Linear relations

By A. SZAZ (Debrecen) and G. SZAZ (Budapest)

Introduction

Let X and Y be vector spaces over a field K. A relation S from X into Y
(i.e., a set SCXXY such that S(x)={yeY: (x, »)€S}=0 for all x€X) is said
to be linear if

S(x)+S(y) = S(x+y) and AS(x) c S(ix)

for all x, y€X and A€ K, where the linear operations for subsets of Y are to be
understood in the usual sense [2, 8].

This definition extends the notion of a linear function, and is mainly motivated
by the fact that the inverse of a linear function is a linear relation.

Linear relations and linear set-valued mappings were probably first considered
by R. AREens [1] and C. BERGE [2], respectively. Some relevant results can also be
found in [3—4, 9—11, 14—16].

In this paper, we initiate a systematic study of linear relations. In §I, the
definition of linear relations is given, and several important examples are listed.
The necessary verifications are lengthy enough, and are therefore omitted.

In §2, some simple properties of linear relations are derived first, and then
some basic operations for linear relations are introduced. It turns out that the
family of all linear relations from X into Y forms an interesting algebraic structure.

In § 3, we prove that if f is a selection for a linear relation S (i.e., a choice
function for the family of all relation classes S(x)), then S(x)=f(x)+S(0) holds
for all x. Furthermore, it is shown that this simple fact has several interesting con-
sequences. For example, this implies that every reflexive linear relation is an equi-
valence relation.

In §4, some special linear selections for linear relations are constructed. For
example, we prove that for every linear relation S there exists a linear selection
f such that S(x)=S(y) implies f(x)=f(y). Moreover, that there exists a linear
function ¢ such that S=¢1of.

Finally, we remark that in a continuation of this paper, quotient spaces defined
by linear relations will be investigated, where much more topological considera-
tions will be involved.
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§ 1. Definition and examples

Definition 1.1. Let X and Y be vector spaces over a field (or a skew-field) K.
A relation S from X into Y is said to be linear if

S(x)+S(y) < S(x+y) and AS(x) < S(/x)

for all x, yeX and AcK.
Linear relations from X into X are simply said to be linear relations on X.

Remark 1.2. Note that if S is a function, then the above definition reduces
to the usual one.

Example 1.3. Let f be a linear function from X onto Y. Then f~!is a linear
relation from Y onto X.

Example 1.4. Let X be the vector space of all real- or complex-valued differenti-
able functions on an interval / in R, and Y={x": xé X}. Denote D the differential

operator defined on X by D(x)=x". Then the indefinite integral f=;r9‘l is a
linear relation from Y onto X.

Example 1.5. Let X be an algebra over K, and let Y be a vector space over K
and a right module over X such that A(yx)=(ly)x=y(ix) for all A€K, y€Y and
x€ X. (In this case, we briefly say that Y is a right vector module over X.) Moreover,
let f be a function from a subset D of X into Y such that f(x)y=f(y)x for all
x, yéD. Then

F=1{(x, y)EXXY: yz =f(z)x for all z€ D}

is a linear relation such that fcf. Moreover, if X is commutative, then the domain
D of fis an ideal in X and f(x)y<f(xy) for all xéD and y€X.

Example 1.6. Let I' be a directed set, and X be the vector space of all con-
vergent nets in a topological vector space Y defined on I'. Then the convergence

1?_“ ={(x, Y)EXXY: x = y}

is a linear relation from X onto Y.

Example 1.7. Let X and Y be topological vector spaces such that Y is complete,
and let f be a continuous linear function from a dense subspace M of X into Y.

Then
J={(x, X XY: yelim f(£)}
is a linear relation from X into Y. (The above notation is consistent since f coin-

cides with the closure of f in XX Y.)

Example 1.8. Let Q be a measure space and Y be a topological vector space.
Denote X the vector space of all functions x from Q into Y for which there exists

y€ Y such that A(y)= flox for all A€ Y™, where Y* is the dual space of Y. Then
0
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the weak integral

f = {(x, VEXXY: A(y) = flox for alll A€ Y*}
¢ ¢

is a linear relation from X into Y.

Example 1.9. Let Y be a Hilbert-space and 7 be a linear operator from a sub-
space M of Y into Y. Denote X the set of all xc€Y for which the functional
z—-(T(z), x) is continuous. Then the adjoint

T* = {(x, Y)EXXY: (T(2), x) =z, y) for all ze M}
of T is a linear relation from X into Y.

