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On ideals and extensions of near-rings

By STEFAN VELDSMAN (Port Elizabeth)

Abstract. Given a chain of ideals J/I/N in a near-ring N , we consider necessary
and sufficient conditions on J , I, N , N/I and I/J respectively to ensure that J / N .

§1. Introduction

Near-rings considered will be right near-rings; the variety of all near-
rings will be denoted by V and the subvariety of 0-symmetric near-rings
will be denoted by V0. To facilitate discussions, the conditions mentioned
in the Abstract will be formulated in terms of a subclass M of V.

The class M satisfies condition
(F) If J / I / N and I/J ∈M, then J / N
(G) If J / I / N and J ∈M, then J / N
(H) If J / I / N and I ∈M, then J / N
(K) If J / I / N and N ∈M, then J / N
(L) If J / I / N and N/I ∈M, then J / N .
It is our purpose here to describe the near-rings in M for each of the

above five cases. For rings, this has been done, see [8] or Sands [3]. For
the purpose of comparison, we recall:

In the variety of rings, a subclass M satisfies condition:
(F) if and only if the rings in M are quasi semiprime, i.e. if R ∈ M and

xR = 0 or Rx = 0 (x ∈ R), then x = 0 (or equivantly, R has zero
middle annihilator, i.e. RxR = 0 (x ∈ R) implies x = 0).

(G) if and only if R2 = R for all R ∈M.
(H) if and only if every ideal I of R ∈ M is invariant under all double

homothetisms of R (cf Rédei [2]).
(K) if and only if for all R ∈M and for all a ∈ R, (a) = (a)2 + Za where

(a) is the ideal in R generated by a and Z is the integers.
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(L) if and only if M = {0}.
If N is a near-ring, then N+ will denote the underlying group. For

nearrings Ni, i = 1, 2, . . . , k and subsets Ui ⊆ Ni, (U1, U2, . . . , Uk) denotes
the subset {(u1, u2, . . . , uk) |ui ∈ Ui} of N1 ×N2 × . . .×Nk.

§2. On condition (F)

In the variety of 0-symmetric near-rings, this problem has been settled
in [9]: A class of near-rings M in V0 satisfies condition (F ) if and only
if every near-ring in M is quasi semi-equiprime. A near-ring N is quasi
semi-equiprime if xN = 0 (x ∈ N) implies x = 0 and whenever θ : I → N
is a surjective homomorphism with I / A then x − y ∈ kerθ (x, y ∈ I),
implies ax− ay ∈ kerθ for all a ∈ A.

In the variety of all near-rings, a complete description is still oustand-
ing. The construction in [7] shows that M does not contain any non zero
constant near-rings. In fact, it is conjectured that M = {0}; the strongest
motivation for this coming from the example in [6] which shows that any
class which contains the two element field cannot satisfy condition (F ).

§3. On condition (G)

This case can quickly be disposed of using a construction given in
[5] which resembles one given by Betsch and Kaarli [1]. Let N be a
near-ring and let K be the near-ring with K+ = N+⊕N+⊕N+ and with
multiplication

(a, b, c)(x, y, z) =
{

(b, 0, cz) if y and z are non-zero
(0, 0, cz) otherwise.

Apart from verifying the associativity of the multiplication as well as the
right distributivity over the addition, it is straightforward to see that N ∼=
(0, 0, N) / (N, 0, N) / K, (0, 0, N) / K if and only if N = 0 and K is 0-
symmetric if and only if N is 0-symmetric.

Theorem 3.1. In either one of V or V0, a subclass M satisfies condi-
tion (G) if and only if M = {0}.

Proof. Suppose V satisfies condition G and let N ∈ V. Then N ∼=
(0, 0, N) / (N, 0, N) / K; hence (0, 0, N) / K, which yields N = 0.
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§4. On condition (L)

As in the variety of rings, a subclass M of V or V0 satisfies condition
(L) if and only if M = {0}. To verify this for near-rings, we need two
constructions:

4.1 Let N be a near-ring and let G be the group G = N+ ⊕ U where
U is any non-zero group. As is well-known, N can be identified with a
subnear-ring of M(G) = {f | f : G → G a function} via θ : N → M(G),

θ(n) = θn : G → G, θn(g) =
{

ng if g ∈ N

n if g ∈ G \N.
Let K1 be the near-ring with K+

1 = N+ ⊕M(G)+ and multiplication

(n, g)(m,h) = (nm, nh).

