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A notion of compactness in topological categories

By MEHMET BARAN (Kayseri)

Abstract. In this paper, the notion of compactness as well as the notion of com-
pact pairs for an arbitrary topological category is introduced. Furthermore, various
generalizations of Tychonoff (completely regular T1-objects) objects for an arbitrary
topological category is given and the relationships among these various forms are in-
vestigated. Finally, closed and proper (perfect) morphisms are defined in an arbitrary
topological category and some well-known results in the category of topological spaces
are proved.

1. Introduction

The notion of a compact topological space is an abstraction of certain
important properties of the set of real numbers. The classic theorem of
Heine-Borel asserts that every open cover of a closed and bounded subset
of the space of real numbers has a finite subcover. This theorem has an
extraordinarily profound consequences and, like most good theorems, its
conclusion has become a definition.

There is a criterion for a topological space to be compact, a criterion
that is formulated in terms of closed sets. It does not look very natural or
very useful at first glance, but it in fact proves to be useful on a number of
occasions. For example, it is useful when proving the uncountability of the
set of real numbers [20] p. 176 and when proving the Tychonoff theorem
and the Baire category theorem [20] p. 232 and 294.

One of the well-behaved classes of topological spaces to deal with in
mathematics is the compact Hausdorff spaces. Such spaces have many
useful properties, which one can use in proving theorems and making con-
structions and the like.
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subobject, compact object.
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One of the other important classes of topological spaces to deal with
is Tychonoff spaces, i.e. completely regular T1 spaces which are identical
with the class of all subspaces of compact Hausdorff spaces [20] p. 237. In
particular, there are nonconstant continuous functions of every Tychonoff
space into real numbers with the usual topology. Tychonoff spaces are,
moreover, the most general topological spaces that can be guaranteed to
have this property.

Let a and b denote infinite cardinal numbers with a ≤ b. The notion
of [a, b]-compact spaces is introduced and investigated in Smirnov [22]
and Vaughan [23]. Also Vaughan introduced in [24] the notion of Ω-
compact space and gave a characterization of these spaces in terms of
closed projections.

The notions of compact class F (A) and discrete class G(A) relative
to a fixed class A of (Hausdorff) spaces as well as a relative notion of
properness (perfectness) is introduced and investigated in Giuli [11]. The
notion of S-perfect maps for an arbitrary epireflective subcategory S of
Tychonoff spaces is introduced in Hager [12]. The classes of H-closed
spaces (see Ishii [16]) and w-compact spaces (see Joseph [15]) are com-
pact classes with respect to suitable closure operators different from the
ordinary closure.

A compactness notion in categories of convergence spaces, which de-
pends on a closure operator, is introduced and investigated in [8] (see
also [14] and [18]). Compactness and properness (perfectness) in a trans-
portable construct E, depending on a closure operator C and on a class
(full subcategory) A of E-objects ((C, A)-compactness and (C,A)-perfect-
ness), is introduced and investigated in [9].

In [1] and [4], there are various ways to define “Hausdorff” objects in
an arbitrary topological category. In [4], the notion of closed subobjects
of an object in an arbitrary topological category is given. By using this
idea and the closed set formulation of compactness, we define the notion of
compactness for an arbitrary topological category over Set, the category
of sets.

Furthermore, we have shown the following:
1. To define closed and proper morphisms in an arbitrary topo-

logical category over Set and prove some results concern
these concepts.

2. To define various forms of Tychonoff (completely regular T1,
i.e. (T7/2) objects in topological categories and investigate
the relationships among them.

3. To introduce the notion of compact pairs and generalize some
results of Giuli [11].



A notion of compactness in topological categories 223

4. To prove that some well-known results, in general topology,
that are related to compactness and separation properties
are not valid, in general, in an arbitrary topological category
over Set.