Example 1.10. Let f be a linear function from X into Y and M be a subspace
of Y. Then the relation S from X into Y defined by

Sx) =f(x)+M

is a linear relation from X into Y. (We shall see later that every linear relation is
of this form.)

Notes and comments. Definition 1.1 and Examples 1.3 and 1.9, apart from
slight differences, are due to R. ARens [1]. Example 1.4 was given by C. BERGE [2].

Topological vector spaces are always supposed to be defined over the field
K=R or C, and of course, they are not supposed to be Hausdorff.

§ 2. Properties and operations

Theorem 2.1. Let S be a linear relation from X into Y. Then the indeterminancy
S(0) of S[10] is a subspace of Y. Moreover, S is a function if and only if S(0)={0}.

ProoF. This follows at once from Definition 1.1 and from S(x)—S(x)c S(0).

Theorem 2.2. Let X and Y be vector spaces over K and S be a relation from X
into Y. Then the following properties are pairwise equivalent:
(i) S is linear;
(ii) S is a subspace of XXY;
(iii) S(x+y)=S(x)+S(»), 0¢S00) and S(ix)=iS(x) for all x,ycX and
0=icK.

PRrOOF. It is clear that (i) and (ii) are equivalent. To prove that (i) implies (iii),
observe that S(x+»)—S(»)=S(x) and A7'S(ix)c S(x), whence it follows that
S(x+y)cS(x)+S(y) and S(Ax)ciS(x).

Corollary 2.3. Let S be a linear relation from X into Y. Then
S(A+B) = S(A)+S(B) and S(AA) = AS(A)
for all A,BCX and 04 ACK.
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PrOOF. Since unions are preserved under relations, we have
S(4+B) = S( U‘4 {a+b}) = L{L S(a+b) = leJA(S(a)-l-S(b)) = S5(4)+S(B)

bEB bEB bEB
and
S(A4) = S(U {/a}) = U S(ia) = U AS(a) = AS(4)
AEA AEA AEA
atgAd acA acA

by (iii) in Theorem 2.2.

Theorem 2.4. Let S and T be linear relations from X into Y and € K. Then the
relations S+ T and .S from X into Y defined by

(S+T)(x) =Sx)+T(x) and (AS)(x) = AS(x)
are linear relations from X into Y.

PrOOF. Simple computation.

Remark 2.5. Observe that the family & (X, Y) of all linear relations from X
into Y does not form a vector space. However, it is noteworthy that only two of
the axioms of a vector space are not satisfied. (Note that (A+pu) S=iS+uS if
A+p=0.)

Theorem 2.6. Let S be a linear relation from X into Y and T be a linear relation
from Y into Z. Then ToS is a linear relation from X into Z.

PRrROOF. A direct application of Corollary 2.3.

Theorem 2.7. Let S be a linear relation from X onto Y. Then S~ is a linear
relation from Y onto X.

PrROOF. Quite obvious from (ii) in Theorem 2.2.

Theorem 2.8. Let X and Y be vector spaces over K, E a basis for X, and
RcXXY such that Ecdom R. Then there exists a smallest linear relation S from
X into Y such that RCS.

PRrOOF. Let S be the intersection of all linear relations from X into Y contain-
ing R. Then, by (ii) in Theorem 2.2, it is clear that S is a linear relation. Thus, we

have
2 (@R c 3 x()Se) c S( 2 %(e)e) = S(x)
ecE ecE ecE
for each x€ X, where £ denotes the unique function from E into K with finite support
such that x= 3 f(e)e. This shows that X is the domain of S.
ecE

Corollary 2.9. Let =% (X,Y) be the family of all linear relations from X

into Y. Then ¥*=%U{0} is a complete set lattice.

Proor. With set inclusion & is a partially ordered set. Moreover, by Theorem
2.8., every nonempty subset of % has a least upper bound. Hence, the assertion
is quite obvious. (One encounters a similar situation in connection with filters [18].)
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Theorem 2.10. Let X and Y be topological vector spaces and S be a linear rela-
tion from X into Y. Then the closure S of S in X XY is a linear relation from X
into Y.

PRrOOF. This is quite obvious by (ii) in Theorem 2.2, since the closure of a linear
subspace of a topological vector space is also a linear subspace.

Theorem 2.11. Let S be a linear relation from X into a topological vector space
Y. Then

{(x, Y)EXXY: yeS(x)}

is a linear relation from X into Y.

ProOF. This follows immediately from the corresponding properties of the
closure operation.

