
Publ. Math. Debrecen

50 / 1-2 (1997), 121–133

Three-variable ∗-identities
and ring homomorphisms of operator ideals

By L. MOLNÁR (Debrecen) and B. ZALAR (Maribor)

Abstract. The aim of this paper is to consider triple-type homomorphisms in-
volving the operation of adjoint on some operator ideals and to examine the question
of how the two equations defining the multiplicativity and the ∗-preserving property of
∗-homomorphisms can be expressed via only one three-variable equation.

Introduction

Triple systems of operators and triple homomorphisms of operator
algebras are of great importance in operator theory because of their appli-
cations in modern treatments of the mathematical foundations of quantum
mechanics [4] as well as in the theory of complex functions in several and
an infinite number of variables [12]. Furthermore, similar additive map-
pings onto prime rings are also extensively studied from the purely ring
theoretical point of view (see [2,3]) and the references therein). As in
other cases, if the underlying structure carries an involution, then we are
attracted to consider such mappings that preserve somehow this important
characteristic.

These preliminaries give us the motivation to consider all (seven) pos-
sible so-called ∗-identities of order three on algebras of operators acting on
a Hilbert space. Here, by a ∗-identity on an involutive algebra A we mean
the following correspondence

φ(
n∏

k=1

σk(xk)) =
n∏

k=1

σk(φ(xk)) (xk ∈ A),
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where φ : A → A is assumed to be additive while σk is either the identity
operator or the involution on A. We also require that for at least one k we
have σk(x) = x∗ (x ∈ A). In this paper we are concerned with the case of
n = 3 and our aim is to determine how close the mappings satisfying any
of the corresponding ∗-identities are to ∗-homomorphisms. Observe that
every ∗-homomorphism of A satisfies every ∗-identity but the converse is
obviously not true in general.

The three-variable ∗-identities we are interested in can be divided into
three types as follows.

(A1) φ(x∗yz) = φ(x)∗φ(y)φ(z)

(A2) φ(xy∗z) = φ(x)φ(y)∗φ(z)

(A3) φ(xyz∗) = φ(x)φ(y)φ(z)∗

(B1) φ(x∗y∗z) = φ(x)∗φ(y)∗φ(z)

(B2) φ(x∗yz∗) = φ(x)∗φ(y)φ(z)∗

(B3) φ(xy∗z∗) = φ(x)φ(y)∗φ(z)∗

(C) φ(x∗y∗z∗) = φ(x)∗φ(y)∗φ(z)∗.

To sum up our results presented below, we can state that the ∗-
identities of type B characterize the ∗-homomorphisms up to the multipli-
cation by ±1, (C) characterizes them up to the multiplication by ±1,±i,
(A1), (A3) characterize them up to the multiplication by an arbitrary
complex constant of modulus one while the remaining identity (A2) is
somewhat exceptional. The mappings satisfying this later identity are
considerably more general and can be represented by two unitary param-
eters. Finally, as a corollary we give the complete description of mappings
satisfying any of the two-variable ∗-identities.

The underlying algebras that we work on are the well-known Schatten
Cp classes of compact operators acting on a complex Hilbert space H (see
[6,7]) which are commonly called also as noncommutative lp spaces.

It is important to emphasize that by a ∗-homomorphism we mean a
ring homomorphism even when such a mapping acts on an algebra. That
is, we do not require that the mappings in question be linear, we assume
them to be merely additive. This approach, i.e. to consider an operator
algebra only as a ring has a long history going back to the classical papers
[1,5]. Important recent results on additive homomorphisms and derivations
can be found in [8–11].

In what follows B(H) stands for the algebra of all bounded linear op-
erators acting on H. F (H) ⊂ B(H) is the ideal of all finite rank operators.
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In the proofs we use several times Brešar’s results on triple homomor-
phisms of rings (see [2,3]). Among other things, he proved [2, Proof of
Theorem 3.3] that a triple homomorphism of a ring onto a prime ring with
characteristic not 2 is a ring homomorphism or its negative. Recall that a
ring R is called prime if aRb = {0} always implies a = 0 or b = 0.

