On ideals and extensions of near-rings

By STEFAN VELDSMAN (Port Elizabeth)

Abstract. Given a chain of ideals $J \triangleleft I \triangleleft N$ in a near-ring N, we consider necessary and sufficient conditions on $J, I, N, N / I$ and I / J respectively to ensure that $J \triangleleft N$.

§1. Introduction

Near-rings considered will be right near-rings; the variety of all nearrings will be denoted by \mathcal{V} and the subvariety of 0 -symmetric near-rings will be denoted by \mathcal{V}_{0}. To facilitate discussions, the conditions mentioned in the Abstract will be formulated in terms of a subclass \mathcal{M} of \mathcal{V}.

The class \mathcal{M} satisfies condition
(F) If $J \triangleleft I \triangleleft N$ and $I / J \in \mathcal{M}$, then $J \triangleleft N$
(G) If $J \triangleleft I \triangleleft N$ and $J \in \mathcal{M}$, then $J \triangleleft N$
(H) If $J \triangleleft I \triangleleft N$ and $I \in \mathcal{M}$, then $J \triangleleft N$
(K) If $J \triangleleft I \triangleleft N$ and $N \in \mathcal{M}$, then $J \triangleleft N$
(L) If $J \triangleleft I \triangleleft N$ and $N / I \in \mathcal{M}$, then $J \triangleleft N$.

It is our purpose here to describe the near-rings in \mathcal{M} for each of the above five cases. For rings, this has been done, see [8] or Sands [3]. For the purpose of comparison, we recall:

In the variety of rings, a subclass \mathcal{M} satisfies condition:
(F) if and only if the rings in \mathcal{M} are quasi semiprime, i.e. if $R \in \mathcal{M}$ and $x R=0$ or $R x=0(x \in R)$, then $x=0$ (or equivantly, R has zero middle annihilator, i.e. $R x R=0(x \in R)$ implies $x=0)$.
(G) if and only if $R^{2}=R$ for all $R \in \mathcal{M}$.
(H) if and only if every ideal I of $R \in \mathcal{M}$ is invariant under all double homothetisms of R (cf RÉdei [2]).
(K) if and only if for all $R \in \mathcal{M}$ and for all $a \in R,(a)=(a)^{2}+\mathbf{Z} a$ where (a) is the ideal in R generated by a and \mathbf{Z} is the integers.
(L) if and only if $\mathcal{M}=\{0\}$.

If N is a near-ring, then N^{+}will denote the underlying group. For nearrings $N_{i}, i=1,2, \ldots, k$ and subsets $U_{i} \subseteq N_{i},\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ denotes the subset $\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \mid u_{i} \in U_{i}\right\}$ of $N_{1} \times N_{2} \times \ldots \times N_{k}$.

§2. On condition (F)

In the variety of 0 -symmetric near-rings, this problem has been settled in [9]: A class of near-rings \mathcal{M} in \mathcal{V}_{0} satisfies condition (F) if and only if every near-ring in \mathcal{M} is quasi semi-equiprime. A near-ring N is quasi semi-equiprime if $x N=0(x \in N)$ implies $x=0$ and whenever $\theta: I \rightarrow N$ is a surjective homomorphism with $I \triangleleft A$ then $x-y \in \operatorname{ker} \theta(x, y \in I)$, implies $a x-a y \in \operatorname{ker} \theta$ for all $a \in A$.

In the variety of all near-rings, a complete description is still oustanding. The construction in [7] shows that \mathcal{M} does not contain any non zero constant near-rings. In fact, it is conjectured that $\mathcal{M}=\{0\}$; the strongest motivation for this coming from the example in [6] which shows that any class which contains the two element field cannot satisfy condition (F).

\S 3. On condition (G)

This case can quickly be disposed of using a construction given in [5] which resembles one given by Betsch and KaArli [1]. Let N be a near-ring and let K be the near-ring with $K^{+}=N^{+} \oplus N^{+} \oplus N^{+}$and with multiplication

$$
(a, b, c)(x, y, z)= \begin{cases}(b, 0, c z) & \text { if } y \text { and } z \text { are non-zero } \\ (0,0, c z) & \text { otherwise }\end{cases}
$$

Apart from verifying the associativity of the multiplication as well as the right distributivity over the addition, it is straightforward to see that $N \cong$ $(0,0, N) \triangleleft(N, 0, N) \triangleleft K,(0,0, N) \triangleleft K$ if and only if $N=0$ and K is 0 symmetric if and only if N is 0 -symmetric.