Let B be a set and p a point in B. The infinite wedge product,
∨∞

p B
is formed by taking countably many distinct copies of B and identifying
them at the point p. Define A∞p :

∨∞
p B → B∞ = B × B × . . . the

countable cartesian product of B, by A∞p (xi) = (p, p, . . . , xi, p, . . . ) where
xi is in the ith component of the infinite wedge and xi is in the ith place in
(p, p, . . . xi, p, . . . ) Baran [4]. Define ∇p :

∨∞
p B → B by ∇p(xi) = x for

all i. Let B2
∨

∆ B2 be the wedge product of B2, i.e. two disjoint copies
of B2 identified along the diagonal, ∆. A point (x, y) in B2

∨
∆ B2 will

be denoted by (x, y)1 (resp. (x, y)2) if (x, y) is in the first (resp. second)
component of B2

∨
∆ B2 Baran [1]. Recall the principal axis map A :

B2
∨

∆ B2 → B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y).
The skewed axis map S : B2

∨
∆ B2 → B3 is given S(x, y)1 = (x, y, y)and

S(x, y)2 = (x, x, y) and, the fold map, ∇ : B2
∨

∆ B2 → B2 is given by
∇(x, y)i = (x, y) for i = 1, 2 Baran [1].

Let E be a category and Set be the category of sets. Let U : E → Set
be a topological functor [13], f : X → Y a morphism in E, and 1 the
terminal object of E. Let q : U(X) = B → B/F be the identification map
identifying the nonempty subset F of B to a point ∗ Baran [4]. Let p be
a point in U(X) = B.

1.1. Definitions.
1. p is closed iff the initial lift of the U -source

{
A∞p :

∞∨
p

B → U(X∞) = B∞ and ∇p :
∞∨
p

B → U(DB) = B

}

is discrete, where DB is the discrete structure on B [4] p. 386.
2. F ⊂ X is closed iff ∗ is closed in X/F [4] p. 386.
3. F ⊂ X is strongly closed iff X/F is T1 at ∗ [4] p. 386.
4. X is Pre T ′2 iff the initial lift of the U -source

{
S : B2

∨

∆

B2 → U(X3) = B3

}

and the final lift of the U -sink{
i1, i2 : U(X2) = B2 → B2

∨

∆

B2

}



224 Mehmet Baran

agree [1] p. 338.
5. X is T ′2 iff X is T ′0 and Pre T ′2 [1] p. 338.
6. X is ∆T2 iff the diagonal, ∆, is closed in X2 [4] p. 387.
7. X is ST2 iff ∆ is strongly closed in X2 [4] p. 387.
8. X is ST ′3 iff X is T1 and X/F is Pre T ′2 for all strongly closed F 6= ∅

in U(X) [1] p. 340.
9. X is ST ′4 iff X is T1 and X/F is ST ′3 for all strongly closed F 6= ∅ in

U(X) [1] p. 340.

1.2. Remark. (1) For the category TOP of topological spaces, all of
∆T2, T

′
2, and ST2 reduce to the usual T2, the Hausdorff condition. ST ′3

and ST ′4 reduce to the usual T3 (regular) and T4 (normal), respectively [1]
p. 339.

(2) In TOP if X is T1, then the notion of closedness and strongly
closedness are equivalent. Further, the notion of closedness reduces to the
usual one.

(3) If U : E → B is topological, where B is a topos with infinite
products and infinite wedge products, then Definition 1.1 makes sense.

Let ConLFCO (see [4] or [19]), Prord (see [3], [19] or [21]), and
PBorn(Born) (see [4] or [19]) be the categories of Constant Local Filter
Convergence Spaces, Preordered Spaces, and Prebornological (Bornologi-
cal) Spaces, respectively.

2. Compact objects

In this section, we introduce (strongly) closed and (strongly) proper
morphisms, and the notion of (strongly) compact objects in topological
categories over Set. Also, we give the characterizations of these notions for
the above mentioned categories, and we use this to show that some well-
known important results in general topology involving compactness and
separation properties are not valid, in general, in an arbitrary topological
category over Set. Further, we generalize some results to a topological
category and prove them.

Let U : E → Set be topological, 1 be the terminal object, and f :
X → Y be a morphism in E.

