Publ. Math. Debrecen 50 / 3-4 (1997), 249–256

On right π -duo semigroups and rings

By YASUYUKI HIRANO (Okayama)

Abstract. A semigroup or a ring is said to be right π -duo if every right ideal is a radical extension of some ideal. In this paper, we consider the properties of right π -duo semigroups and rings. We give examples of right π -duo semigroups and rings.

1. Introduction

A semigroup is said to be right duo (resp. left duo) if every right ideal (resp. left ideal) is two-sided. A right and left duo semigroup is called a duo semigroup. The class of duo semigroups includes the class of commutative semigroups and many results for commutative semigroups have been extended to those for duo semigroups (see e.g., [1], [2], [5]).

In this paper, as a generalization of right or left duo semigroups, we introduce the concept of right or left π -duo semigroups and we study their properties. We consider primary decompositions of ideals in π -duo semigroups with ascending chain conditions on ideals. We show that a π -duo semigroup is weakly commutative. We also give some examples of right π -duo semigroups. Next we consider the properties of right π -duo rings. We characterize a π -regular right π -duo ring. We show that a right π -duo primitive ring is a division ring. We also show that a right π -duo p.p. ring is reduced and has a right classical quotient ring Q that is strongly regular.

2. Right π -duo semigroups

A semigroup S is right duo if and only if $Sa \subseteq aS$ for all $a \in S$. We generalize this concept. For a subset T of a semigroup S, we set

Mathematics Subject Classification: 20M12.

 $\sqrt{T} = \{a \in S \mid a^n \in T \text{ for some } n \geq 1\}$. We call a semigroup S right π -duo if, for any right ideal K of S, there exists an ideal I of S contained in K such that $K \subseteq \sqrt{I}$. Similarly we define a *left* π -duo semigroup. A left and right π -duo ring is called a π -duo ring.

Proposition 1. Let S be a semigroup. Then the following statements are equivalent:

- 1) S is right π -duo.
- 2) For every $a \in S$ there is a natural number n(a) such that $Sa^{n(a)} \subseteq aS$.

PROOF. 1) \implies 2). Let $a \in S$. Then there exists an ideal I of S such that $I \subseteq aS$ and $aS \subseteq \sqrt{I}$. Then $a^n \in I$ for some positive integer n. Since I is an ideal of S contained in aS, we have $Sa^n \subseteq aS$.

2) \implies 1). Let K be a right ideal of S and let a be an element of K. Then there exists a positive integer n such that $Sa^n \subseteq aS$. Hence Sa^nS is an ideal of S contained in K. Let I be the union of all ideals of S contained in K. Then $Sa^nS \subseteq I$. This implies that $a \in \sqrt{I}$ and hence we obtain $K \subseteq \sqrt{I}$.

A right ideal P in a semigroup S is said to be *right primary* provided $xSy \subseteq P$ and $x \notin P$ implies $y \in \sqrt{P}$. Clearly every prime ideal is right primary. A right ideal K is *completely prime* if, for any $x, y \in S, xy \in K$ implies either $x \in K$ or $y \in K$. A right ideal K is *completely semiprime* if, $K = \sqrt{K}$.

Theorem 1. Let S be a right π -duo semigroup and let K be a right ideal of S. Then:

(1) \sqrt{K} is an ideal of S and equals the intersection of completely prime ideals containing K.

(2) If K is right primary, then \sqrt{K} is a completely prime ideal of S.