Theorem 3.1. In either one of \mathcal{V} or \mathcal{V}_{0}, a subclass \mathcal{M} satisfies condition (G) if and only if $\mathcal{M}=\{0\}$.

Proof. Suppose \mathcal{V} satisfies condition G and let $N \in \mathcal{V}$. Then $N \cong$ $(0,0, N) \triangleleft(N, 0, N) \triangleleft K$; hence $(0,0, N) \triangleleft K$, which yields $N=0$.

§4. On condition (L)

As in the variety of rings, a subclass \mathcal{M} of \mathcal{V} or \mathcal{V}_{0} satisfies condition (L) if and only if $\mathcal{M}=\{0\}$. To verify this for near-rings, we need two constructions:
4.1 Let N be a near-ring and let G be the group $G=N^{+} \oplus U$ where U is any non-zero group. As is well-known, N can be identified with a subnear-ring of $M(G)=\{f \mid f: G \rightarrow G$ a function $\}$ via $\theta: N \rightarrow M(G)$, $\theta(n)=\theta_{n}: G \rightarrow G, \quad \theta_{n}(g)= \begin{cases}n g & \text { if } g \in N \\ n & \text { if } g \in G \backslash N .\end{cases}$
Let K_{1} be the near-ring with $K_{1}^{+}=N^{+} \oplus M(G)^{+}$and multiplication

$$
(n, g)(m, h)=(n m, n h)
$$

Let $X=\{f \in M(G) \mid f(U) \subseteq U\}$. Then $(0, X) \triangleleft(0, M(G)) \triangleleft K_{1}$ and $K_{1} /(0, M(G)) \cong N$. Note that $(0, X)$ is a right ideal in K_{1}. It is a left ideal of K_{1} if and only if N is constant. Indeed, $(0, X)$ is a left ideal of K_{1} if and only if $n(g+h)-n g \in X$ for all $n \in N, g \in M(G)$ and $h \in X$. Let g and h be the functions defined by

$$
g(x)=\left\{\begin{array}{ll}
x & \text { if } x \in N \\
0 & \text { if } x \in G \backslash N
\end{array} \quad \text { and } \quad h(x)= \begin{cases}0 & \text { if } x \in N \\
x & \text { if } x \in G \backslash N .\end{cases}\right.
$$

Clearly $h \in X$; thus if $(0, X) \triangleleft K_{1}$, then $n(g+h)-n g \in X$. Thus, for $0 \neq u \in U, \quad n(g(u)+h(u))-n g(u) \in U$,

$$
\begin{array}{ll}
\text { i.e. } & n(u)-n(0) \in U \\
\text { i.e. } & n-n 0 \in U \cap N=\{0\} ; \text { hence } n=n 0 .
\end{array}
$$

Conversely, if N is constant, then $(0, X) \triangleleft K_{1}$. If N is 0 -symmetric, and we replace $M(G)$ above with $M_{0}(G)$, then everything above stays valid except in this case $(0, X) \triangleleft K_{1}$ if and only if $N=0$.
4.2 Let N be a near-ring and let G be any group which properly contains N^{+}. We regard N as a subnear-ring of $M(G)$. Let K_{2} be the nearring with $K_{2}^{+}=N^{+} \oplus M(G)^{+}$and multiplication $(n, f)(m, g)=(n m, f m)$. Then $\left(0, M_{0}(G)\right) \triangleleft(0, M(G)) \triangleleft K_{2}$ and $K_{2} /(0, M(G)) \cong N$. Furthermore, $\left(0, M_{0}(G)\right)$ is a left ideal in K_{2}, but it is an ideal if and only if N is $0-$ symmetric. Indeed, if it is a right ideal, then $\left(0,1_{G}\right)(n, 0) \in\left(0, M_{0}(G)\right)$ which gives $n 0=0$. The converse is obvious.

Theorem 4.3. In either one of \mathcal{V} or \mathcal{V}_{0}, a subclass \mathcal{M} satisfies condition (L) if and only if $\mathcal{M}=\{0\}$.