Remark 2.12. If S is as in Theorem 2.11 and S(x)°#0 for some x€JX, then
S=XXY.

Notes and comments. Some of the results of this paragraph are also due to
R. Arens [1] and C. BERGE [2].

The algebraic structure of certain general operation preserving relations has
been intensively studied by D. PurepE [11].

§ 3. Selections

Definition 3.1. A function f defined on the domain of a relation S is called
a selection for S if fc S.

Remark 3.2. Note that f is a selection for a relation S if and only if f is a
choice function for the family of all relation classes S(x) of S. Note also that the
statement that “each relation has a selection” is equivalent to the axiom of choice.

Theorem 3.3. Let S be a linear relation from X into Y and f be a selection for
S. Then
S(x) =f(x)+5(0)
for all xcX.

Proor. Clearly f(x)+S(0)c S(x)+S(0)=S(x). On the other hand, S(x)—
—f(x)cS(x)— S(x)=S(0), and hence S(x)=f(x)+ S(0).

Corollary 3.4. Let S be a linear relation from X into Y. Then S(x) is a linear
manifold (affine subspace) in Y (8] for all xcX.

Proor. This follows immediately from Theorems 2.1 and 3.3.

Corollary 3.5. Let S be a linear relation from X into Y. Then S is semi-single-
valued [2).

PRrOOF. By Theorem 3.3, it is clear that S(x) S(y)#0 implies that S(x)=S(»).
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Corollary 3.6. Let S be a linear relation from X into Y. Then S(x) has the same
cardinality for each x€X.

Proor. This is quite obvious from Theorem 3.3.

Corollary 3.7. Let S be a reflexive linear relation on X. Then
S(x) = x+S5(0)
for all x€X, and so S is an equivalence relation on X.

Proor. Since S is reflexive, the identity function of X is a selection for S. The
remaining part is quite obvious by Theorems 3.3 and 2.1.

Remark 3.8. Observe that there is a one-to-one correspondence between linear
equivalence relations on X and subspaces of X, respectively.

Observe also that the family of all linear equivalence relations on X forms an
interesting algebraic structure with the operations treated in § 2. In particular, it
is a complete set lattice.

Example 3.9. If f is a linear function from X onto X different from the identity
function of X, then f~! is a non-reflexive linear relation on X.

Corollary 3.10. Let S be a linear relation from X into Y. Then S "o S is a linear
equivalence relation on X, and

S~toS =8"tof =f"10S§
Jor each selection f for S.

PrOOF. By Theorems 2.7 and 2.6 and Corollary 3.7, it is clear that S~1'oS
is a linear equivalence relation on X. If f is a selection for S, then by Theorem
3.3, 7Y f(x))=x+S"10) for all xcX, and so S~'of is independent of f. This
guarantees that S~lof=S"'0S. Finally, f~loS=(S"of) '=(S"108) 1=
=85"108.

Corollary 3.11. If S is a reflexive linear relation, then
S~1oS§ =S.

Proor. This follows immediately from Corollary 3.10, since in this case the
identity function is a selection for S.

Corollary 3.12.*) If S is a linear relation, then
SoS 108 =S.

PROOF. By Corollaries 3.10 and 2.3, (SoS~10S8)(x)=S(x+S"1(0))=S(x)+
+5(S-1(0))=S(x)+ S©0)=S(x) for all x¢X.

*) Meantime, we observed that for an arbitrary relation S, we have SoS~'oS§=5§ if and
only if § is semi-singlevalued in the sense that S(x)NS(y)=0 implies that S(x)=S(y).
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Notes and comments. Corollary 3.7 for certain general operation preserving
relations was proved by G. D. FiNpLAY [3] in a direct way.

Corollary 3.12 for additive relations introduced by S. MCLANE is stated in
Exercise 1 of [10].
The most striking result of this paragraph is Corollary 3.10.

§ 4. Linear selections

Theorem 4.1. Let S be a linear relation from X into ¥, 0#&€X and ne S(§).
Then there exists a linear selection f for S such that f(&)=n.

PrOOF. Let E be a basis for X such that € E, and for each x€ X, denote £ the

unique function from E into K with finite support such that x= >’ £(e)e. Choose
e€E

a selection ¢ for S|E such that ¢@(&)=n, and define the function f on X by
J(x) =..,§~ x(e)o(e).
Then, it is clear that f is linear and f({)=n. Moreover, we have
f(x)e eeZ;_ 2(e)S(e) S(BEZE x(e)e) = S(x)

for all x€X.