We also use our previous partial result from [13]. This was formulated
not for the Schatten classes but for some norm closed subspaces of B(H)
containing compact operators. Since the Schatten classes are also Banach
spaces (although not in the operator norm, but the specific norm is not
important in [13]) and contain all finite rank operators, the same proof
works for them as well. Therefore, as a corollary of our work in [13], we
have

Proposition 1. Let A be a Schatten class Cp of compact operators
acting on a Hilbert space H (1 ≤ p ≤ ∞) and φ : A → A a complex-linear,
bijective mapping. If φ fulfills (A2), then there exist unitary operators
u, v ∈ B(H) such that φ(x) = uxv for all x ∈ A.

1. Identities of type B and C

We begin with the easier ∗-identites of type B and C. Our results
can be formulated for the more general case of prime complex normed
∗-algebras with approximate identity as follows.

Theorem 1. Let A be a prime normed ∗-algebra with approximate
identity. Then all surjective, additive mappings on A that satisfy any of
the ∗-identities of type B are ∗-homomorphisms or their negatives.

Remark 1. Observe that any prime C∗-algebra and any Schatten class
Cp (1 ≤ p ≤ ∞) fulfill the above assumption.

Proof. Assume that a surjective, additive mapping φ : A → A
satisfies (B2). Let a, b ∈ A be fixed for a moment. We compute I =
φ((ab)∗y(ab)∗) in two different ways. First we have

(1) I = φ(ab)∗φ(y)φ(ab)∗.

On the other hand, we infer

I = φ(b∗(a∗yb∗)a∗) = φ(b)∗φ(a∗yb∗)φ(a)∗(2)

= φ(b)∗φ(a)∗φ(y)φ(b)∗φ(a)∗.
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If we compare (1) and (2), then using the surjectivity of φ, with A =
φ(ab)∗ − φ(b)∗φ(a)∗ and B = φ(ab)∗ + φ(b)∗φ(a)∗ we obtain that

(3) AwB + BwA = 0 (w ∈ A).

It is easy to see that in prime rings (3) implies A = 0 or B = 0 (see [2],
Lemma 1.1). Hence, for every a, b ∈ A we have either φ(ab) = φ(a)φ(b) or
φ(ab) = −φ(a)φ(b).

Remark 2. We note that several applications of the above argument
can be found in [2] and [3].

By a rather standard argument, it now follows that φ is either a
homomorphism or the negative of a homomorphism. Indeed, if a ∈ A is
fixed, then the sets

Pa = {b ∈ A : φ(ab) = φ(a)φ(b)}
and

Qa = {b ∈ A : φ(ab) = −φ(a)φ(b)}
are additive subgroups of A whose union is A. Since a group cannot
written as the union of two of its proper subgroups, we infer that either
Pa = A or Qa = A. Using a similar argument, we finally obtain that φ is
either a homomorphism or the negative of a homomorpism.

It remains to prove that φ is ∗-preserving. We may suppose that φ is
a homomorphism. Then, using the identity (B2), we get

φ(x)∗φ(y)φ(z)∗ = φ(x∗yz∗) = φ(x∗)φ(y)φ(z∗).

Let φ(y) run through an approximate identity. We obtain

φ(x∗z∗) = φ(x∗)φ(z∗) = φ(x)∗φ(z)∗

for all x, z ∈ A. Hence, for x, y, z ∈ A, we have

φ(x)∗φ(y)φ(z)∗ = φ(x∗yz∗) = φ(x∗ · (zy∗)∗)

= φ(x)∗φ(zy∗)∗ = φ(x)∗[φ(z)φ(y∗)]∗ = φ(x)∗φ(y∗)∗φ(z)∗

and, consequently, it follows that A(φ(y) − φ(y∗)∗)A = 0. The existence
of an approximate identity clearly implies that φ(y∗) = φ(y)∗.