Proof. Firstly, if \mathcal{M} is a subclass in \mathcal{V}_{0} which satisfies condition (L) and $N \in \mathcal{M}$, we have from the construction in 4.1 that $N=0$. If \mathcal{M} is a
subclass in \mathcal{V} which satisfies condition (L) and $N \in \mathcal{M}$, the construction in 4.1 shows that N is constant and the construction in 4.2 shows that N is 0 -symmetric. Hence $N=0$.

§5. On condition (K)

Principal ideals in a near-ring, contrary to the ring case, have no nice finite description. This seems to be the most serious obstacle in describing the near-rings in a class \mathcal{M} which satisfies condition (K). For a near-ring N and $a \in S \subseteq N, S$ a subnear-ring of N, the ideal in S generated by a will be denoted by $\langle a, S\rangle$.

Theorem 5.1. Let \mathcal{M} be a class of near-rings. Then \mathcal{M} satisfies condition (K) if and only if $\langle a, N\rangle=\langle a,\langle a, N\rangle\rangle$ for all $a \in N, N \in \mathcal{V}$.

Proof. Firstly, if $a \in N \in \mathcal{M}$ and \mathcal{M} satisfies condition (K), then $\langle a,\langle a, N\rangle\rangle \triangleleft N$. Hence $\langle a, N\rangle=\langle a,\langle a, N\rangle\rangle$. Conversely, if the condition is satisfied, choose $J \triangleleft I \triangleleft N \in \mathcal{M}$ and let $j \in J, n, m \in N$. Then $\langle j, N\rangle \cap J \subseteq$ $\langle j, N\rangle \subseteq I$; hence

$$
\langle j, N\rangle=\langle j,\langle j, N\rangle\rangle \subseteq\langle j, N\rangle \cap J \subseteq J
$$

Thus $n+j-n, j n$ and $n(m+j)-n m \in J$ which yields $J \triangleleft N$.

\S 6. On condition (H)

We start with finding the near-ring analogue of the Schreier group extensions or the Everett ring extensions (cf RÉdei [2]): Given near-rings A and B determine all near-rings N such that N is an extension of A by B, i.e. $A \triangleleft N$ and $N / A=B$. This problem has earlier been settled for composition rings and 0 -symmetric near-rings by Steinegger [4]. Strictly speaking, it involves finding all triples (ζ, N, η) where

$$
0 \longrightarrow A \xrightarrow{\zeta} N \xrightarrow{\eta} B \longrightarrow 0
$$

is a short exact sequence. Two extensions (ζ, N, η) and $\left(\zeta^{\prime}, N^{\prime}, \eta^{\prime}\right)$ of A by B are equivalent if there exists an isomorphism $\chi: N \rightarrow N^{\prime}$ such that the diagram
commutes. χ is called an equivalence isomorphism. In order to simplify notation and discussions, our exposition will not be as rigorous as required above; instead, we identify A with $\zeta(A)$ and $N / \zeta(A)$ with B. In such a case, it means $\chi(a)=a$ for all $a \in A$ and $\chi(n)+A=n+A$ for all $n \in N$. The elements of A and B will always be taken as $A=\{a, b, c, \ldots\}$ and $B=\{\alpha, \beta, \gamma, \ldots\}$ respectively with 0 denoting the additive identity of both A and B.

Consider a quintuple of functions $(F,[-,-], G, H,\langle-,-\rangle)$ with $F: B \rightarrow M(A), \quad[-,-]: B \times B \rightarrow A, G: A \times B \rightarrow M(A)$, $H: B \times B \rightarrow M(A)$ and $\langle-,-\rangle: B \times B \rightarrow A$ which satisfy the initial conditions

$$
\begin{aligned}
& F(\alpha) \in M_{0}(A), F(0)=1_{A} \\
& {[\alpha, 0]=0=[0, \alpha]} \\
& G(b, \beta) \in M_{0}(A), G(b, 0)(a)=a b \\
& H(0, \beta)=0 ; H(\alpha, \beta) \in M_{0}(A) \\
& \langle 0, \beta\rangle=0 .
\end{aligned}
$$

On the cartesian product $A \times B$ define two operations by

$$
(a, \alpha)+(b, \beta)=(a+F(\alpha)(b)+[\alpha, \beta], \alpha+\beta)
$$

and

$$
(a, \alpha)(b, \beta)=(G(b, \beta)(a)+H(\alpha, \beta)(b)+\langle\alpha, \beta\rangle, \alpha \beta) .
$$

We say these two operations are the operations induced by the function quintuple. $A \times B$ together with these two operations is called an E-sum of A and B w.r.t. the quintuple ($F,[-,-], G, H,\langle-,-\rangle$) and is denoted by $A \sharp B$. The two functions $[-,-]$ and $\langle-,-\rangle$ are called the additive and multiplicative factor systems of the E-sum respectively.

