On complementary inequalities

By ZS. PALES (Debrecen)

1. Introduction

In 1914 ScHwEeITZER [15] proved the following so-called complementary in-
equality for the arithmetic and harmonic mean values:

Let O<m=x,=M, k=1,..,n Then

1 = )1 "l) (M +m)?
;é"-‘] iy ST s

Using this inequality an inequality complementary to the Cauchy—Bunya-
kowski—Schwarz inequality can easily be verified (see KANTOROVIC [11]).

Generalizing Scheitzer’s result SPECHT [14], and CARGO—SHISHA [5] obtained
a complementary inequality for the ratio of power means.

In [3] BECK obtained remarkable results concerning complementary inequalities
for quasiarithmetic means (HARDY—LITTLEWOOD—POLYA [10]).

In this paper we solve the complementary comparison problem for the deviation
means defined by DAROCzY [6, 7]. The class of deviation means contains as a special
case the class of quasiaritmetic means and the class of quasiarithmetic means with
weightfunction (BaJRAKTAREVIC [2], AczéL—DARr6czy [1]). So our results enrich
the theory of these two classes of means too.

2. Deviation means

Let 7S R be an interval.

The function E: I*-~R 1is said to be a deviation on I if it has the following
properties:

(E1) The function y~—E(x, y) is strictly decreasing and continuous on I for
each x¢l;

(E2) E(x, x)=0 for every xecl.

Let us denote by &(/) the set of all deviations on 1.

Let Ecé(l), x=(x;, ..., x,)€I", néN and let us consider the equation

2.1) 3 E(x,) = 0.

i=1
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n
By (El) the function e: y— > E(x;, y) is strictly decreasing. Using (E2)
i=1

e(min {x;, ..., x,}) =0 = e(max {x;, ..., X,})
thus (2.1) has a unique solution y=y, satisfying the inequality
min {Xgs s ) = Yo S 108X {Xs 000 X )

Definition 1. Let Ec&(I), x=(xy, ..., x,)€I", neN. Then the unique solution
¥o of the equation (2.1) is called the deviation mean of x,, ..., x,€I and is denoted
by M, ;(x) or M, g(x;, ..., X,).

Let Q(7) be the set of all real valued functions which are continuous and
strictly monotonously increasing on I. Furthermore let (/) denote the class of
positive real valued functions on 1. If @ecQ(I), feZ(I) then the function

(22 E(x,y) = E, ;(x,9) = f()(e(x)—0(»), (x,y€])

is a deviation on I. If x=(x,, ..., x,)€I", neN then we find that the unique solu-
tion y, of (2.1) for this deviation (2.2) has the form

(2.3) Yo= Wy g, ,(X) = M, o(X); = ¢“‘[_§ f(x;)qO(x,-)/gz i (x;-)]-

The quantity M, ,(x), defined by (2.3) will be called quasiarithmetic mean
with weightfunctioh (BAJRAKTAREVICH [2], AczEL—DARrOCzyY [1], Daroczy [6, 7)).
If f(x)= p=positive constant in (2.3) then we obtain the well-known quasiarithmetic
mean

(.4 Moo = 07 [+ o).

The theory of these means can be found in the book of HARDY—LITTLEWOOD—
P6LYA [10] (see also the books BECKENBACH—BELLMAN [4], MITRINOVIC [13]).

In the investigation of the complementary comparison problem of deviation
means we need the concept of weighted deviation mean, which has been introduced
and examined by DAROCZY—PALES [8].

Let Ec&(]), x, yel, 4€[0, 1] and let us consider the equation

(2.5) AE(x, D+(1—=AE(, 1) =0.

It is easy to check that (2.5) has a unique solution 7y¢7 lying between min {x, y}
and max {x, y}.

Definition 2. Let Ec&(I), x, y€l, A€[0, 1]. Then the unique solution 7, of the
equation (2.5) is called the deviation mean of x and y weighted by i and 1—4.
This quantity is denoted by M, x(x, y; 4, 1—2) or E(x, y; A).