Now, assume that φ satisfies (B1). Then we have

φ(a)∗φ(b)∗φ(xyz) = φ(a∗b∗xyz) = φ(a∗(y∗x∗b)∗z)

= φ(a)∗(φ(y∗x∗b))∗φ(z) = φ(a)∗(φ(y)∗φ(x)∗φ(b))∗φ(z)

= φ(a)∗φ(b)∗φ(x)φ(y)φ(z).
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It follows that φ is a triple homomorphism. Since A is prime, by Brešar’s
result we get that either φ or −φ is a homomorphism. Assume the first
possibility. From the equations

φ(x∗)φ(y∗)φ(z) = φ(x∗y∗z) = φ(x)∗φ(y)∗φ(z)

we have φ(x∗)φ(y∗) = φ(x)∗φ(y)∗. Finally, we obtain

φ(x)∗φ(y)∗φ(z∗)∗ = φ(yx)∗φ(z∗)∗ = φ((yx)∗z∗∗)

= φ(x∗y∗z) = φ(x)∗φ(y)∗φ(z).

Apparently, this implies that φ is *-preserving. If φ satisfies (B3), we can
argue in a similar way. ¤

Theorem 2. Let A be a prime complex normed ∗-algebra with ap-
proximate identity. Suppose that a∗a + b∗b = 0 implies a = b = 0 for all
a, b ∈ A. Then all surjective, additive mappings fulfilling the ∗-identity
(C) are ∗-homomorphisms multiplied by one of the following numbers:
1,−1, i,−i.

Remark 3. Observe that every prime C∗-algebra and any Schatten
class obviously satisfies the above assumptions.

Proof. We divide the proof into several steps.
Step 1. Let R be a prime ring of characteristic not 2 and A,B ∈ R.

If AwA = BwB for all w ∈ R, then A = ±B.
One can easily see that we have (A+B)w(A−B)+(A−B)w(A+B) = 0

for every w ∈ R. Now, [2, Lemma 1.1] applies.
Step 2. Let φ be a surjective, additive mapping satisfying (C). Then

φ(abc) = φ(a)φ(b∗)∗φ(c) for all a, b, c ∈ A.
Compute I = φ((abc)∗x∗(abc)∗) in two ways. First we have

I = φ(abc)∗φ(x)∗φ(abc)∗

and secondly

I = φ(c∗(bcxab)∗a∗) = φ(c)∗φ(bcxab)∗φ(a)∗

= φ(c)∗φ(b∗∗(a∗x∗c∗)∗b∗∗)∗φ(a)∗=φ(c)∗(φ(b∗)∗φ(a∗x∗c∗)∗φ(b∗)∗)∗φ(a)∗

= φ(c)∗φ(b∗)φ(a)∗φ(x)∗φ(c)∗φ(b∗)φ(a)∗.

Since φ is surjective, it follows from Step 1 that for every a, b, c ∈ A we
have either φ(abc) = φ(a)φ(b∗)∗φ(c) or φ(abc) = −φ(a)φ(b∗)∗φ(c). Now,
by the argument that has been followed after Remark 2 above, we infer
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that either φ(abc) = φ(a)φ(b∗)∗φ(c) or φ(abc) = −φ(a)φ(b∗)∗φ(c) holds for
all a, b, c ∈ A.

We are going to show that the second possibility cannot occur. Since

φ(x)∗φ(y)∗φ(z)∗ = φ(x∗y∗z∗) = −φ(x∗)φ(y)∗φ(z∗),

the surjectivity combined with the existence of an approximate identity
implies that

(4) φ(x)∗φ(z)∗ = −φ(x∗)φ(z∗) (x, z ∈ A).