Although A is (as a near-ring) isomorphic to $(A, 0)$ (via $a \rightarrow(a, 0)$), in general $A \sharp B$ may have no particular structure w.r.t. the induced operations. A function quintuple $(F,[-,-], G, H,\langle-,-\rangle)$ is called an amicable system for A w.r.t. B if it satisfies the following conditions for all $a, b, c \in A$ and $\alpha, \beta, \gamma \in B$:
(E1) $F(\alpha) \in \operatorname{End}\left(A^{+}\right)$
(E2) $[\alpha, \beta]+F(\alpha+\beta)(c)=F(\alpha)(F(\beta)(c))+[\alpha, \beta]$
(E3) $[\alpha, \beta]+[\alpha+\beta, \gamma]=F(\alpha)([\alpha, \beta])+[\alpha, \beta+\gamma]$
(E4) $G(c, \gamma) \in \operatorname{End}\left(A^{+}\right)$
(E5) $G(c, \gamma)(F(\alpha)(b))+G(c, \gamma)([\alpha, \beta])+H(\alpha+\beta, \gamma)(c)+\langle\alpha+\beta, \gamma\rangle$
$=H(\alpha, \gamma)(c)+\langle\alpha, \gamma\rangle+F(\alpha \gamma)(G(c, \gamma)(b))+F(\alpha \gamma)(H(\beta, \gamma)(c))$
$+F(\alpha \gamma)(\langle\beta, \gamma\rangle)+[\alpha \gamma, \beta \gamma]$
(E6) $G(c, \gamma)(H(\alpha, \beta)(b))+G(c, \gamma)(\langle\alpha, \beta\rangle)+H(\alpha \beta, \gamma)(c)+\langle\alpha \beta, \gamma\rangle$

$$
=H(\alpha, \beta \gamma)(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle)+\langle\alpha, \beta \gamma\rangle
$$

(E7) $G(c, \gamma) \circ G(b, \beta)=G(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle, \beta \gamma)$.
Theorem 6.1. Let $A \sharp B$ be an E-sum of A and B w.r.t. a function quintuple ($F,[-,-], G, H,\langle-,-\rangle$). Then $A \sharp B$ is a near-ring if and only if the function quintuple is an amicable system for A w.r.t. B. In such a case, $A \sharp B$ is an extension of A by B.

Proof. Assume $A \sharp B$ is a near-ring. Since the addition is associative, it follows that

$$
\begin{align*}
& F(\alpha)(\beta)+[\alpha, \beta]+F(\alpha+\beta)(c)+[\alpha+\beta, \gamma] \\
& =F(\alpha)(b+F(\beta)(c)+[\beta, \gamma])+[\alpha, \beta+\gamma] \tag{1}
\end{align*}
$$

From this equality and the initial conditions, (E1), (E2) and (E3) are obtained by putting $\beta=\gamma=0, b=\gamma=0$ and $b=c=0$ respectively. The right distributivity of the multiplication over the addition, using (E1), gives

$$
\begin{align*}
& G(c, \gamma)(a+F(\alpha)(b)+[\alpha, \beta])+H(\alpha+\beta, \gamma)(c)+\langle\alpha+\beta, \gamma\rangle \\
& =G(c, \gamma)(a)+H(\alpha, \gamma)(c)+\langle\alpha, \gamma\rangle+F(\alpha \gamma)(G(c, \gamma)(b)) \tag{2}\\
& +F(\alpha \gamma)(H(\beta, \gamma)(c))+F(\alpha \gamma)(\langle\beta, \gamma\rangle)+[\alpha \gamma, \beta \gamma]
\end{align*}
$$