Let X = {f ∈ M(G) | f(U) ⊆ U}. Then (0, X) / (0, M(G)) / K1 and
K1/(0,M(G)) ∼= N . Note that (0, X) is a right ideal in K1. It is a left
ideal of K1 if and only if N is constant. Indeed, (0, X) is a left ideal of K1

if and only if n(g + h)− ng ∈ X for all n ∈ N , g ∈ M(G) and h ∈ X. Let
g and h be the functions defined by

g(x) =
{

x if x ∈ N

0 if x ∈ G \N
and h(x) =

{
0 if x ∈ N

x if x ∈ G \N.

Clearly h ∈ X; thus if (0, X) / K1, then n(g + h) − ng ∈ X. Thus, for
0 6= u ∈ U, n(g(u) + h(u))− ng(u) ∈ U ,

i.e. n(u)− n(0) ∈ U

i.e. n− n0 ∈ U ∩N = {0}; hence n = n0.

Conversely, if N is constant, then (0, X) / K1. If N is 0-symmetric, and
we replace M(G) above with M0(G), then everything above stays valid
except in this case (0, X) / K1 if and only if N = 0.

4.2 Let N be a near-ring and let G be any group which properly
contains N+. We regard N as a subnear-ring of M(G). Let K2 be the near-
ring with K+

2 = N+⊕M(G)+ and multiplication (n, f)(m, g) = (nm, fm).
Then (0,M0(G)) / (0,M(G)) / K2 and K2/(0, M(G)) ∼= N . Furthermore,
(0,M0(G)) is a left ideal in K2, but it is an ideal if and only if N is 0-
symmetric. Indeed, if it is a right ideal, then (0, 1G)(n, 0) ∈ (0,M0(G))
which gives n0 = 0. The converse is obvious.

Theorem 4.3. In either one of V or V0, a subclass M satisfies condi-
tion (L) if and only if M = {0}.

Proof. Firstly, if M is a subclass in V0 which satisfies condition (L)
and N ∈M, we have from the construction in 4.1 that N = 0. If M is a
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subclass in V which satisfies condition (L) and N ∈ M, the construction
in 4.1 shows that N is constant and the construction in 4.2 shows that N

is 0-symmetric. Hence N = 0.

§5. On condition (K)

Principal ideals in a near-ring, contrary to the ring case, have no nice
finite description. This seems to be the most serious obstacle in describing
the near-rings in a class M which satisfies condition (K). For a near-ring
N and a ∈ S ⊆ N , S a subnear-ring of N , the ideal in S generated by a

will be denoted by 〈a, S〉.

Theorem 5.1. Let M be a class of near-rings. Then M satisfies

condition (K) if and only if 〈a,N〉 = 〈a, 〈a,N〉〉 for all a ∈ N , N ∈ V.

Proof. Firstly, if a ∈ N ∈ M and M satisfies condition (K), then
〈a, 〈a,N〉〉 / N . Hence 〈a, N〉 = 〈a, 〈a,N〉〉. Conversely, if the condition is
satisfied, choose J /I /N ∈M and let j ∈ J, n,m ∈ N . Then 〈j, N〉∩J ⊆
〈j,N〉 ⊆ I; hence

〈j, N〉 = 〈j, 〈j,N〉〉 ⊆ 〈j, N〉 ∩ J ⊆ J.

Thus n + j − n, jn and n(m + j)− nm ∈ J which yields J / N .