From (C) and (4) we get

φ(x∗y∗z∗) = φ(x)∗φ(y)∗φ(z)∗ = −φ(x)∗φ(y∗)φ(z∗),

which further implies that

φ(ab)∗φ(x)φ(ab) = −φ((ab)∗xab) = −φ(b∗(a∗xa)b)

= φ(b)∗φ(a∗xa)φ(b) = −φ(b)∗φ(a)∗φ(x)φ(a)φ(b).

Using the existence of an approximate identity again, we obtain

φ(ab)∗φ(ab) + [φ(a)φ(b)]∗[φ(a)φ(b)] = 0

and so it follows that φ = 0, which is a contradiction.
Step 3. We have φ = λψ, where λ ∈ {1,−1, i,−i} and ψ is a ∗-

homomorphism.
First, using Step 2 and (C), we have

φ(x1x2x3x4x5) = φ(x1)φ(x∗4x
∗
3x
∗
2)
∗φ(x5)

= φ(x1)(φ(x4)∗φ(x3)∗φ(x2)∗)∗φ(x5)

= φ(x1)φ(x2)φ(x3)φ(x4)φ(x5).

Next we compute

φ(xyz)φ(w)∗φ(xyz) = φ(xyz)φ(w∗∗)∗φ(xyz)

= φ(xyzw∗xyz) = φ(x)φ(y)φ(zw∗x)φ(y)φ(z)

= φ(x)φ(y)φ(z)φ(w)∗φ(x)φ(y)φ(z).

Just as above, using Step 1 we easily obtain that φ is either a triple ho-
momorphism or a negative of a triple homomorphism. In the first case
Brešar’s result gives us that φ is either a homomorphism or its negative.
If φ is a homomorphism, then by Step 2 we have

φ(x)φ(y∗)∗φ(z) = φ(xyz) = φ(x)φ(y)φ(z)
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and this obviously implies that φ is ∗-preserving. If φ is the negative of a
homomorphism, we can argue in a similar way. In the second case iφ is a
triple homomorphism and, consequently, iφ or −iφ is a ∗-homomorphim.

¤

2. Identities of type A

Theorem 3 below is to be considered the main result of the paper. It
asserts that in the case of three variables, (A2) is the most general identity.

First few notes about the notation. If a is a bounded linear operator
on a Hilbert space H, then we denote by aT its transpose with respect to
an arbitrary but fixed orthonormal basis of H. This is not to be confused
by the adjoint a∗. The operation a 7→ aT is linear (not conjugate-linear)
and satisfies (ab)T = bT aT . These operations commute, i.e. a∗T = aT∗.
We denote by 〈 , 〉 the inner product in H, %⊥ stands for the orthogonal
complement of the subset % and α⊗β denotes the rank-one operator defined
by (α⊗ β)ξ = 〈ξ, β〉α (ξ ∈ H).

Theorem 3. Let A be either a Schatten class of compact operators
acting on the separable Hilbert space H or let A = B(H). Then every
surjective, additive mapping that satisfies one of the ∗-identities (A1) and
(A3) is a ∗-homomorphism multiplied by a complex constant of modulus
one. Moreover, every surjective and additive mapping φ fulfilling the ∗-
identity (A2) is of the form

(i) φ(x) = uxv

or

(ii) φ(x) = u(x∗T )v

where u, v are unitary operators acting on H.

Proof. We divide the proof into several steps again.

Step 1. Each surjective, additive mapping φ satisfying (A1) or (A3)
also fulfills (A2).

Suppose that (A1) holds for φ. We compute

φ(abxcd) = φ(x∗b∗a∗)∗φ(c)φ(d)

= (φ(x)∗φ(b∗)φ(a∗))∗φ(c)φ(d) = φ(a∗)∗φ(b∗)∗φ(x)φ(c)φ(d).
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On the other hand we infer

φ(abxcd) = φ(a∗)∗φ(b)φ(xcd) = φ(a∗)∗φ(b)φ(x∗)∗φ(c)φ(d).

Since φ is surjective, it follows that φ(b∗)∗φ(x) = φ(b)φ(x∗)∗ holds true
for all b, x ∈ A. Therefore, we have

φ(xy∗z) = φ(x∗)∗φ(y∗)φ(z) = φ(x)φ(y)∗φ(z).