Substituting $\alpha=\beta=0$ yields (E4). Then using this in (2) gives (E5). Using (E4), the associativity of the multiplication gives

$$
\begin{align*}
& G(c, \gamma)(G(b, \beta)(a))+G(c, \gamma)(H(\alpha, \beta)(b))+G(c, \gamma)(\langle\alpha, \beta\rangle) \\
& +H(\alpha \beta, \gamma)(c)+\langle\alpha \beta, \gamma\rangle \tag{3}\\
& =G(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle, \beta \gamma)(a) \\
& +H(\alpha, \beta \gamma)(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle)+\langle\alpha, \beta \gamma\rangle
\end{align*}
$$

Substituting $a=0$ and $\alpha=0$ in this equality, (E6) and (E7) respectively are obtained.

Conversely, if the function quintuple is an amicable system, we verify that $A \sharp B$ is a near-ring. The associativity of the addition will follow if the equality in (1) holds. Using (E1), (E3) and then (E2), the right hand side of (1) becomes:

$$
\begin{aligned}
F(\alpha) & (b+F(\beta)(c)+[\beta, \gamma])+[\alpha, \beta+\gamma] \\
& =F(\alpha)(b)+F(\alpha)(F(\beta)(c))+F(\alpha)([\beta, \gamma])+[\alpha, \beta+\gamma] \\
& =F(\alpha)(b)+F(\alpha)(F(\beta)(c))+[\alpha, \beta]+[\alpha+\beta, \gamma] \\
& =F(\alpha)(b)+[\alpha, \beta]+F(\alpha+\beta)(c)+[\alpha+\beta, \gamma] .
\end{aligned}
$$

It can be verified that $(0,0)$ is the additive identity and every element (a, α) has an additive inverse $-(a, \alpha)=(-[-\alpha, \alpha]-F(-\alpha)(a),-\alpha)$. Hence $A \sharp B$ is a group. For the right distributivity, we need the equality in (2). Using $\mathrm{E}(4)$, the left hand side becomes
$G(c, \gamma)(a)+G(c, \gamma)(F(\alpha)(b))+G(c, \gamma)([\alpha, \beta])+H(\alpha+\beta, \gamma)(c)+\langle\alpha+\beta, \gamma\rangle$
which equals the right hand side in view of (E5).
Finally, for the associativity, we require the equality in (3). Using (E7) and (E6), the right hand side becomes

$$
\begin{aligned}
& G(c, \gamma)(G(b, \beta)(a))+G(c, \gamma)(H(\alpha, \beta)(b))+G(c, \gamma)(\langle\alpha, \beta\rangle) \\
& +H(\alpha \beta, \gamma)(c)+\langle\alpha \beta, \gamma\rangle=G(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle, \beta \gamma)(a) \\
& +H(\alpha, \beta \gamma)(G(c, \gamma)(b)+H(\beta, \gamma)(c)+\langle\beta, \gamma\rangle)+\langle\alpha, \beta \gamma\rangle
\end{aligned}
$$

Thus $A \sharp B$ is a near-ring. If we identify A with $(A, 0)$ and B with $\{(0, \alpha)+$ $(A, 0) \mid \alpha \in B\}$, we have $A \triangleleft A \sharp B$ and $A \sharp B / A=B$.

Remark. Conditions (E1), (E2) and (E3), which are equivalent to $A \sharp B$ being a group under the induced addition, implies $F(\alpha) \in \operatorname{Aut}\left(A^{+}\right)$for all $\alpha \in B$. Indeed, by (E1) we only have to verify that $F(\alpha)$ is bijective. If $F(\alpha)(a)=F(\alpha)(b)$, then

$$
(0, \alpha)+(a, 0)=(F(\alpha)(a), \alpha)=(F(\alpha)(b), \alpha)=(0, \alpha)+(b, 0)
$$

Hence $(a, 0)=(b, 0)$ which yields the injectivity. Substituting $\beta=0$ in (E2) gives $F(\alpha)(c)=F(\alpha)(F(0)(c))$; hence $c=F(0)(c)$ which yields $F(0)=1_{A}$. Using (E3) with $\beta=-\alpha$ and $\gamma=\alpha$, gives $[\alpha,-\alpha]=F(\alpha)$ ($[-\alpha, \alpha])$. Thus, for any $c \in A$, using (E2) with $\beta=-\alpha$ and (E1) yield $F(\alpha)([-\alpha, \alpha])+c=F(\alpha)(F(-\alpha)(c))+F(\alpha)([-\alpha, \alpha])$, i.e.

$$
c=F(\alpha)(-[-\alpha, \alpha]+F(-\alpha)(c)+[-\alpha, \alpha])
$$

which shows that $F(\alpha)$ is surjective.
All extensions of A by B are, up to equivalence, an E-sum of A and B for a suitable amicable system. This is our next result.