PROOF. (1) Let $x \in \sqrt{K}$ and let $s \in S$. Then there exists a positive integer n such that $S(xs)^n \subseteq xsS$. By induction on k we will prove $(xs)^{kn} \in x^kS$. In case k = 1 the assertion is clear. So suppose that the assertion is true for k, that is $(xs)^{kn} = x^kt$ for some $t \in S$. Since $S(xs)^n \subseteq$ xsS, $t(xs)^n = (xs)u$ for some $u \in S$. Then $(xs)^{(k+1)n} = (xs)^{kn}(xs)^n =$ $x^kt(xs)^n = x^k(xs)u \in x^{k+1}S$. This completes the induction. Hence we obtain $xs \in \sqrt{K}$. Let m be a positive integer such that $Sx^m \subseteq xS$. Then $(sx)^{mn+1} = s(xs)^{mn}x \in Sx^mS \subseteq xS \subseteq K$. Hence $sx \in \sqrt{K}$. These prove that \sqrt{K} is a two-sided ideal of S. Obviously \sqrt{K} is a completely semiprime ideal of S. Hence \sqrt{K} is the intersection of completely prime ideals by [4, Theorem II.3.7]. (2) Assume that K is right primary and let $a, b \in S$ with $ab \in \sqrt{K}$. Then $(ab)^k \in K$ for some positive integer k. Since S is right π -duo, $Sa^m \subseteq aS$ and $Sb^n \subseteq bS$ for some positive integers m, n. Suppose that $a, b \notin \sqrt{K}$. Since $(ab)^{k-1}aSb^n \subseteq (ab)^{k-1}abS \subseteq K$, we obtain $(ab)^{k-1}a \in K$. Then $(ab)^{k-1}Sa^m \subseteq (ab)^{k-1}aS \subseteq K$. Hence we obtain $(ab)^{k-1} \in K$. By induction on k, we obtain $ab \in K$. Then $aSb^n \subseteq abS \subseteq K$. Hence we have $a \in K$ or $b^n \in \sqrt{K}$. Therefore $a \in \sqrt{K}$ or $b \in \sqrt{K}$. This is a contradiction.

Corollary 1. Let S be a right π -duo semigroup. Then every completely semiprime right ideal is an ideal.

Now we consider primary decompositions of ideals.

Theorem 2. Let S be a π -duo semigroup with ascending chain condition on ideals. Then every ideal is written as a finite intersection of right primary ideals.

PROOF. We say that an ideal of S is irreducible if it is not the intersection of two strictly larger ideals. Using noetherian induction, we know that every ideal of S is written as a finite intersection of irreducible ideals. Hence it suffices to prove that any irreducible ideal is right primary. So, let I be an irreducible ideal of S. For an element $a \in S$, we set $(I : Sa) = \{s \in S \mid sSa \subseteq I\}$. Suppose that I is not right primary. Then there exist $x \in S \setminus I$ and $y \in S \setminus \sqrt{I}$ such that $xSy \subseteq I$. Since S satisfies the ascending chain condition on ideals, there exists an integer k > 1 such that $(I : Sy^i) = (I : Sy^k)$ for all $i \geq k$. Now we claim that $(I : Sy^k) \cap (Sy^{k+1} \cup I) = I$. To prove this, take an arbitrary $z \in (I : Sy^k) \cap (Sy^{k+1} \cup I)$. We may assume that $z \in (I : Sy^k) \cap Sy^{k+1}$. Then we can write $z = sy^{k+1}$ where $s \in S$ and $a \in I$. Then $(sy^{k+1} + a)Sy^k \subseteq I$, and hence $sy^{k+1}Sy^k \subseteq I$. Since S is right π -duo, there exists m such that $Sy^{(k+1)m} \subseteq y^{k+1}S$. Hence $sSy^{(k+1)m}y^k \subseteq I$. This implies that $s \in (I : Sy^{km+k+m}) = (I : Sy^k)$. Thus $z = syy^k \in sSy^k \subseteq I$. This proves our claim. Since S is also left π -duo, there exists n such that $y^{(k+1)n}S \subseteq Sy^{k+1}$, and so we have $(I:Sy^k) \cap (Sy^{(k+1)n}S \cup I) = I$. Since $x \notin (I:Sy^k)$, $(I:Sy^k)$ is strictly larger than I. Since $y \notin \sqrt{I}$, $Sy^{(k+1)n}S \cup I$ is also strictly larger than I. This contradicts the irreducibility of I.