Now, one can treat (A3) in a similar way. Thus, from now on we
suppose that φ fulfills (A2).

Step 2. Let p ∈ B(H) be a minimal (i.e. a rank-one) projection and
x ∈ B(H). Suppose that for every minimal projection q, the condition
pq = qp = 0 implies qx = xq = 0. Then x ∈ Cp.

There exists a unit vector ξ ∈ H such that p = ξ ⊗ ξ. Let q = η ⊗ η
with ‖η‖ = 1 and 〈ξ, η〉 = 0. Hence, qx = xq = 0. From xq = 0 we obtain
xη = 0 and, similarly, from qx = 0 we get x∗η = 0. Since η was arbitrary,
we have x({ξ}⊥) = 0 and x∗({ξ}⊥) = 0. This gives us that xξ ⊥ {ξ}⊥
which results in xξ ∈ Cξ and the assertion is now obvious.

Step 3. Let a ∈ B(H) and let a minimal projection p ∈ B(H) be
fixed. If pya = 0 for all y ∈ F (H), then a = 0.

The statement would follow from the more general fact that the ring
B(H) is prime, but this can also be easily seen as follows. Let ξ be a
unit vector such that p = ξ ⊗ ξ. Then we have ξ ⊗ (a∗y∗ξ) = 0 and thus
a∗y∗ξ = 0 holds for all y ∈ F (H). Since F (H)ξ = H, it follows that
a∗ = 0 = a.

Step 4. Let p ∈ B(H) be a minimal projection and let x ∈ A be such
that φ(x) = p. Then one of the following assertions holds true.

(i) φ(λx) = λp for all λ ∈ C;
(ii) φ(λx) = λp for all λ ∈ C.
Let q be a minimal projection such that qp = pq = 0. Plainly, q ∈ A

and so q = φ(y) holds true for some y ∈ A. We have

φ(λx)q = φ(λx)φ(y)∗φ(y) = φ(λxy∗y)

= φ(x)φ(y)∗φ(λy) = pqφ(λy) = 0.

We can verify qφ(λx) = 0 in a similar way. Hence, by Step 2, we have
φ(λx) ∈ Cp and we can define an additive function τ : C→ C by φ(λx) =
τ(λ)p. Suppose first that λ ∈ R. We can compute

τ(λ)p = φ(λxx∗x) = φ(x(λx)∗x) = τ(λ)p
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and this implies that τ(λ) ∈ R. Furthermore, for every λ, µ ∈ R we have

τ(λµ)p = φ(λµxx∗x) = φ(λxx∗µx) = τ(λ)τ(µ)p

and this shows that τ is a nonzero ring endomorphism of R. Using a
classical result from the theory of functional equations we infer τ(λ) = λ
for all λ ∈ R. In a similar way we can verify that −1 = τ(i2) = τ(i)2, i.e.
τ(i) ∈ {i,−i} which, combined with the additivity of τ , yields the result.

Step 5. φ is either linear or conjugate-linear.
Take a minimal projection p ∈ A and let x ∈ A be such that φ(x) = p.

Suppose that φ is linear on Cx. Pick an y ∈ A and λ ∈ C. We prove that
φ(λy) = λφ(y) (λ ∈ C). Let z ∈ A and write z∗ = φ(u). Then we have

pzφ(λy) = φ(x)φ(u)∗φ(λy) = φ(λxu∗y)

= φ(λx)φ(u)∗φ(y) = λpzφ(y).

By Step 3, φ(λy) = λφ(y) follows. If φ is conjugate-linear on Cx, then one
can argue in a similar way.

Step 6. If φ is not injective, then Ker φ contains all finite rank oper-
ators.