2.1. Definitions.
1. f is said to be closed iff the image of each closed subobject of X is a

closed subobject of Y (subobject means an initial mono lift).
2. f is said to be strongly closed iff the image of each strongly closed

subobject of X is a strongly closed subobject of Y .
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3. f is said to be proper (or perfect) iff the morphism f × id : X ×Z →
Y × Z is closed, for every object Z in E where id is the identity
morphism of Z onto itself.

4. f is said to be strongly proper iff the morphism f×id : X×Z → Y ×Z
is strongly closed, for every object Z in E where id is the identity
morphism of Z onto itself.

5. X is compact iff the morphism X → 1 is proper.

6. X is strongly compact iff the morphism X → 1 is strongly proper.

2.2. Remarks. (1) For the category TOP of topological spaces, each
of closed and proper morphisms, and compactness reduces to the usual
ones [7] p. 97 and 103.

(2) In TOP if X is T1, then the notion of closedness and strongly
closedness are equivalent and consequently proper and strongly proper
maps agree.

(3) If U : E → B is topological, where B is a topos with infinite
products and infinite wedge products, then Definition 2.1 make sense.

(4) Since the notions of closedness and strongly closedness are, in
general, different notions (see [4] p. 393), it follows that the notion of
compactness and strongly compactness are different, in general.

(5) For an arbitrary topological category, in general, it is not known
whether the used closure in 1.1 is a closure operator in the sense of
Dikranjan and Giuli [10] or not. However, it is shown, in [6], that the
notions of closedness and strongly closedness that are defined in 1.1 form
appropriate closure operators in the sense of Dikranjan and Giuli [10]
in the case the category is one of the categories of convergence spaces ([4]
or [21]), ConLFCO, Born, and Limit spaces.

Let U : E → Set be topological and 1 be the terminal object in E.
Then 1×X is isomorphic to X for all objects X in E.

Thus, we get:

2.3. Lemma. (1) Every proper morphism in E is a closed morphism.

(2) Every strongly proper morphism in E is a strongly closed mor-
phism.

Proof. In Definition 2.1, let Z be the terminal object and the result
follows.
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2.4. Lemma. (1) If f : X → Y and g : Y → W are (strongly) closed,
so is g ◦ f .

(2) If f : X → Y and g : Y → W are (strongly) proper so is g ◦ f .

Proof. (1) follows immediately from Definition 2.1. To prove (2) let
Z be any object in E. Note that (g ◦ f)× id = (g × id) ◦ (f × id) and by
(1), the result follows.

2.5. Lemma. Let I be a finite set and for i ∈ I let fi : Xi → Yi be a
morphism in E. Let X = X1 × X2 × · · · × Xn, Y = Y1 × Y2 × · · · × Yn,
and let f : X → Y be the product morphism (xi) → (f(xi)). Then if each
of the fi is (strongly) proper, then f is (strongly) proper.

Proof. By induction it is enough to consider the case where I =
{1, 2}. Suppose that f1 and f2 are (strongly) proper, and let Z be any
object in E. Note that f1×f2×idZ is the composition of idX1 ×f2×idZ and
f1× idX2 × idZ . These two morphisms are (strongly) closed by hypothesis.
Hence, by 2.4 and 2.1, f = f1 × f2 is (strongly) proper.

2.6. Lemma. If Xi, i = 1, 2, . . . , n, is (strongly) compact, then so is
X = X1 ×X2 × · · · ×Xn.

Proof. Xi is (strongly)compact implies the family of morphism Xi

→ 1 is (strongly) proper, i = 1, 2, . . . , n. By 2.5, we get the result.

2.7. Lemma. If X is (strongly) compact and Y is any object in E,
then the projection π2 : X × Y → Y is (strongly) proper.

Proof. We may identify Y with 1 × Y and π2 with the product of
X → 1 and idY : Y → Y , both of which are (strongly) proper. The result
follows from 2.5.

2.8. Lemma. (1) Let X = (B,K) be in ConFCO. ∅ 6= F ⊂ B is (str.)
closed iff for each a /∈ F and for any α ∈ K, α

⋃
[F ] is improper or α 6⊂ [a]

[4] p. 391.

(2) Let X = (B,F) be in ConLFCO, PBorn or Born. ∅ 6= F ⊂ B is
closed iff F = B [4] p. 391–392.