Corollary 4.2. Let S be a linear relation from X into Y and F be the family
of all linear selections for S. Then S=(JF)J({0}xS(0)).

Proo¥r. This follows at once from Theorem 4.1.

Corollary 4.3. Every linear relation S can be written in the form
S=f+C or S=Rof

where f is a linear function, C is a constant linear relation and R is a linear equivalence
relation.

ProOF. This follows immediately from Theorems 4.1 and 3.3.

Corollary 4.4. Let X and Y be nontrivial vector spaces over a field K of charac-
teristic 0, and denote & (X, Y) the family of all linear relations from X into Y. Then

card .?(X, Y) = max {(Card Y)dim X, 2dim 1’}-

PrOOF. The cardinal number of the family of all linear functions from X into
Y is p=(card Y)¥™ X, The cardinal number of the family of all subspaces of
Yis g=2%"Y Thus, we have max {p, ¢}=card ¥ (X, Y). Moreover, by Corollary
4.3, it is clear that card ¥ (X, Y)=pq. Finally, since by the assumptions p is in-
finite, pg=max {p, g}. (It is also known that card Y=(card K)¥™Y if dim Y
is finite, and card Y=max {card K, dim Y} if dim Y is infinite [7, p. 32].)
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Theorem 4.5. Let S be a linear relation from X into Y. Then there exists a linear
selection f for S such that S(x)=S(y) implies that f(x)=f(y).

PrOOF. By Theorems 2.7 and 2.1, the kernel S~1(0) of S is a subspace of X.
Let E be a basis for X such that E/)S~*(0) is a basis for S~(0) if S~1(0)= {0},
and for each x€ X, let £ be as in the proof of Theorem 4.1. Since 0¢ S(x) for each
x€ 5 71(0), there exists a selection ¢ for S|E such that ¢(e)=0 for all e ES~1(0).
Define the function f on X by the same formula as in the proof of Theorem 4.1.
Then f is a linear selection for S such that f(x)=0 for all x¢S~1(0). Thus, if
S(x)=S(y), then f(x)+S0)=f(y)+S(0), and hence x—ycf 1(S5(0)=
=87 f(0))=S"1(0) by Corollary 3.10. Consequently f(x—y)=0, i.e., f(x)=F()).

Corollary 4.6. Every linear relation S can be written in the form
S =@ lof,

where f is a linear selection for S and ¢ is a linear function.

PrOOF. Let S and f be as in Theorem 4.5. Then, we may define a function
¢ on the range S(X) of S by ¢(y)=f(x), if y€S(x). Then, it is clear that ¢ is
a linear function from S(X) onto f(X), and moreover, we have S(x)=¢(f(x))
for all xe X.

Corollary 4.7. For every linear relation S, the linear equivalence relation S 'oS
can be written in the form

S~1oS =f"10f,
where [ is a linear selection for S.

PRrOOF. If S is a linear relation, and f, ¢ are as in Corollary 4.6, then S~ 'oS=
=f"logoplof=fof.

Corollary 4.8. Every reflexive linear relation S can be written in the form

S=§"rof,
where f is a linear selection for S.
Proor. This follows immediately from Corollaries 4.7 and 3.11.

Theorem 4.9. Let S be a linear relation from X into Y, and let y be a linear
Jfunction from a subspace M of X into Y such that y—S. Then there exists a linear
selection f for S such that ycf.

PrROOF. Let E be a basis for X such that EMNM is a basis for M, if M= {0};
and for each x€ X, let £ be as in the proof of Theorem 4.1. Choose a selection ¢
for S|E such that ¢(e)=y(e) for all ec EN M, and define the function f on X
as in the proof of Theorem 4.1. Then, it is clear that f has the required properties.

Corollary 4.10. Let X and Y be topological vector spaces such that Y is complete,
and let f be a continuous linear mapping of a dense subspace M of X into Y. Then
there exists a continuous linear mapping F from X into Y such that fC F.
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PrOOF. Let f be as in Example 1.7. Then, by Theorem 4.9, there exists a linear
selection F for f such that fc F. Thus, we have

F(x)¢ EL"} F(1)

teEM
for all xcX, and this guarantees that F is continuous.

Notes and comments. A weaker form of Theorem 4.1 was proved in [14] by
the authors.

Some of the results of this paragraph can also be extended to the case of free
modules over a ring with identity.

Corollary 4.10 for the case when Y is Hausdorff can be found in most treatises
on topological vector spaces [8].
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