If oeQl), fe?(I) and E, , is the deviation defined by (2.2) then for the
solution o€/ of (2.5) we will also use the notation M, ,(x, y; 4, 1 —2);.

We need the following results of DARGOCZY—PALES [8]:
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Lemma 2.1. Let Ecé(I), x, yel, A€[0, 1). The inequality

(2.6) WMy e(x, y; 4, 1=2) =1t

is valid if and only if the inequality

2.7 AE(x, )+(1-ADE(y.H) =0
is true.

Lemma 2.2, Let E<&(I) and x<y, (x>y) x, yel. Then the function
e: ;'-"'SDI}!.E(xa yi Ay 1""1)’ /16[0, 1]

is strictly decreasing (increasing) and continuous.

3. Complementary comparison of deviation means

Let 7SR be a compact interval.

Definition 3. The function H:I*-R is said to be a comparative function
on 7 if it has the following properties:

(H1) H is continuous on /2;

(H2) H(x, x)=k for every xe¢l, (X=constant);

(H3) (a) For each y¢I the function x—H(x, y) is strictly increasing;

(") For each xel the function y~—H(x, y) is strictly decreasing.

The set of all comparative functions on 7 is denoted by #(/).

Let E, Fe&(I). The deviation means generated by E and F are said to be
comparable if for every x€I", neN

(31) mn,f'(!)émn.ﬁ(x)'

On the comparison of deviation means DARGCZY—PALES [8] proved the following
result:

Theorem 3.1. Let E, Fc&(I). The inequality (3.1) holds for all xeI", neN if
and only if the inequality

(3.2) F(x, y)E(z, y) = F(z, y)E(x, y)

is satisfied for all x=y=z (x, y, zel).
For comparable deviation means (3.1) the problem of complementary compa-

rison is the following:
Let He#(I). Find the least upper bound

(3.3) Ky(E, F) = sup H(M, g (x), M, (X))
neEN

If I=[m, M] then by HI—3 we get K,(E, F)=H(M, m) thus K,(E, F) is
finite.

If in particular H(x, y)=0(x, y)e-;- and H(x, y)=D(x,y)=x—y then
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by the help of Ky(E, F) the following complementary inequalities can be obtained:
mtn,E(J) = KQ(E! F)mn,f"(v_t)s
M, £(x) = Kp(E, F)+M, ¢(x).

For quasiarithmetic means the complementary comparison problem was solved
by Beck [3] who proved the next result.

Theorem 3.2. Let I=[m, M), o, ycQI), HcH(I). Assume that the inequality
M, (x) = M, ,(x)
holds for all x€I", neN (which means that Yo~ is a convex function on 1). Then
x&:aﬂ" H(M, ,(x), M, ,(x)) = max H(M, y(m, M; 2, 1=2), My ,(m, M; },1-2)).
= 'neN
We also need the following lemma of CARATHEODORY (see EGGLESTON [9]).

Lemma 3.3. Let TS R", (n€N) be an arbitrary set. Assume that 0=(0,...,0)cR"
is in the convex hull of T. Then there exist n+1 points of T such that their convex
hull contains 0.

The following theorem is one of the main results of this paper.

Theorem 3.4. Let E, Fc&(I) be arbitrary deviations, and let Hex'(I) be
a comparative function. Then

(3.4 Ky(E, F) = sug’ H(M, z(x, y; 4, 1=2), My £ (x, y; 4, 1—12)),
x, ¥y
Ae[o,1]

where Ky(E, F) is the quantity defined by (3.3).