§6. On condition (H)

We start with finding the near-ring analogue of the Schreier group
extensions or the Everett ring extensions (cf Rédei [2]): Given near-rings
A and B determine all near-rings N such that N is an extension of A by
B, i.e. A / N and N/A = B. This problem has earlier been settled for
composition rings and 0–symmetric near-rings by Steinegger [4]. Strictly
speaking, it involves finding all triples (ζ,N, η) where

0 −→ A
ζ−→ N

η−→ B −→ 0

is a short exact sequence. Two extensions (ζ, N, η) and (ζ ′, N ′, η′) of A by
B are equivalent if there exists an isomorphism χ : N → N ′ such that the
diagram
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commutes. χ is called an equivalence isomorphism. In order to simplify
notation and discussions, our exposition will not be as rigorous as required
above; instead, we identify A with ζ(A) and N/ζ(A) with B. In such a
case, it means χ(a) = a for all a ∈ A and χ(n) + A = n + A for all n ∈ N .
The elements of A and B will always be taken as A = {a, b, c, . . . } and
B = {α, β, γ, . . . } respectively with 0 denoting the additive identity of
both A and B.

Consider a quintuple of functions (F, [−,−], G, H, 〈−,−〉) with
F : B → M(A), [−,−] : B × B → A, G : A × B → M(A),
H : B × B → M(A) and 〈−,−〉 : B × B → A which satisfy the ini-
tial conditions

F (α) ∈ M0(A), F (0) = 1A

[α, 0] = 0 = [0, α]

G(b, β) ∈ M0(A), G(b, 0)(a) = ab

H(0, β) = 0; H(α, β) ∈ M0(A)

〈0, β〉 = 0.

On the cartesian product A×B define two operations by

(a, α) + (b, β) =
(

a + F (α)(b) + [α, β], α + β
)

and
(a, α)(b, β) =

(
G(b, β)(a) + H(α, β)(b) + 〈α, β〉, αβ

)
.

We say these two operations are the operations induced by the function
quintuple. A × B together with these two operations is called an E-sum
of A and B w.r.t. the quintuple (F, [−,−], G,H, 〈−,−〉) and is denoted
by A]B. The two functions [−,−] and 〈−,−〉 are called the additive and
multiplicative factor systems of the E-sum respectively.

Although A is (as a near-ring) isomorphic to (A, 0) (via a → (a, 0)),
in general A]B may have no particular structure w.r.t. the induced oper-
ations. A function quintuple (F, [−,−], G, H, 〈−,−〉) is called an amicable
system for A w.r.t. B if it satisfies the following conditions for all a, b, c ∈ A
and α, β, γ ∈ B:

(E1) F (α) ∈ End (A+)
(E2) [α, β] + F (α + β)(c) = F (α)

(
F (β)(c)

)
+[α, β]

(E3) [α, β] + [α + β, γ] = F (α)
(

[α, β]
)

+[α, β + γ]
(E4) G(c, γ) ∈ End (A+)
(E5) G(c, γ)

(
F (α)(b)

)
+G(c, γ)

(
[α, β]

)
+H(α + β, γ)(c) + 〈α + β, γ〉

= H(α, γ)(c) + 〈α, γ〉 + F (αγ)
(

G(c, γ)(b)
)

+F (αγ)
(

H(β, γ)(c)
)

+F (αγ)
( 〈β, γ〉 )

+[αγ, βγ]
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(E6) G(c, γ)
(

H(α, β)(b)
)

+G(c, γ)
( 〈α, β〉 )

+H(αβ, γ)(c) + 〈αβ, γ〉
= H(α, βγ)

(
G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉 )

+〈α, βγ〉
(E7) G(c, γ) ◦G(b, β) = G

(
G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉, βγ

)
.

Theorem 6.1. Let A]B be an E-sum of A and B w.r.t. a function
quintuple (F, [−,−], G, H, 〈−,−〉). Then A]B is a near-ring if and only if
the function quintuple is an amicable system for A w.r.t. B. In such a
case, A]B is an extension of A by B.