Let a ∈ Ker φ and suppose a 6= 0. Then ξ0 = aη0 6= 0 for some
ξ0, η0 ∈ H. It is sufficient to prove that every operator ξ ⊗ η lies in Ker φ.
Since ξ ⊗ η = b(ξ0 ⊗ η0)∗c, where b = 1

‖η0‖2 ξ ⊗ η0 and c = 1
‖ξ0‖2 ξ0 ⊗ η,

hence
φ(ξ ⊗ η) = φ(b)φ(ξ0 ⊗ η0)∗φ(c).

On the other hand, we infer

a(ξ0 ⊗ η0)∗
ξ0 ⊗ η0

‖ξ0‖2 = ξ0 ⊗ η0.

Consequently, we have

φ(ξ0 ⊗ η0) = φ(a)φ(ξ0 ⊗ η0)∗φ(
ξ0 ⊗ η0

‖ξ0‖2 ) = 0.

This proves our assertion.
Step 7. The mapping φ is injective.
Suppose, on the contrary, that it is not injective. Then we obtain

φ(F (H)) = 0. Let x ∈ A be such that φ(x) = p is a nonzero projection.
Hence

φ(xx∗x) = φ(x)φ(x)∗φ(x) = pp∗p = p
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which gives φ(xx∗x− x) = 0. For any y ∈ A we have

φ(xx∗xx∗y − xx∗y) = φ((xx∗x− x)x∗y) = φ(xx∗x− x)φ(x)∗φ(y) = 0.

With h = xx∗ this further implies

0 = φ((h2 − h)y∗z) = φ(h2 − h)φ(y)∗φ(z).

Since φ is surjective, we obtain φ(h2) = φ(h).
We now distinguish two different cases. If 1 6∈ sp(h) (sp(h) stands for

the spectrum of h), then there exists an y ∈ B(H) such that (1− h)y = 1.
Hence h3 = h(h− h2)yh and then we have

φ(h3) = φ(h)φ(h− h2)∗φ(yh) = 0

which yields φ(h)φ(h)∗φ(h) = 0. Clearly, it follows that φ(h) = 0. Note
that the Schatten classes are ideals of B(H), so φ(yh) makes sense.

Now, let 1 ∈ sp(h). We assert that h is compact. In fact, this needs
proof only in the case when A = B(H). So, let us consider this possibility.
Using the identity (A2), it is not hard to see that the proper subspace
φ−1(0) of B(H) is an ideal. Using a classical theorem of Calkin, we obtain
that φ−1(0) is included in the ideal of compact operators. Consequently,
it follows also in this case that h is compact. We then have h = p1 +∑

λn 6=1 λnpn where 0 < λn and the pns are pairwise orthogonal finite rank
projections. Since φ(p1) = 0, hence for the operator k =

∑
λn 6=1 λnpn

we obtain that φ(h) = φ(k). Clearly, k is positive and its spectrum does
not contain 1. Taking the relations h = p1 + k and p1k = kp1 = 0 into
consideration, it follows that h2 = p1+k2 and we arrive at φ(k2) = φ(h2) =
φ(h) = φ(k). Just as above, we have φ(k) = 0.

Consequently, in both cases we obtain φ(xx∗) = 0. Thus

φ(xx∗xx∗x) = φ(xx∗)φ(xx∗)∗φ(x) = 0.

But, on the other hand, we have

φ(xx∗xx∗x) = φ(x)φ(xx∗x)∗φ(x) = φ(x)φ(x)∗φ(x)φ(x)∗φ(x) = p5 = p

and this yields the desired contradiction.
Step 8. Our theorem is true in the case of the identity (A2).
If φ is linear, we can now use Proposition 1. In case φ is conjugate-

linear define ψ : A → A by ψ(x) = φ(x∗T ). It is easy to see that ψ is
linear and satisfies (A2). Consequently, ψ is of the form (i) and so φ is of
the form (ii).

Step 9. Our theorem is true for the identities (A1) and (A3).
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If we insert φ(x) = uxv into (A1), we obtain

ux∗yzv = v∗x∗yvuzv (x, y, z ∈ A).