PROOF. Let us denote the right hand side of (3.4) by K,. First we prove the
inequality K, (E, F)=K,.
Let x=(xy, ..., x,)€l", neN and

e=M, (x), f=M, X
Defining the mapping 7T': I—-R? by
T(x) = (E(x, e), F(x,[)), (x€I)

we get -l— T(xQ:%[Z E(x;, e), Z“' F(x,, f )] =(0,0)=0 thus the convex hull
i=1 iml i=1
of the set T(/) contains 0.
Hence by Lemma 3.3 there exist z,, z,, z;€/ such that 0 is in the convex hull

of T(zy), T'(zy), T(z;) that is
064 = {4 T(2)+24:T(20) + 23T (23)| 245 A2, A3 = 0, Ay +As+43 =1}
Let ty=sup {r|(r,0)€4}. Then #,=0 since 0¢4, and there exist x, y€{z,,z,,25},

A€[0,1] such that
(t, 0) = AT(X)+(1—2)T ().
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Consequently
AE(X, 8)-§-(1 _)’)E(ys e) =h= 09

AF(x, f)+(1=AF(y, f) = 0.
By Lemma 2.1. we have

mtn.E(E) =e= 9:'12.E.'(x’ J’, 2’! l_l)!

: H.F(J) - f — ME.F(-xy Y '19 l_)*)'
Hence

HM, £(x), M, p(x)) = HM g (x, p; 2, 1=2), My p(x, y; 24, 1-2)) = K,

and thus K,(E, F)=K,. Now we prove the reversed inequality.
Let £=0 be arbitrary. Then there exists x,, yo€/, 4,€[0, 1] such that

2 A
K, = H(’m:.s(xo,}’o; Aoy 1=120), My, ¢ (X0, Yo, 295 1"3-0))4'5—
Let 4€[0, 1] and
h()') = H(\Dlz.E(xlh Yo )H 1_’1)1 EDIR.F(xOv Yos }'! 1_1))-

By Lemma 2.2. and property (H1) the function A—/A(/1) is continuous on [0, 1].
Thus there exists a rational number Z,€[0, 1] with

(o)~ h ()| <5

therefore
Ky = h(Zp) +e.

If Jy=m/n, 0=m=n, m,neN we set
X = (lx[h ooy xq’ :V(ls ks J’q)EI"-
M, £(x) = My, £ (X0, Vo3 40, 1 —4p),
gRu.F(l‘) = gnz.r(xus Yos 10!' 1_10)'

Hence H(M, x(x), M, ;(x))=h(%) and K,=h(1)+e=K,(E, F)+e. Since & was
arbitrary we get K,=K,(E, F) which completes the proof. O

It is clear that

Remarks. (1) In Theorem 3.4. we have not assumed that the means involved are
comparable. If we want to calculate Ky(E, F) as a maximum of a function of
one variable (as this was the case in Theorem 3.2.) then we shall need a further con-
dition very similar to condition (3.2) (which was the criterion of the comparability
of the means).

(2) In the proof of Theorem 3.4. only the properties (H1) and (H2) of H were
used. Let H:I*-~R be a continuous function such that for every fixed value
xel (or yeI) the function y—H(x, y) (or x—~H(x, y)) is monotonously increasing
or decreasing. Then (3.4) is valid for this function H, too (provided that E, Fe&(I)
and the definition of Ky, (E, F) is extended to this function H by (3.3)).
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Theorem 3.5. Let I=[m, M]C R, E, Fc&(I), HeH(I). Assume that
(3.5) E(M, E(x, y; %))+ F(m, F(x, y, )) = E(m, E(x, y; D))F(M, E(x, y; 2))
holds for every x, yel, 2€[0,1]. Then
(3.6) sup H(E(x, y; 2), F(x, y; 7)) = max H(E(m, M; %), E(m, M; 2)).

x,yel
A€[0,1]

ProoF. Let us denote the right and left hand sides of the inequality (3.6) by
K, and K,, respectively. The inequality K =K, is obvious thus it is enough to
show that K,=K,.

For x, yel, A€[0,1] define p by

F(M, F(x, y; 2)

S P="TFn, F(x,(y; 0)— F(m, 1)L°(x, 70
By (3.5) and the properties (E1), (E2) we get that p€[0, 1] and
E(M, E(x, y; %)
25 P E(M, E(xfy; 7))—E(m, })f(x, yvid)
From (3.7) and (3.8) we obtain

pF(m, F(x, y, ))+(1—p)F(M, F(x, y; 1)) =0,

PE(m, E(x, y; 1))+ (1—p)E(M, E(x, y; ) = 0.
Using Lemma 2.1. we get
(3.9) F(x, y; 2) = My z(m, M; p, 1 —p) = F(m, M; p),
(3.10) E(x, y; 2) = My, z(m, M; p, 1—p) = E(m, M; p).