Yasuyuki Hirano

A semigroup S is said to be right regular (resp. left regular) if $a \in a^2S$ (resp. $a \in Sa^2$) for any element $a \in S$. A semigroup S is said to be completely regular if S is right and left regular. For other equivalent conditions for a semigroup S to be completely regular, see e.g. [4, Proposition IV.1.2].

Corollary 2. Let S be a right π -duo semigroup. Then S is right regular if and only if S is completely regular.

PROOF. Suppose that S is right regular. Then we can easily see that $K = \sqrt{K}$ for any right ideal of S. Then S is a right duo semigroup by Theorem 1. Then we have $a \in a^2 S \subseteq Sa^2$. Hence S is also left regular.

A semigroup S is weakly commutative if for any $x, y \in S, (xy)^n \in ySx$ for some positive integer n.

Proposition 2. A π -duo semigroup S is weakly commutative.

PROOF. Since S is left and right π -duo, there are positive integers m, n such that $S(yx)^m \subseteq yxS$ and $(yx)^nS \subseteq Syx$. Let k = mn. Then $S(yx)^k \subseteq yxS$ and $(yx)^kS \subseteq Syx$. Hence we can write $x(yx)^k = (yx)a$ and $(yx)^ky = b(yx)$ for some $a, b \in S$. Then we see that $(xy)^{2k+2} = x(yx)^kyx(yx)^ky = (yx)ayxb(yx) \in ySx$. This implies that S is weakly commutative.

A semigroup S is said to be *archimedean* if for any $a, b \in S$, there exists a positive integer n for which $a^n \in SbS$. Combining Proposition 1 with [4, Corollary II.5.6], we obtain the following corollary.

Corollary 3. Let S be a π -duo semigroup. Then S is a semilattice of archimedean semigroups.

At this point we give some examples of right π -duo semigroups.

Example 1. Let $A = \{a_i \mid i = 1, 2, 3, ...\}$ and let F be the free semigroup on A. Let n be a positive integer and let I be the ideal of Fgenerated by $\{x^n \mid x \in F\}$ and let S = F/I (see [3, Section 7 of Chapter I]). Then $S = (F \setminus I) \cup \{0\}$. For any $a \in S$, $a^n = 0$, and hence S is right π -duo. We shall show that $\{0\}$ is a prime ideal of S, but it is not completely prime. Let $x, y \in F \setminus I$ and take $a_m \in A$ such that a_m does not appear in the words x, y. Then $xa_my \neq 0$. Hence $\{0\}$ is a prime ideal of S. However we see that $a_1^{n-1} \notin \{0\}$, but $(a_1^{n-1})^2 \in \{0\}$. Hence $\{0\}$ is not completely prime. We can easily see $\sqrt{\{0\}} = S$. Example 2. Let $F \subset K$ be two fields and suppose that there exists an automorphism σ of K of order n such that $\sigma(F) \not\subseteq F$. For example, suppose $n \geq 3$ and let $F = \mathbb{Q}(\sqrt[n]{2})$ and let K be the splitting field of $x^n - 2$ over \mathbb{Q} . Then $K = \mathbb{Q}(\sqrt[n]{2}, \zeta)$, where ζ denotes a primitive nth root of 1. Then the the automorphism σ of K defined by $\sigma(\sqrt[n]{2}) = \sqrt[n]{2}\zeta$ and $\sigma(\zeta) = \zeta$ is of order n and $\sigma(\mathbb{Q}(\sqrt[n]{2})) = \mathbb{Q}(\sqrt[n]{2}\zeta) \not\subseteq \mathbb{Q}(\sqrt[n]{2})$. Let $R = K[x; \sigma]$ be a skew polynomial ring with $ax = x\sigma(a)$ for $a \in K$. Consider the subsemigroup

$$S = F \cup \bigcup_{i=1}^{\infty} x^i K$$

of the multiplicative semigroup of R. We can easily see that S is right duo. Then, for any $a \in S$, a^n is central. However

$$xS = xF \cup \bigcup_{i=2}^{\infty} x^i K$$

is not a left ideal of S, because $Fx = x\sigma(F) \not\subseteq xF$. Therefore S is π -duo, but is not left duo.