From this ux∗y = v∗x∗yvu easily follows. Multiplying this equation by v

from the left, we obtain that the operator vu commutes with every finite
rank operator. It is well-known that this implies vu = λ for some λ ∈ C.
Therefore, v = λu∗ and hence φ(x) = λuxu∗ (x ∈ A). This completes the
proof for the mappings which are of the form (i) and a similar argument
applies to the case of (ii). The identity (A3) can be treated in the same
fashion. ¤

From what we have obtained above, it follows that every additive
∗-epimorphism of the Schatten classes as well as that of B(H) is auto-
matically an either linear or conjugate-linear ∗-automorphism. The forms
of these automorphisms can also be easily seen from Theorem 3. Finally,
combining this with Theorem 1 and Theorem 2, we have the following
corollaries.

Corollary 1. LetA be a Schatten class of compact operators acting on

the separable Hilbert spaceH or letA = B(H). If φ is a surjective, additive

mapping satisfying the ∗-identity (C), then there exists a unitary operator

u ∈ B(H) and a scalar λ ∈ {1,−1, i,−i} such that either φ(x) = λuxu∗

for all x ∈ A or φ(x) = λu(xT∗)u∗ for all x ∈ A.

Corollary 2. Let A be a Schatten class of compact operators acting

on the separable Hilbert space H or let A = B(H). If φ is a surjective,

additive mapping satisfying any of the ∗-identities (B1), (B2), (B3), then

there exists a unitary operator u ∈ B(H) and a scalar λ ∈ {1,−1} such

that either φ(x) = λuxu∗ for all x ∈ A or φ(x) = λu(xT∗)u∗ for all x ∈ A.

As a corollary, we also obtain the complete description of all additive
mappings satisfying any of the three two-variable ∗-identities.

Corollary 3. Let A be a Schatten class of compact operators acting

on the separable Hilbert space H or let A = B(H). If φ : A → A is

a surjective, additive mapping that satisfies one of the two-variable ∗-
identities

φ(xy∗) = φ(x)φ(y)∗,

φ(x∗y) = φ(x)∗φ(y),
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then there exists a unitary operator u ∈ B(H) such that either φ(x) = uxu∗

for all x ∈ A or φ(x) = u(xT∗)u∗ for all x ∈ A. If φ fulfills the remaining

two-variable ∗-identity

φ(x∗y∗) = φ(x)∗φ(y)∗,

then there exists a unitary operator u ∈ B(H) and a third root of identity

λ, such that either φ(x) = λuxu∗ for all x ∈ A or φ(x) = λu(xT∗)u∗ for

all x ∈ A.

Proof. We give the proof only in the case of the first identity. The
remaining two can be treated in a similar way.

From φ(xy∗) = φ(x)φ(y)∗ we obtain

φ(xyz∗) = φ(x)φ(zy∗)∗ = φ(x)[φ(z)φ(y)∗]∗ = φ(x)φ(y)φ(z)∗

and hence φ satisfies (A3). According to Corollary 2, without serious loss
of generality we can assume that there exists a unitary operator u and a
complex number λ of modulus one such that φ(x) = λuxu∗. It is obvious
that λ = 1. ¤

Remark 4. We suspect that every surjective, linear mapping defined
on a Schatten class that satisfies any of the ∗-identities of order n is nec-
essarily of the form φ(x) = uxv with some unitary operators u, v. Unfor-
tunately, this is only a conjecture, the proof is missing.

Observe that if a ∗-identity is given, then not every mapping of the
form φ(x) = uxv must satisfy it.

Example. The condition of surjectivity cannot be removed from our
results and even cannot be replaced by other conditions like injectivity,
for example. In order to see this, let H be infinite dimensional and let
u ∈ B(H) be such that u∗u = 1 and uu∗ 6= 1, i.e., for instance, let u be
a unilateral shift. Then φ(x) = ux satisfies (A2), φ is injective but not
surjective.
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