(3) Let X = (B,F) be in ConLFCO, PBorn or Born. ∅ 6= F ⊂ B is
always strongly closed [4] p. 391–392.

(4) Let X = (B, R) be in Prord. ∅ 6= F ⊂ B is closed iff for any x ∈ B
if there exist a, b ∈ F such that xRa and bRx, then x ∈ F . The proof
follows from the Definition 1.1 and [3].

(5) Let X = (B, R) be in Prord. ∅ 6= F ⊂ B is stongly closed iff
foreach x ∈ B if there exists a ∈ F such that xRa or aRx, then x ∈ F . It
follows from the Definition 1.1 and [3].
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(6) Let X = (B,F) be in ConLFCO, PBorn or Born. X is ∆T2 iff B
is a point or the empty set [4] p. 392.

(7) Let X = (B,F) be in ConLFCO, PBorn or Born. X is always
ST2 [4].

2.9. Lemma. Let X = (B, K) and Y = (A, L) be in ConFCO or
Prord. If f : X → Y is epi and initial, then f is (strongly) closed.

Proof. Let X and Y be in ConFCO. Suppose ∅ 6= F ⊂ B is closed
in X. Suppose also for any a /∈ f(F ) and for any α ∈ L, α ⊂ [a]. It
follows that there exists b ∈ B such that f(b) = a and f−1α ⊂ f−1[a] =
[f−1f(b)] ⊂ [b]. Since f is epi, f(f−1α) = α ∈ L and so f−1α ∈ K (since
f is initial). Since F is (strongly) closed, by 2.6, f−1α

⋃
[F ] is improper.

Note that by [2] p. 98, f(f−1α
⋃

[F ]) ⊃ f(f−1α)
⋃

[f(F )] ⊃ α
⋃

[f(F )]
and consequently α

⋃
[f(F )] is improper. Hence, by 2.8, f(F ) is (strongly)

closed in Y . The proof for Prord follows easily.

2.10. Lemma. Let X = (B,F) and Y = (A,G) be in PBorn or Born.
Then,

(1) f : X → Y is closed iff f is epi.

(2) f : X → Y is always strongly closed.

Proof. It follows from 2.1 and 2.8.

Let 1 be the terminal object in E. Then 1 × X is isomorphic to X
for all objects in the above categories, by 2.9 and 2.10, the projections are
closed. Hence, in view of this and 2.1, we have

2.11. Corollary. In these categories, we have

(1) f : X → 1 is (strongly) proper.

(2) X is always (strongly) compact.

(3) Let f : X → Y be in ConLFCO, PBorn or Born. Then f is
proper iff f is closed.

2.12. Lemma. Let X = (B,F) be in PBorn. Then X is T ′2 iff X ∈
Born.

Proof. Suppose X is T ′2 and V ⊂ U with U ∈ F . If V = U , then
V ∈ F . If V 6= U , then let W = V 2

∨
(U − V )2. Since X is T ′2, by 2.1, it

follows easily that V ∈ F , i.e., F is hereditary closed. Hence X ∈ Born.
Suppose X ∈ Born. By Lemma 1.6 of [4] p. 385, X is T ′0. By 2.1, it
remains to show that X is Pre T ′2. This can be done easily by using the
assumption, initial and final lifts in PBorn (see [4]), and 2.1).
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2.13. Proposition. For E = TOP , it is well-known that:

(1) Every compact subset of a Hausdorff space is closed [7] or
[20].

(2) Let X be a topological space and R be an equivalence rela-
tion on X. If the canonical f : X → X/R is proper, then R
is closed and X/R is T2 [7] p. 105.

(3) Every continuous function f of a compact space into T2 space
is closed [7] p. 87.

(4) Every compact Hausdorff space is T3 and T4 [7] or [20].

(5) Every normal space, i.e., T4, is a Tychonoff space [20].

(6) Every Tychonoff space is T3 [20].

We now show that the above well-known results are not valid, in
general, in an arbitrary topological category over Set.