Proof. Assume A]B is a near-ring. Since the addition is associative,
it follows that

(1)
F (α)(β) + [α, β] + F (α + β)(c) + [α + β, γ]

= F (α)
(

b + F (β)(c) + [β, γ]
)

+[α, β + γ]

From this equality and the initial conditions, (E1), (E2) and (E3) are
obtained by putting β = γ = 0, b = γ = 0 and b = c = 0 respectively.
The right distributivity of the multiplication over the addition, using (E1),
gives

(2)

G(c, γ)
(

a + F (α)(b) + [α, β]
)

+H(α + β, γ)(c) + 〈α + β, γ〉
= G(c, γ)(a) + H(α, γ)(c) + 〈α, γ〉+ F (αγ)

(
G(c, γ)(b)

)

+ F (αγ)
(

H(β, γ)(c)
)

+F (αγ)(〈β, γ〉) + [αγ, βγ]

Substituting α = β = 0 yields (E4). Then using this in (2) gives (E5).
Using (E4), the associativity of the multiplication gives

(3)

G(c, γ)
(

G(b, β)(a)
)

+G(c, γ)
(

H(α, β)(b)
)

+G(c, γ)
( 〈α, β〉 )

+ H(αβ, γ)(c) + 〈αβ, γ〉
= G

(
G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉, βγ

)
(a)

+ H(α, βγ)
(

G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉 )
+〈α, βγ〉

Substituting a = 0 and α = 0 in this equality, (E6) and (E7) respectively
are obtained.

Conversely, if the function quintuple is an amicable system, we verify
that A]B is a near-ring. The associativity of the addition will follow if the
equality in (1) holds. Using (E1), (E3) and then (E2), the right hand side
of (1) becomes:

F (α)
(

b + F (β)(c) + [β, γ]
)

+[α, β + γ]

= F (α)(b) + F (α)
(

F (β)(c)
)

+F (α)
(

[β, γ]
)

+[α, β + γ]

= F (α)(b) + F (α)
(

F (β)(c)
)

+[α, β] + [α + β, γ]

= F (α)(b) + [α, β] + F (α + β)(c) + [α + β, γ] .
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It can be verified that (0, 0) is the additive identity and every element (a, α)
has an additive inverse −(a, α) =

( −[−α, α]−F (−α)(a),−α
)
. Hence A]B

is a group. For the right distributivity, we need the equality in (2). Using
E(4), the left hand side becomes

G(c, γ)(a)+G(c, γ)
(

F (α)(b)
)
+G(c, γ)

(
[α, β]

)
+H(α+β, γ)(c)+〈α+β, γ〉

which equals the right hand side in view of (E5).
Finally, for the associativity, we require the equality in (3). Using

(E7) and (E6), the right hand side becomes

G(c, γ)
(

G(b, β)(a)
)

+G(c, γ)(H(α, β)(b)) + G(c, γ)
( 〈α, β〉 )

+ H(αβ, γ)(c) + 〈αβ, γ〉 = G
(

G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉, βγ
)

(a)

+ H(α, βγ)
(

G(c, γ)(b) + H(β, γ)(c) + 〈β, γ〉 )
+〈α, βγ〉.

Thus A]B is a near-ring. If we identify A with (A, 0) and B with {(0, α)+
(A, 0) |α ∈ B}, we have A / A]B and A]B/A = B.

Remark. Conditions (E1), (E2) and (E3), which are equivalent to A]B
being a group under the induced addition, implies F (α) ∈ Aut (A+) for
all α ∈ B. Indeed, by (E1) we only have to verify that F (α) is bijective.
If F (α)(a) = F (α)(b), then

(0, α) + (a, 0) =
(

F (α)(a), α
)
=

(
F (α)(b), α

)
= (0, α) + (b, 0).

Hence (a, 0) = (b, 0) which yields the injectivity. Substituting β = 0 in
(E2) gives F (α)(c) = F (α)

(
F (0)(c)

)
; hence c = F (0)(c) which yields

F (0) = 1A. Using (E3) with β = −α and γ = α, gives [α,−α] = F (α)(
[−α, α]

)
. Thus, for any c ∈ A, using (E2) with β = −α and (E1) yield

F (α)
(

[−α, α]
)

+c = F (α)
(

F (−α)(c)
)

+F (α)
(

[−α, α]
)
, i.e.

c = F (α)
( −[−α, α] + F (−α)(c) + [−α, α]

)

which shows that F (α) is surjective.
All extensions of A by B are, up to equivalence, an E-sum of A and B for
a suitable amicable system. This is our next result.