Theorem 6.2. Let A and B be near-rings and let N be an extension of A by B. Then N is equivalent to an E-sum $A \sharp B$ for some amicable system $(F,[-,-], G, H,\langle-,-\rangle)$.

Proof. Each $\alpha \in B=N / A$ is a subset; let f be a choice function with $f(\alpha) \in \alpha$ and $f(0)=0$. Every element $n \in N$ can uniquely be expressed as $n=a+f(\alpha)$ for some $a \in A, \alpha \in B$. Define a function
$\phi: N \rightarrow A \times B$ by $\phi(a+f(\alpha))=(a, \alpha)$. Then ϕ is an injection. Define a quintuple of functions by:

$$
\begin{aligned}
& F: B \rightarrow M(A), \quad F(\alpha)(a)=f(\alpha)+a-f(\alpha) \\
& {[-,-]: B \times B \rightarrow A, \quad[\alpha, \beta]=f(\alpha)+f(\beta)-f(\alpha+\beta)} \\
& G: A \times B \rightarrow A, \quad G(b, \beta)(a)=a(b+f(\beta)) \\
& H: B \times B \rightarrow M(A) \quad \text { by } \quad H(\alpha, \beta)(a)=f(\alpha)[a+f(\beta)]-f(\alpha) f(\beta) \\
& \langle-,-\rangle: B \times B \rightarrow A \quad \text { by } \quad\langle\alpha, \beta\rangle=f(\alpha) f(\beta)-f(\alpha \beta) .
\end{aligned}
$$

These functions are all well-defined; for example, we verify it for H : Since $f(\alpha) \in \alpha$ and $f(\beta) \in \beta, f(\alpha)=n_{1}+a_{1}$ and $f(\beta)=n_{2}+a_{2}$ for suitable $n_{1}, n_{2} \in N, a_{1}, a_{2} \in A$. Then
$f(\alpha)[a+f(\beta)]-f(\alpha) f(\beta)=\left(n_{1}+a_{2}\right)\left[a+\left(n_{1}+a_{2}\right)\right]-\left(n_{1}+a_{1}\right)\left(n_{2}+a_{2}\right)$
which is in A since $A \triangleleft N$. The quintuple ($F,[-,-], G, H,\langle-,-\rangle)$ satisfies the initial conditions since $f(0)=0$. In addition, we will show that they form an amicable system for A w.r.t. B. But this will follow if we can show that $A \sharp B$ is a near-ring respect to the addition and multiplication induced by this function quintuple. To this effect, it is sufficient to show that ϕ preserves addition and multiplication. Firstly we note that

$$
\begin{aligned}
(a+f(\alpha)) & +(b+f(\beta))=a+f(\alpha)+b-f(\alpha)+f(\alpha)+f(\beta) \\
& -f(\alpha+\beta)+f(\alpha+\beta)=a+F(\alpha)(b)+[\alpha, \beta]+f(\alpha+\beta)
\end{aligned}
$$

The first three terms are in A; hence it is the unique expression of $(a+f(\alpha))+(b+f(\beta)) \in N$ in the form $c+f(\gamma)$. Thus

$$
\phi((a+f(a))+(b+f(\beta)))=(a+F(\alpha)(b)+[\alpha, \beta], \alpha+\beta)
$$

Likewise,

$$
=(a, \alpha)+(b, \beta) .
$$

$$
\begin{aligned}
& (a+f(\alpha))(b+f(\beta)) \\
& =a(b+f(\beta))+f(\alpha)(b+f(\beta))-f(\alpha) f(\beta) \\
& +f(\alpha) f(\beta)-f(\alpha \beta)+f(\alpha \beta) \\
& =G(b, \beta)(a)+H(\alpha, \beta)(b)+\langle\alpha, \beta\rangle+f(\alpha \beta)
\end{aligned}
$$

and the first three are terms in A. Hence

$$
\begin{aligned}
\phi((a+f(\alpha))(b+f(\beta))) & =(G(b, \beta)(a)+H(\alpha, \beta)(b)+\langle\alpha, \beta\rangle, \alpha \beta) \\
& =(a, \alpha)(b, \beta) .
\end{aligned}
$$