Example 3. Let S_n denote the semigroup constructed in Example 2 using $F = \mathbb{Q}(\sqrt[n]{2})$ and the splitting field K of $x^n - 2$ over \mathbb{Q} . Then S_n is a semigroup with zero for each positive integer $n \ge 3$. Let S denote the direct sum of S_3, S_4, \ldots ; then S is right π -duo. But there is no positive integer N such that $Sa^N \subseteq aS$ for all $a \in S$.

3. Applications to ring theory

Throughout this section, R denotes an associative ring with identity. The Jacobson radical of R is denoted by J(R). For a subset F of a ring R, $r_R(F)$ denotes the right annihilator of F in R.

A ring R is said to be right π -duo if the multiplicative semigroup of R is right π -duo. Let R be a ring and let K be a right ideal of R. Define the core of K (written Core(K)) to be the sum of all those (two-sided) ideals of S contained in K. Thus the core is the unique largest ideal of S contained in K. Then R is right π -duo if and only if for any right ideal $K, K \subseteq \sqrt{\operatorname{Core}(K)}$.

A ring R is said to be reduced if R has no nonzero nilpotent elements.

Theorem 3. Let R be a right π -duo ring. Then: (1) Every idempotent of R is central. Yasuyuki Hirano

(2) Every completely semiprime right ideal is a two-sided ideal. In particular, every maximal right ideal of the ring R is a two-sided ideal.

(3) Every right primitive factor ring of R is a division ring.

(4) R/J(R) is reduced.

PROOF. (1) Let e be an idempotent of R. Then there exists a positive integer n such that $Re^n \subseteq eR$ by Proposition 1. Since e is an idempotent, we have $Re \subseteq eR$. Similarly we obtain $R(1-e) \subseteq (1-e)R$. Clearly these implies that e is central.

(2) Every completely semiprime right ideal of R is an ideal by Corollary 1. Let K be a maximal right ideal of R and let $a \in \sqrt{K}$. Then $a^n \in K$ for some positive integer n. Suppose $a \in K$. Then aR + K = R. Hence we can write 1 = ar + b for some $r \in R$ and some $b \in K$. Then $(1-b)^m = (ar)^m \in K$ for some m. This deduces $1 \in K$, a contradiction. This proves that K is completely semiprime.

(3) Let P be a (right) primitive ideal of R. Then there is a maximal right ideal K such that $P = \{a \in R \mid Ra \subseteq K\}$. Since K is an ideal by (2), we have P = K. Then R/P = R/K is a division ring.

(4) This follows from the fact that R/J(R) is a subdirect sum of primitive rings.

Question 1. Let K be a right ideal of a ring R. Then \sqrt{K} is an ideal of the multiplicative semigroup of R by Theorem 1. Is \sqrt{K} an ideal of the ring R?

Recall that R is said to be π -regular if for each element a of R, there exists a positive integer m and an element x of R such that $a^m = a^m x a^m$. A π -regular ring R for which the m in the above can be taken to be 1 for all a is called *regular*.

Proposition 3. Let R be a π -regular ring. Then the following statements are equivalent:

1) R is a right π -duo ring.

2) R is a left π -duo ring.

3) Every idempotent of R is central.

PROOF. Since the π -regularity of R is left-right symmetric, it suffices to prove the equivalence of 1) and 3).

 $(1) \Rightarrow 3$). This follows from Proposition 3 (1).

3) \Rightarrow 1). Let *a* be an arbitrary element of *R*. Then there exists a positive integer *m* and an element $x \in R$ such that $a^m = a^m x a^m$. Then we can easily see that $e = a^m x$ is an idempotent and $a^m R = eR$. By hypothesis, $a^m R = eR$ is a two-sided ideal of *R*.

A ring is said to be *completely prime* if 0 is a completely prime ideal. We give an example of a π -duo completely prime ring which is not left duo.