Theorem 6.2. Let A and B be near-rings and let N be an extension
of A by B. Then N is equivalent to an E-sum A]B for some amicable
system (F, [−,−], G, H, 〈−,−〉).

Proof. Each α ∈ B = N/A is a subset; let f be a choice function
with f(α) ∈ α and f(0) = 0. Every element n ∈ N can uniquely be
expressed as n = a + f(α) for some a ∈ A, α ∈ B. Define a function
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φ : N → A× B by φ
(

a + f(α)
)
= (a, α). Then φ is an injection. Define

a quintuple of functions by:

F : B → M(A), F (α)(a) = f(α) + a− f(α)

[−,−] : B ×B → A, [α, β] = f(α) + f(β)− f(α + β)

G : A×B → A, G(b, β)(a) = a
(

b + f(β)
)

H : B ×B → M(A) by H(α, β)(a) = f(α)[a + f(β)]− f(α)f(β)

〈−,−〉 : B ×B → A by 〈α, β〉 = f(α)f(β)− f(αβ).

These functions are all well-defined; for example, we verify it for H : Since
f(α) ∈ α and f(β) ∈ β, f(α) = n1 + a1 and f(β) = n2 + a2 for suitable
n1, n2 ∈ N , a1, a2 ∈ A. Then

f(α)
[

a+f(β)
] −f(α)f(β) = (n1+a2)

[
a+(n1+a2)

] −(n1+a1)(n2+a2)

which is in A since A/N . The quintuple (F, [−,−], G, H, 〈−,−〉) satisfies
the initial conditions since f(0) = 0. In addition, we will show that they
form an amicable system for A w.r.t. B. But this will follow if we can
show that A]B is a near-ring respect to the addition and multiplication
induced by this function quintuple. To this effect, it is sufficient to show
that φ preserves addition and multiplication. Firstly we note that(

a + f(α)
)

+
(

b + f(β)
)
= a + f(α) + b− f(α) + f(α) + f(β)

− f(α + β) + f(α + β) = a + F (α)(b) + [α, β] + f(α + β).

The first three terms are in A; hence it is the unique expression of(
a + f(α)

)
+

(
b + f(β)

)∈ N in the form c + f(γ). Thus

φ
((

a + f(a)
)

+
(

b + f(β)
))

=
(

a + F (α)(b) + [α, β], α + β
)

= (a, α) + (b, β).
Likewise,(

a + f(α)
)(

b + f(β)
)

= a
(

b + f(β)
)

+f(α)
(

b + f(β)
) −f(α)f(β)

+ f(α)f(β)− f(αβ) + f(αβ)

= G(b, β)(a) + H(α, β)(b) + 〈α, β〉+ f(αβ)

and the first three are terms in A. Hence

φ
((

a + f(α)
)(

b + f(β)
))

=
(

G(b, β)(a) + H(α, β)(b) + 〈α, β〉, αβ
)

= (a, α)(b, β).

Hence φ is a near-ring isomorphism. In fact, it is an equivalence isomor-
phism: If a ∈ A , then φ (a) = φ (a + 0) = (a, 0) . As usual, we identify
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{n + A |n ∈ N} with A]B/(A, 0) =
{

(0, α) + (A, 0) |α ∈ B
}

via n =
a + f(α) for some unique a ∈ A, α ∈ B. Then

φ(n) + (A, 0) = (a, α) + (A, 0) = (0, α) + (A, 0) = n + A.

Remark. For any two near-rings A and B there always exists at least
one E-sum A]B with an amicable system of functions, namely F (α) =
1A, [α, β] = 0 = 〈α, β〉, G(c, γ)(a) = ac and H(α, β) = 0. This is nothing
but the direct sum A⊕B of the near-rings A and B.