By the property (H3) this means that
H(E(x, y; %), F(x, y; 2)) = H(E(m, M; p), F(m, M; p)) = K,

therefore K, = K.

Remarks. (1) It can be shown that the inequality (3.5) is not only sufficient
but also necessary for the existence of such a p¢[0, 1] for which (3.9) and (3.10)

simultaneously hold.
(2) From (3.5) we obtain the condition (3.2) if we write y instead of x and
substitute x=m, z=M. This shows that (3.5) is a stronger condition than (3.2).

Theorem 3.6. Let I=[m, M]S R, E, Fe&(I). In order that (3.5) be valid for
x, yel, A€[0, 1] it is necessary and in the case E=E, , F= F,.,,((o, e, g, h?(1))
also sufficient that

(3.11)

E(m, M) &t E(x, M)
F(m, M)~ F(x, M)’
E(x,m) _ E(M, m)

F(x,m) — F(M, m)"

(3.12)
hold for every xe(m, M).
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PROOF. Necessity.
Let x¢(m, M) and substitute y=M in (3.5). Then for A€(0, 1)

AE(x, E(x, M; ))+(1=)E(M, E(x, M; 2)) = 0,
AF(x, F(x, M; ))+(1=)F(M, F(x, M; 2)) = 0.

Hence
(3.13) E(M, E(x, M; 1)) = % E(x, E(x, M; 2)),
(3.14) F(M, E(x, M; 2)) = % F(x, F(x, M; 2)).

From (3.5), using the properties (El) and (E2) and applying the relations (3.13) and
(3.14), we get

E(m, E(x, M; %) _ E(M, E(x, M; ) _ E(x. E(x, M; 2))
F(m, F(x, M; %)) ~ F(M, F(x,M; )  F(x, F(x, M; )’

By Lemma 2.2.

(3.15)

limE(x, M;)) =M, limF(x, M;}) =M.
A=0 A0

Taking the limit 2-0 on both sides of the inequality (3.15) we get

E(m, M) _ E(x, M)
F(m, M) = F(x, M)

which is exactly (3.11). (3.12) can be proved similarly (starting with the substitution
y=m in (3.5)).

Sufficiency.
Let x, y€l, A€[0, 1] be arbitrary. Then

oy — (28X (X)+(1 =) g(»)e(y)
£ 70 =0 (TR e

and
cay — =1 (AR () + (A =DR(P)Y(Y)
Fe,yi )=y e Ji

A simple calculation gives

E(M,E(x,y; M) _ E(M,m) AE(x, M)+(1=D)E(p, M)
E(m,E(x,y;2))  E(m,M) AE(x,m)+(1—2A)E(y, m)

and
F(M, F(x,p; 2)) _ F(M,m) AF(x, M)+(1—2)F(y, M)

F(m, F(x, y; %) = F(m, M). AF(x, m)+(1—=A)F(y, m)
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Hence instead of (3.5) it is enough to show that

(3.16)
F(M, m) Z.F(x, M)+(1—2A)F(y, M) E(M, m) LE(x, M)+ (1—-A)E(y, M)
F(m, M) AF(x, m)+(1—=2)F(y, m) " E(m, M) AE(x, m)+(1—A)E(y, m)

Let x;=x, xg=y, /=4, Aa=1—/ and i,jc{l,2} be arbitrary. Then by the
conditions (3.11) and (3.12) we have

E(m, M)F(x;, M) = F(m, M)E(x;, M)

and
E(x;, m)F(M, m) = F(x;, m)E(M, m).

Taking the product of these inequalities we obtain
3.17) E(m, M)F(M, m)E(x;, m)F(x;, M) =
= F(m, M)E(M, m)F(x;, m)E(x;, M).