Hence ϕ is a near-ring isomorphism. In fact, it is an equivalence isomorphism: If $a \in A$, then $\phi(a)=\phi(a+0)=(a, 0)$. As usual, we identify
$\{n+A \mid n \in N\}$ with $A \sharp B /(A, 0)=\{(0, \alpha)+(A, 0) \mid \alpha \in B\}$ via $n=$ $a+f(\alpha)$ for some unique $a \in A, \alpha \in B$. Then

$$
\phi(n)+(A, 0)=(a, \alpha)+(A, 0)=(0, \alpha)+(A, 0)=n+A .
$$

Remark. For any two near-rings A and B there always exists at least one E-sum $A \sharp B$ with an amicable system of functions, namely $F(\alpha)=$ $1_{A},[\alpha, \beta]=0=\langle\alpha, \beta\rangle, G(c, \gamma)(a)=a c$ and $H(\alpha, \beta)=0$. This is nothing but the direct sum $A \oplus B$ of the near-rings A and B.

An amicable system $(F,[-,-], G, H,\langle-,-\rangle)$ for A w.r.t. B is called a factor-free amicable system if $[\alpha, \beta]=0=\langle\alpha, \beta\rangle$. In such a case, it will be denoted by (F, G, H) and the initial conditions and the conditions (E1) to (E7) simplify to:
$F: B \rightarrow$ Aut $\left(A^{+}\right)$is a group homomorphism (i.e. $F(\alpha+\beta)=$ $F(\alpha) \circ F(\beta))$.
$G: A \times B \rightarrow \operatorname{End}\left(A^{+}\right)$and
$H: B \times B \rightarrow M_{0}(A)$ are functions with $H(0, \alpha)=0$ and

$$
\begin{aligned}
& (F 1) G(c, \gamma)(F(\alpha)(b))+H(\alpha+\beta, \gamma)(c) \\
& \quad=H(\alpha, \gamma)(c)+F(\alpha \gamma)(G(c, \gamma)(b))+F(\alpha \gamma)(H(\beta, \gamma)(c)) \\
& (F 2) G(c, \gamma)(H(\alpha, \beta)(b))+H(\alpha \beta, \gamma)(c) \\
& \quad=H(\alpha, \beta \gamma)(G(c, \gamma)(b)+H(\beta, \gamma)(c)) \\
& (F 3) G(c, \gamma) \circ G(b, \beta)=G(G(c, \gamma)(b)+H(\beta, \gamma)(c), \beta \gamma)
\end{aligned}
$$

((F1), (F2) and (F3) follows from (E5), (E6) and (E7) respectively.) A triple (f, g, h), where $f, g, h \in M_{0}(A)$, is called a triple homothetism of A if $f=F(\alpha), g=G(b, \beta)$ and $h=H(\beta, \alpha)$ for some $b \in A, \alpha, \beta \in B$ where (F, G, H) is a factorfree amicable system for A with respect to some B. If $I \triangleleft A$, then I is invariant under the triple homothetism (f, g, h) if $f(I)=I$, $g(I) \subseteq I$ and $h(I) \subseteq I$.

Theorem 6.3. Let \mathcal{M} be a class of near-rings. Then \mathcal{M} satisfies condition (H) if and only every ideal $I \triangleleft A$ for $A \in \mathcal{M}$ is invariant under every triple homothetism of A.

Proof. Let $I \triangleleft A \in \mathcal{M}, \mathcal{M}$ satisfies condition (H), and let (f, g, h) be a triple homothetism of A. By definition, there is a near-ring B and a factorfree amicable system (F, G, H) for A w.r.t. B such that $f=F\left(\alpha_{0}\right)$, $g=G\left(b_{0}, \beta_{0}\right)$ and $h=H\left(\beta_{0}, \alpha_{0}\right)$. The E-sum $A \sharp B$ is a near-ring, w.r.t. the operations induced by F, G and H, and $(I, 0) \triangleleft(A, 0) \triangleleft A \sharp B$. By condition $(H),(I, 0) \triangleleft A \sharp B$; hence $(0, \alpha)+(i, 0)-(0, \alpha) \in(I, 0)$. This means $F(\alpha)(i) \in I$ and in particular $f(i)=F\left(\alpha_{0}\right)(i) \in I$. Thus $f(I) \subseteq I$.