2.14. Remarks. (1) Let B = {a, b} be a two-point set and F be the
discrete structure on B. Note that X = (B,F) ∈ PBorn is ST2 by 2.8 and
T ′2 by 2.12. By 2.11, a subset {a} of X is compact but it is not, by 2.8,
closed. This shows 2.13 (1) does not hold in PBorn.

(2) Let Z be the set of integers, (Z,F) be a discrete object in (PBorn)
or Born, i.e. F = {C : C is a (nonempty) finite subset of Z}, R be the
equivalence relation on Z defined by xRy iff x ≡ y (mod 2), and f the
canonical morphism (Z,F) → (Z/R,F ′), F ′ the quotient stucture. By
2.11 (3) f is proper but (Z/R,F ′) is not ∆T2 by 2.8, and R is not, by 2.8,
closed in X. This shows 2.13 (2) does not hold in PBorn and Born.

(3) In PBorn, by 2.8 and 2.12, ∆T2 implies T ′2 and T ′2 implies ST2 but
the converse of each implication is not true, in general. For example, (Z,F)
in (2) is T ′2 by 2.12 but it is not ∆T2 by 2.5. Let B = {C, {1, 2, 3, . . . } : C is
a nonempty finite subset of Z}. Then by 2.8, (Z,B) in PBorn is ST2 but it
is not T ′2 by 2.12 since the set {3, 4, 5, . . . } ⊂ {1, 2, 3, . . . } and {3, 4, . . . } is
not in B. Let LFCO denote the category of local filter convergence spaces
([4], [19] or [21]). Then by 3.14 and 3.15 of [4] and 2.9 of [5], we have T ′2
implies ST2 and ST2 implies ∆T2 but the converse of each implication is
not true, in general.

(4) Let R be the set of real numbers, (R,F) be a discrete object in
PBorn, and (Z,F) be in (2). By 2.8 (7), (R,F) is ST2 and by 2.11 (2)
(Z,F) is compact. However, the inclusion morphism f : (Z,F) → (R,F)
is not closed by 2.10 (1).This shows 2.13 (3) is not valid in PBorn.
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2.15. Lemma. Let X = (A, K) be in ConLFCO.

(1) X is T ′2 iff X is discrete [5].
(2) X is ST ′3 iff for any filter α ∈ K either F ∈ α for all nonempty

subset F of A or α contains a finite subset, U of A [5].
(3) X is ST ′4 iff for any filter α ∈ K either F

⋃
F ′ ∈ α for any

disjoint subsets F and F ′ of A or α contains a finite subset
U of A [5]

2.16. Lemma. Let X = (B,R) be in Prord. X is ∆T2, ST2, T
′
2, ST ′3

or ST ′4 iff X is discrete, i.e., if xRy, then x = y.

Proof. If X is discrete, then clearly, by 2.8, ∆ is (strongly) closed
and by 1.1, X is ST2 and ∆T2. Suppose X is ∆T2 and xRy. Then clearly
(x, y)R2(y, y) and (x, x)R2(x, y), where R2 is the product strucrure on B.
Since ∆ is closed, by 2.6, (x, y) ∈ ∆, i.e., x = y. Similarly, if X is ST2,
then X is discrete. The proof for T ′2 follows from 1.1 and Theorem 2.10 of
[3] p. 198. The proof for ST ′3 and ST ′4 follows easily from 1.1 and Theorems
2.3 and 2.8 of [3] p. 196–197.

2.17. Remark. Let R be the set of real numbers and K = F (R), the
set of all filters on R, and X = (R,K) be in ConLFCO. By 2.10 and 2.8,
X is compact and ST2 but X, by 2.12, is not ST ′3 and ST ′4. This shows
2.13 (4) does not hold in ConLFCO.

3. Tychonoff objects

We now define three various forms of Tychonoff objects for an arbi-
trary topological category over Set. Furthermore, we characterize each of
them for the categories that are mentioned in Section 1 and investigate
the relationships among them.