Multiplying the inequality (3.17) by 4;4; and adding the inequalities obtained
we have

E(m, M)F(M, m) Z’ AE(x;, m) _f’ AF(x, M) =

= F(m, M)E(M, m) 22' 4y F(x;, m) ZE'AIE(xi, M).
Jj=1 i=1

Rearranging this inequality we get exactly the relation (3.16) which was to be shown. (J

Corollary 3.7. Let I=[m, M), ¢, yeQI), g, hcP(I). Assume that the devia-
tions E=E, ,, F=E, , satisfy the inequalities (3.11) and (3.12) for each x&(m, M).
Then for any comparative function HecH(I)

Ku(Ep,g Eyn) = max H(E, ,(m, M;7), Ey (m, M; 7).
Remark. Let in the above corollary be g(x)=g, i(x)=h constants and Jyop !
a convex function on /1. It is easy to verify that E=E,, and F=E,, satisfy

the conditions (3.11) and (3.12). Thus we obtain Theorem 3.2. as a consequence
of Theorem 3.6.

4. Complementary comparison of homogeneous quasiarithmetic
means with weightfunction

Let I=R,=(0, =), pcR,) and let f¢2(R,) be a continuous function.
The mean M, ,(x); (x€R”, neN) is said to be homogeneous if

rMn,o(J)f = M,,.,,(Qc)_r

holds for every teR., x€R", neN.
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AczfL—DARr6ezy [1] proved that the mean M, ,(x), (x€R%, n€N) is homo-
geneous if and only if it has one of the following forms:

Z’xﬂ-v v
M, . (x), = - , a#0,
&
Zn'xf In x;
M, o(x), = exp | =
&

where a, pcR are arbitrary.
Let a, p€R, x, y, z¢R, and

. fxP(x*—yDfa, if a0,
4.1) E,,(x,») = {x"(lnx—ln B W wwl
. _ [(z#¥P—2zP)|a, if a #0,
Uk Ja.p(2) = {z’ In z, if a=0.
It is easy to see that E, , is a deviation on R,
x
@) B =B, (S0) = i, (E), rery)
and
mI;v;,]f:.,"(:K) - Mn,au)p) (EER:-) REN).
Define g, by
—a/(1-2z7°), a#0, z€R,\({1},
(4.49) 2,(z) = {—1/Inz, a=0, zeR,\({1},
—al2, z=1, a€R,
and let
(4.5) has(2) = 8,(2)—ga(2).

We need the following results of Losoncz [12]:

Lemma 4.1. The function h,, defined by (4.5) is continuous on R, (even at
z=1!) for all a,beR andis

strictly increasing, if |a|=|b|,

constant, if |a|=|b|,

strictly decreasing, if |a|<|b|.

Theorem 4.2. Let a, b, p, g€R,
(4.6) (@a—b)}*+(p—q)* =0, (a+b)y+(a+p—q)*=>0,
m,MER,, m<M and A = m/M.

Then the following conditions (i), (ii), (iii) are equivalent:

6!
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(i) For every x¢[m, M]", neN,
(4°7) Mn.c(i‘)p — Mn.b(x)q;

(ii) For every ze€[A, 1/A],

(4°8) jn.p(z) = jb,q(z);
(iii) If |a|=|b| then

(4.9) hoy(1) <g—p and 1=
If |a|=|b| then
(4.10) hos(1) < g—p and

Jb.q(1/4)
Ja,p(1/4)°

fb.q(A) — 1
Jap(4)

Remark. The inequalities (4.6) exclude the identity
M, .(x), =M, (x),, (x€[m, M]", nEN).

Theorem 4.3. Let a,p,b,qcR, m, MecR,, m<M and A=m/M. In order
that the deviations E=E, ,, F=E, , satisfy (3.11) and (3.12) for every xc(m, M)
it is sufficient and necessary that

(4.11) g—p = max {h,,,(4), h,,,(1/4)}.
Proor. Use (4.3) and substitute y=% and y=% in (3.11) and (3.12), re-

spectively. Then we get the inequalities

4.12 Jna(A) _ Jn.a(¥) 4,1),
o T @) =T, TEAD

jb.q(y) - qu(llA)
Qs o e 17

which are equivalent to (3.11) and (3.12) respectively.