An amicable system (F, [−,−], G, H, 〈−,−〉) for A w.r.t. B is called
a factor-free amicable system if [α, β] = 0 = 〈α, β〉. In such a case, it will
be denoted by (F, G, H) and the initial conditions and the conditions (E1)
to (E7) simplify to:

F : B → Aut (A+) is a group homomorphism (i.e. F (α + β) =
F (α) ◦ F (β) ).

G : A×B → End (A+) and
H : B ×B → M0(A) are functions with H(0, α) = 0 and

(F1) G(c, γ)
(

F (α)(b)
)

+H(α + β, γ)(c)

= H(α, γ)(c) + F (αγ)
(

G(c, γ)(b)
)

+F (αγ)
(

H(β, γ)(c)
)

(F2) G(c, γ)
(

H(α, β)(b)
)

+H(αβ, γ)(c)

= H(α, βγ)
(

G(c, γ)(b) + H(β, γ)(c)
)

(F3) G(c, γ) ◦G(b, β) = G
(

G(c, γ)(b) + H(β, γ)(c), βγ
)

.

((F1), (F2) and (F3) follows from (E5), (E6) and (E7) respectively.) A
triple (f, g, h), where f, g, h ∈ M0(A), is called a triple homothetism of A
if f = F (α), g = G(b, β) and h = H(β, α) for some b ∈ A, α, β ∈ B where
(F,G, H) is a factorfree amicable system for A with respect to some B. If
I /A, then I is invariant under the triple homothetism (f, g, h) if f(I) = I,
g(I) ⊆ I and h(I) ⊆ I.

Theorem 6.3. Let M be a class of near-rings. Then M satisfies
condition (H) if and only every ideal I / A for A ∈ M is invariant under
every triple homothetism of A.

Proof. Let I / A ∈ M, M satisfies condition (H), and let (f, g, h)
be a triple homothetism of A. By definition, there is a near-ring B and a
factorfree amicable system (F,G, H) for A w.r.t. B such that f = F (α0),
g = G(b0, β0) and h = H(β0, α0). The E-sum A]B is a near-ring, w.r.t.
the operations induced by F , G and H, and (I, 0) / (A, 0) / A]B. By
condition (H), (I, 0) / A]B; hence (0, α) + (i, 0) − (0, α) ∈ (I, 0). This
means F (α)(i) ∈ I and in particular f(i) = F (α0)(i) ∈ I. Thus f(I) ⊆ I.
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For the reverse inclusion, since F (α)(i) ∈ I for all α, we have i =
F (α0)(F (−α0)(i)) ∈ F (α0)(I) = f(I); hence f(I) = I. Furthermore,
(i, 0)(b, β) ∈ (I, 0); hence G(b, β)(i) ∈ I and in particular, g(i) = G(b0, β0)
(i) ∈ I. Thus g(I) ⊆ I. Lastly, from (0, β)[(0, α) + (i, 0)] − (0, β)(0, α) ∈
(I, 0) we have H(β, α)(F (α)(i)) ∈ I. In particular for β = β0 and α = α0

and since the restriction of F (α0) to I is an automorphism of I, h(i) =
H(β0, α0)(F (α0)(j)) ∈ I for a suitable j ∈ I. Thus h(I) ⊆ I.

Conversely, suppose the ideals of A ∈ M are invariant under triple
homothetism of A. Consider I/A/B. Define functions F : B → Aut (A+),
G : A × B → End (A+) and H : B × B → M0(A) by F (α)(a) = α +
a − α, G(a, β)(c) = c(a + β) and H(α, β)(a) = α(a + β) − αβ. Then
(F,G, H) constitutes a factorfree amicable system for A w.r.t. B. Since I
is invariant under triple homothetisms and (F (α), G(b, β), H(β, α)) is a
triple homothetism for all b ∈ A, α, β ∈ B, it follows that I / B.

In conclusion we may mention that in the ring case, it is possible to
express a double homothetism (in this case, F (α) = 1A for all α and is
thus omitted in the triple (f, g, h)) only in terms of A and the conditions
(E1) to (E7) simplify considerably.
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