3.1. Definitions.

1. X is ∆T7/2 iff X is a subspace of a compact ∆T2.

2. X is ST7/2 iff X is a subspace of a compact ST2

3. X is T ′7/2 iff X is a subspace of a compact T ′2

3.2. Remark. For the category TOP of topological spaces, all of ∆T7/2,
ST7/2, and T ′7/2 are equivalent and reduce to the usual T7/2 Tychonoff, i.e.,
completely regular T1, spaces [20], 1.2, and 2.2.
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3.3. Theorem. (1) Let X = (B,K) be in ConLFCO.

(a) X is ∆T7/2 iff B is a point or the empty set.

(b) X is always ST7/2.

(c) X is T ′7/2 iff X is discrete.

(2) Let X = (B,F) be in PBorn.

(a) X is ∆T7/2 iff B is a point or the empty set.

(b) X is always ST7/2.

(c) X is T ′7/2 iff X is hereditary closed, i.e., X ∈ Born.

(3) Let X = (B, R) be in Prord. Then X is ∆T7/2, ST7/2 or T ′7/2 iff

X is discrete.

Proof. (1) Combine 3.1, 2.8, 2.10, and 2.14. (2) It follows from 3.1,
2.8, 2.11, and 2.12. (3) It follows from 3.1, 2.11, and 2.15.

3.4. Remarks. (1) Let X = (B,K) be in ConLFCO. By Theorem 2.25
of [5] if X is T ′2, then the quotient space X/F is also T ′2 for all nonempty
subsets F of B. Let B = {a, b} be a two-point set and K be the discrete
structure on B, i.e., K = {[a], [b], [a] ∩ [b], [∅]}. By 2.14 of [5], it follows
that X = (B,K) is ST ′3 and ST ′4 but by 3.3(1) X is not ∆T7/2. This shows
that 2.13 (5) does not hold in ConLFCO.

(2) Let X = (R,K) be the example in 2.17. By 3.3 (1), X is ST7/2

but it is not ST ′3. This shows that 2.13 (6) does not hold in ConLFCO.

(3) Generally speaking, ∆T7/2, ST7/2, and T ′7/2 are independent of
each other. See 2.14 (3) and 3.3 (2).

(4) In all of the above categories, compactness and Tychonoff spaces
are hereditary, productive and divisible (i.e. the quotient of compact or
Tychonoff space is a compact or Tychonoff space, respectively).

3.5. Remark. Let X = (B,K) be any object in ConLFCO, PBorn,
Born or Prord. If X is ∆T7/2, ST7/2 or T ′7/2 and F be a nonempty closed
subspace of X, then every morphism f : F → (R, L), where R, is the set
of real numbers and L is any constant local filter convergence structure,
(pre)bornology or preordered relation on R, respectively, has a continuous
extension g : X → (R, L). The proof for ConLFCO, PBorn and Born
follows easily from 2.8 and 3.3. Let X be in Prord and define g(x) = f(x)
if x ∈ F and g(x) = 0 if x /∈ F . By 3.3, the result follows.
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4. Compact pairs

In this section, we introduce the notion of compact pairs in an arbi-
trary topological category over Set which generalizes the notion of compact
pairs that is given by Giuli [11] in TOP. Furthermore, some results con-
cerning this concept are proved.

Let E be a topological category over Set, and “T2” denote any of
T ′2, ST2, and ∆T2 that are defined in 1.1. T2E,CT2E, and SCT2E will de-
note the category of T2-objects (spaces), compact T2-objects, and strongly
compact T2-objects, respectively.

4.1. Definition. Let K and D be two non-empty full subcategories of
T2E. We say that K and D form a compact pair (K, D) if

(i) An object X is in K iff, for each object Y in D, the projection
π2 : X × Y → Y is closed;

(ii) An object Y is in D iff, for each object X in K, the projection
π2 : X × Y → Y is closed.

Then K is called the compact class and D the discrete class of the
compact pair (K, D).

4.2. Remark. (1) For E = TOP, the category of topological spaces,
we get Definition 2.1 of Giuli [11].

(2) Let E be a topological category. By 2.3 and 2.7, both of (CT2E,
T2E) and (SCT2E, T2E) are compact pairs, where T2 is ∆T2, ST2 or T ′2.
Note that this generalizes the well-known compact pair (CT2TOP, T2TOP ).