Let
Fii ozt {aleNaall FHNE
then (4.12) and (4.13) can be written as
4.19) JA) =/0), ye4,1),
(4.15) J) =/(1/4), ye(l,1/A).

A simple calculation shows that f is continuously differentiable on (0, =) and

S@) = (f(2)/z)(q—p—hap(2)).

If |a|=|b| then by Lemma 4.1. h,, is strictly increasing. If g—p<h, ,(1/4)
then there exists an ye€(l, 1/4) such that g—p<#h(y) also holds, but then f'(z)<0
for ze(y, 1/4) hence f(y)= f(1/A). This contradicts to (4.15). So for (4.15) to hold
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it is necessary that g—p=h, ,(1/4)=h, ,(4). Thus (4.11) is a necessary condition.
In the cases |a|=|b|, |[a|<|b| the necessity of (4.11) can be proved similarly.

If (4.11) holds then f’(z2)=0 for z¢(A, 1/4) that is f is monotonous and in-
creasing. Therefore (3.11) and (3.12) are valid for all xe(m, M). O

Remark. If the inequality (4.11) holds then f is increasing, hence by f(1)=1
f(D=1, z¢[4,1),
f(@ =1, ze(l,1/4].

Thus the condition (ii) of Theorem 4.2. is satisfied hence (4.7) is valid for every
x€[m, M]", neN.
Using Theorem 4.3. and Corollary 3.7. we get

Corollary 44. Let m, McR,, m<M, A=m/M and HecH(m, M]). Let
further a, b, p, gc R and assume that (4.11) holds. Then

(i) For every x¢€[m, M]", neN the inequality (4.7) is valid.
(1)
- Ky(Ey, g E,,) = 012?;:1 H(M,_,(m, M;i1-2),, M, ,(m, M; 4, 1—1)_,).

5. Other results
Let m, McR., m<M, A=m/M and a,b, p, gcR be real numbers for which
the inequality (4.6) is satisfied. Suppose that (4.7) is valid for every x¢c[m, M]", neN.

Theorem 5.1. Let He#(R,) be a function partially differentiable with respect
to both of its variables. Assume that |a|=|b| (la|=|b|) and for every x=y, x, yeR,
the function
(5°1) R H(fx, Iy)s (IER+)

is increasing (decreasing). Then
Ku(Ep,qEa,p) = max, H(M,,(m, M; A, 1—2),, M, ,(m, M; A, 1-12),).
ProorF. We deal only with the case |a|=|b|, in the case |a|=|b| the proof

is similar.
By Theorem 3.4. and the homogeneity of the means

KH(Eb,qa Ea,p) - mif}:fg" H(Mz,o(x, ¥ ;-’ 1-—}.)‘!, Mz.a(xs Vs j'! 1_)'),0) e
0SA=1

-  sup HyMM[i,l;),,l—ﬁ.],yMg,,[i,l;l.l—i]]é
y q y P

= sup. H(yM,y(u, 1; 2, 1=2),, M, ,(u, 1;1=12),) = K.
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Using (4.7) and the monotonity of the function (5.1) we obtain
(5.2 Ko= sup HM-M,,(u, 1; 2, 1—2),, M- M, ,(u, 1; 2, 1—2),).
A

=usl
0=A=EL

The function of (u, A) standing behind the sup sign is partially differentiable,
hence the supremum is attained on the compact set [4, 1]1X[0, 1]. We show that
the maximum is attained at w=A. Suppose that the maximum is attained at an
interior point (up, 4)) of [A4, 1]X[0,1]. Then (u,,4,) satisfies the following
equations:

0
(5-3) a"‘; H(M' Mz_b(u, 1; j., 1";.):, M' Ms_a(u, 1; A, 1_"')9)|(lh-ln) = 0,

0
(5.4) 5 HM M, (u,1;2,1-2),, M- M, ,(u,1; A, 1“;').0)1(%.10) =0.