For the reverse inclusion, since $F(\alpha)(i) \in I$ for all α, we have $i=$ $F\left(\alpha_{0}\right)\left(F\left(-\alpha_{0}\right)(i)\right) \in F\left(\alpha_{0}\right)(I)=f(I)$; hence $f(I)=I$. Furthermore, $(i, 0)(b, \beta) \in(I, 0)$; hence $G(b, \beta)(i) \in I$ and in particular, $g(i)=G\left(b_{0}, \beta_{0}\right)$ $(i) \in I$. Thus $g(I) \subseteq I$. Lastly, from $(0, \beta)[(0, \alpha)+(i, 0)]-(0, \beta)(0, \alpha) \in$ $(I, 0)$ we have $H(\beta, \alpha)(F(\alpha)(i)) \in I$. In particular for $\beta=\beta_{0}$ and $\alpha=\alpha_{0}$ and since the restriction of $F\left(\alpha_{0}\right)$ to I is an automorphism of $I, h(i)=$ $H\left(\beta_{0}, \alpha_{0}\right)\left(F\left(\alpha_{0}\right)(j)\right) \in I$ for a suitable $j \in I$. Thus $h(I) \subseteq I$.

Conversely, suppose the ideals of $A \in \mathcal{M}$ are invariant under triple homothetism of A. Consider $I \triangleleft A \triangleleft B$. Define functions $F: B \rightarrow \operatorname{Aut}\left(A^{+}\right)$, $G: A \times B \rightarrow \operatorname{End}\left(A^{+}\right)$and $H: B \times B \rightarrow M_{0}(A)$ by $F(\alpha)(a)=\alpha+$ $a-\alpha, G(a, \beta)(c)=c(a+\beta)$ and $H(\alpha, \beta)(a)=\alpha(a+\beta)-\alpha \beta$. Then (F, G, H) constitutes a factorfree amicable system for A w.r.t. B. Since I is invariant under triple homothetisms and $(F(\alpha), G(b, \beta), H(\beta, \alpha))$ is a triple homothetism for all $b \in A, \alpha, \beta \in B$, it follows that $I \triangleleft B$.

In conclusion we may mention that in the ring case, it is possible to express a double homothetism (in this case, $F(\alpha)=1_{A}$ for all α and is thus omitted in the triple $(f, g, h))$ only in terms of A and the conditions (E1) to (E7) simplify considerably.

References

[1] G. Betsch and K. Kaarli, Supernilpotent radicals and non-hereditary classes of near-rings, Coll. Math. Soc. J. Bolyai, 38 (1985), 47-58, Radical Theory (Eger, 1982), North Holland.
[2] L. RÉdei, Algebra, vol. I, Pergamon Press, Oxford, 1967.
[3] A. D. Sands, On ideals in over-rings, Publ. Math. Debrecen 35 (1988), 274-279.
[4] G. Steinegger, Erweiterungstheorie von Fastringen, Doctoral Dissertation, Univ. Salzburg, Austria, 1972.
[5] S. Veldsman, Supernilpotent radicals of near-rings, Comm. Algebra 15 (1987), 2497-2509.
[6] S. Veldsman, On the non-hereditariness of radical and semisimple classes of nearrings, Studia Sci. Math. Hungar. 24 (1989), 315-323.
[7] S. Veldsman, Near-ring radicals with hereditary semisimple classes, Archiv. Math. 54 (1990), 443-447.
[8] S. Veldsman, Extensions and ideals of Rings, Publ. Math. Debrecen 38 (1991), 297-309.
[9] S. Veldsman, An overnilpotent radical theory for near-rings, J. Algebra 144 (1991), 248-265.

STEFAN VELDSMAN
DEPT. OF MATHEMATICS
UNIVERSITY OF PORT ELIZABETH
PO BOX 1600
PORT ELIZABETH
6000 SOUTH AFRICA
(Received June 11, 1990)