4.3. Theorem. Let (K, D) be a compact pair.

(i) If D is finitely productive, then X × Y is in K whenever X
is in K and Y is in both K and D;

(ii) If X is in CT2E, and Y is in K, then X × Y is in K;

(iii) If X is in SCT2E and Y is in K, then X × Y is in K.

Proof. Suppose that X and Y are in K, and Y and Z are in D.
Since D is finitely productive, Y ×Z is in D. It follows that the projections
π2 : X × Z → Z and π23 : X × (Y × Z) → Y × Z are closed.

By 2.4, π3 : X × Y ×Z → Z, which is the composition of π2 and π23,
is closed, where π23(a, b, c) = (b, c). Hence, X × Y is in K.

(ii) If X is in CT2E, then, by 2.7, π23 : X × (Y × Z) → Y × Z is
closed. If Y is in K and Z is in D, then, by 4.1, π2 : Y ×Z → Z is closed.
It follows from 2.4 that the composition π2◦π23 is closed and concequently
X × Y is in K. The proof for (iii) is similar to the proof of (ii).
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4.4. Corollary. In Theorem 4.3, if E = TOP, then we get Proposition
2.11 of Giuli [11].

Let (A,≤) be the conglomerate of all non-empty subclasses (full sub-
categories) of T2E ordered by inclusion. For each A and B in A set
F (A) = {X ∈ T2E: for each Y in A, π2: X × Y → Y is closed} and
G(B) = {Y ∈ T2E: for each X in B, π2 : X × Y → Y is closed}.

4.5. Theorem. ((A,≤), F, G) is a Galois connection (cf. [17] p. 93).
Moreover, F (A) is a compact class and G(B) is a discrete class for each A
and B in A.

Proof. It is easy to see that the assignments A → F (A) and B →
G(B) are order reversing functions and A ≤ G(F (A)) and B ≤ F (G(B))
for each A and B in A, i.e., F and G form a Galois connection. The fact
that F (A) is a compact class and G(B) is a discrete class follow from 4.1.

4.6. Corollary. In Theorem 4.5, if E = TOP, then we get Theorem
2.2 (a) of Giuli [11].

4.7. Lemma. Let E be any of ConFCO, ConLFCO, PBorn, Born or
Prord. Then every compact class K and every discrete class D are both
reflective and coreflective in T2E, where T2 is T ′2, ST2 or ∆T2.

Proof. It follows easily from 2.9, 2.10, 2.12, 2.15, 2.16, and 4.1 that
both K and D are closed under the formation of “T2” quotients, subspaces,
coproducts, and products. Also, K and D are isomorphism-closed. By
Theorem 1.11 and Lemma 1.14 of [21], we get the result.

4.8. Definition. Let A be a class (full subcategory) of E containing
the terminal object 1. A morphism f : X → Z is said to be A-proper if
f × id : X × Y → Z × Y is closed for each Y in A.

4.9. Remark. In 4.8, if E = TOP, then we get Definition 3.1 of [11].

4.10. Lemma.

(1) The composition of A-proper morphisms is A-proper.

(2) X is in F (A) iff the morphism f : X → 1 is A-proper.

Proof. (1) follows from 2.4. Note that 1× Y is isomorphic to Y for
each Y in E and f × idY = π2. By 4.1 and 4.8, we get (2).

4.11. Corollary. In 4.10, if E = TOP, then we get Proposition 3.3
(b) and (c) of Giuli [11].

Following Giuli [11] we say that a class H of T2E is (A)-left-fitting
if whenever f : X → Z is an A-proper morphism and Z is in H, then X
is in H.
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4.12. Lemma. Every compact class K is G(K)-left-fitting.

Proof. If f : X → Z is G(K)-proper, then, by 4.8, f × idY is closed
whenever Y is in G(K). If Z is in K, then, by 4.1, π2 : Z × Y → Y is
closed for each Y in G(K). Hence, for each Y in G(K), π2 ◦ (f × idY ) =
π2 : X × Y → Y is closed, i.e., X is in K.

4.13. Corollary. In 4.12, if E = TOP, then we get Proposition 3.8 of
Giuli [11].
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