After simple calculations we obtain

dE, ,(u,1;2) _ ; Ja,p(4)

paz = Lo, (1 1; l)'(,luv+1—;.)(p,1u“+f+1—,z)’
0, ,(u,1;7) Loy APl i (1—2)jl ()
_—pau —Ea.?(us 1"D'(}.u"-f—l—).)(ﬂ.u“”-{-lp—},)'

Similar formulas hold for E,,. Using these relations and equations (5.3) and
(5.4) we get

Aqup 21425 (1—2g) jis, o (o) e Jv,q(Uo)

Agug T 4 20 (1=20)ja, p (o) Ja, p (o)

Thus
1= _ Jong () 1§+ 1= () U+
"‘0 jﬂ.p(un)j;,p(uﬂ) _j;.q(uo)j;,p (“0) .

It can easily be seen that

np@ = =20, (L), ) = e, (1)
and
1
ja.p(u) ‘j;.q(u) _jb.g(u)j;.p(u) — ;jb.q(“)ja,p(“)(q_p S ha.b(u)) .
Therefore
TR 5 L O
a5l )

’10 5 jb.q("ﬂ)j&,p(un) (ha.b(“o)_ Q+p) .
Since 4,€(0, 1) we have (1—2)/4,€(0, =) and by
A<uy<l, fb,q(“o) ja,p(“o) > 0.
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The condition (i) of Theorem (4.2) is satisfied hence j, , [:.,] =J,, p[ o] Thus

the equation (5.5) implies that
ha,b(“o) =>4g-—p.

By the condition (iii) of Theorem 4.2. g—p=h(1) thus
(5.6) ha,s () > h(1).

Because of |a|=|b| the function /4, , is increasing so for wy€(A4,1) the in-
equality (5.6) is not true. This contradiction shows that in (5.2) the maximum is
attained on the boundary of [A4, 1]1X[0, 1]. But for the place of the maximum
uy=1, iy=0, ;=1 cannot be valid, consequently u,=A. Hence

KH(EB,Q! Ea.p) = .,'I_:lgl H(Mz.b(m’ M; j-s 1")')11-: Mz.c(ms M; A; lﬂj')p)

The reversed inequality is obvious by Theorem 3.4.
Remark. 1If @cQ(R,) is a differentiable function h¢Q(R) then it is easy
to show that the function H: R% —~R defined by

H(x,y) = h(p(x)—o@(»)) x, ¥R,

is a comparative function on R,
It can also be proved that for every x, yER,, x= ¥ the function defined by

(5.1) is increasing if and only if the function x—x¢’(x) is increasing.

Corollary 5.2. Let /o= and zy be the root of the equation of second degree

Zy+ !
(5.7 Ja, p(A) (A% 2)(AP+94-2) = ji, (A)(AP+2)(4° P+ 2)
lying in (0, =). Then

sup Mus(®)y _ My, (4, 154, 1-45),
xElMﬁ:ﬂ“ Mn a(x)p M2,a(A$ 1, ;-u. 1‘-).0)’.

Proor. Let H(x, »)=0(x, y)=x/y, (x,y€R,). Then for x=y, x,y€cR
the function (5.1) is constant, hence by Theorem 5.1

M, (%), _ My, (4,1;1,1-0),
56?:2,2\!}" M,,a(x), =00 Bur oz M, ,(4,1;4,1-2),"

For A=0,i=1 the ratio standing behind the maxsign is equal to 1 and
for A€(0, 1) itis not less than 1, therefore the maximum is attained at a value
0<=J,=1 and there

0 M, ,(A,1;2,1-24),
0% My (A, 15 29, 1—1y),

Thus for zy=(1—14y)/2, we get exactly the equation (4.7).

=0.
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It can also be proved that (5.7) has in (0, =) exactly one root. [

Remark. If p=gq then (5.7) is an equation of first degree for z. In the case
p=q=0 we get the well-known complementary inequality for the ratio of power
means of SPECHT [14], CARGO-SHISHA [5].
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