Example 4. Let $F \subset K$ be two fields and suppose that there exists an automorphism σ of K of order n such that $\sigma(F) \not\subseteq F$. Let $K[[x;\sigma]]$ be a skew formal power series ring with $\sigma(a)x = xa$ for $a \in K$, and consider the subring $R = \{a_0 + a_1x + a_2x^2 + \cdots \mid a_0 \in F, a_i \in K \text{ for all } i > 0\}$ of $K[[x;\sigma]]$. Let $f = a_kx^k + a_{k+1}x^{k+1} + \cdots$ be an element of R with $a_k \neq 0$. Then $g = a_k + a_{k+1}x + \cdots$ has the inverse g^{-1} in $K[[x;\sigma]]$ and $xg^{-1} \in R$. Hence $Rf \ni xg^{-1}f = x^{k+1}$. Hence $Rf = Ra_kx^k + Rx^{k+1} =$ $\{b_0a_kx^k + b_1x^{k+1} + b_2x^{k+2} + \cdots \mid b_0 \in F, b_i \in K \text{ for all } i > 0\}$. Then Rf is a two-sided ideal of R if and only if $\sigma^k(F) \subseteq F$. In particular, if k = 1, then Rf is not a two-sided ideal of R. Hence R is not left duo. However Rf^n is a two-sided ideal of R for any $f \in R$. Hence R is a left π -duo ring. Also we can easily see that R is right duo. Therefore R is a π -duo completely prime ring, but is not left duo.

A ring R with identity is called a *right* (resp. *left*) *p.p. ring* if every principal right (resp. *left*) ideal of R is projective. Clearly a completely prime ring is a right and left p.p. ring. We can easily see that R is a right p.p. ring if and only if for any $a \in R$ the right annihilator $r_R(a)$ of a is generated by an idempotent. A reduced regular ring is called a *strongly regular ring*.

Proposition 4. Let R be a right π -duo, right (or left) p.p. ring. Then R is reduced and has a right classical quotient ring Q that is strongly regular.

PROOF. As saw in the proof of 1) \implies 3) of Proposition 5, every idempotent of R is central. Let b be an element of R with $b^2 = 0$. Then $r_R(b) = eR$ for some idempotent e. Since $b \in r_R(b)$, we can write b = edfor some $d \in R$. Then 0 = be = eb = eed = ed = b. Hence R is reduced. Let $a \in R$. We have $r_R(a) = eR$ for some central idempotent e. Since $aR \cap eR = 0$, we have aR + eR = (a + e)R and a + e is regular (i.e. not a zero divisor). Let c be a regular element of R and let $r \in R$. Then there exists a positive integer n such that $Rc^n \subseteq cR$. Then $rc^n = cs$ for some $s \in R$. Since c^n is regular, this implies that the set of regular elements of R satisfies the right Ore condition. Thus R has a right classical quotient ring Q that is also reduced. Let x be an element of Q. Then $x = ac^{-1}$ for some a, c in R with c regular. With e as above we have xQ = aQand aQ + eQ = Q It follows that Q is von Neumann regular. Since Q is reduced, Q is strongly regular. Yasuyuki Hirano : On right π -duo semigroups and rings

References

- [1] A. ANJANEYULU, On primary semigroups, Czech. Math. J. 30 (1980), 382–386.
- [2] A. ANJANEYULU, Semigroups in which prime ideals are maximal, Semigroup Forum
 22 (1981), 151–158.
- [3] J. M. HOWIE, An Introduction to Semigroup Theory, Academic Press, London–New York–San Francisco, 1976.
- [4] M. PETRICH, Introduction to Semigroups, Charles E. Merrill Publishing Company, Columbus, Ohio, 1973.
- [5] O. STEINFELD, Quasi-Ideals in Rings and Semigroups, Akadémiai Kiadó, Budapest, 1978.

YASUYUKI HIRANO DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY OKAYAMA 700 JAPAN E-MAIL: yhirano@math.okayama-u.ac.jp

(Received December 28, 1995)

256