that k′ = k or k − 1. Let U be the set of those i’s that satisfy i ≤ k′ − 2
and δi = 1; we have |U | ≤ s + p− 1 and

|U | ≥ s + p− 2 =
[
2
3
t

]
− 4.

Now let U = X ∪ Y be a decomposition of U into sets of size

|X| =
[ |U |

2

]
, |Y | =

[ |U |+ 1
2

]
.

The number of such decompositions is
( |U |

[|U |/2]

)
À 2|U |√

|U | À
2(2/3)t

√
t

.

Each of these decompositions induces a representation n = a + a′, namely

a = 2m +
∑

i∈X

2i +
∑

δi=2

2i,

a′ = 2m′
+

∑

i∈Y

2i +
∑

δi=2

2i,
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where m and m′ are defined as follows. If δk′−1 = 0, then m = m′ = k′−1;
if δk′−1 = 1, then m = k′, m′ = k′ − 1. We have to show that a, a′ ∈ A.
To this end observe that

s(a) ≤ s(a′) ≤ 1 + p + |Y | ≤ 1 + p +
s + p

2
≤ t− s− 1.

Moreover a, a′ ≥ 2k′−1 ≥ 2k−2 and t(k−2) ≥ t−2 ≥ t−s−1 which shows
that a, a′ ∈ A. ¤

3. Proof of Theorems 1 and 2

Proof of Theorem 1. We take a 0 < γ < 1/4 and put t(k) = [γk].
Then for n ≤ x and n ∈ B we have s(n) ≤ 2γk with k = [log2 x]. Thus we
have

B(x) ≤
∑

i≤2γk

(
k + 1

i

)
¿ 2(1−α)k ¿ x1−α

for any
α < 1 + 2γ log2 2γ + (1− 2γ) log2(1− 2γ)

(this follows by Stirling’s formula and a routine calculation). Moreover for
an n ∈ B we know

r(n) À 2(2γ/3)k/
√

k À nβ

with any β < 2γ/3. ¤
With this method we can achieve β = 1/6 − ε. If γ passes 1/4, then

the “typical” numbers with approximately k/2 digits will be in B, thus we
have d(B) = 1.

Proof of Theorem 2. If t(k) → ∞, then r(n) → ∞ for n ∈ B by
Theorem 3. On the other hand, if n ≤ x and n ∈ B, then n is the sum of
at most 2t(k) powers of 2 with k = [log2 x]. Hence

B(x) ≤
2t(k)∑

i=0

(k + 1)i ¿ t(k)(k + 1)2t(k),

and this will be O
(
(log x)ω(x)

)
if t(k) tends to infinity sufficiently slowly.
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