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On right π-duo semigroups and rings

By YASUYUKI HIRANO (Okayama)

Abstract. A semigroup or a ring is said to be right π-duo if every right ideal is a
radical extension of some ideal. In this paper, we consider the properties of right π-duo
semigroups and rings. We give examples of right π-duo semigroups and rings.

1. Introduction

A semigroup is said to be right duo (resp. left duo) if every right
ideal (resp. left ideal) is two-sided. A right and left duo semigroup is
called a duo semigroup. The class of duo semigroups includes the class
of commutative semigroups and many results for commutative semigroups
have been extended to those for duo semigroups (see e.g., [1], [2], [5]).

In this paper, as a generalization of right or left duo semigroups,
we introduce the concept of right or left π-duo semigroups and we study
their properties. We consider primary decompositions of ideals in π-duo
semigroups with ascending chain conditions on ideals. We show that a
π-duo semigroup is weakly commutative. We also give some examples of
right π-duo semigroups. Next we consider the properties of right π-duo
rings. We characterize a π-regular right π-duo ring. We show that a right
π-duo primitive ring is a division ring. We also show that a right π-duo p.p.
ring is reduced and has a right classical quotient ring Q that is strongly
regular.

2. Right π-duo semigroups

A semigroup S is right duo if and only if Sa ⊆ aS for all a ∈ S.
We generalize this concept. For a subset T of a semigroup S, we set
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√
T = {a ∈ S | an ∈ T for some n ≥ 1}. We call a semigroup S right

π-duo if, for any right ideal K of S, there exists an ideal I of S contained
in K such that K ⊆ √

I. Similarly we define a left π-duo semigroup. A
left and right π-duo ring is called a π-duo ring.

Proposition 1. Let S be a semigroup. Then the following statements
are equivalent:

1) S is right π-duo.

2) For every a ∈ S there is a natural number n(a) such that San(a) ⊆
aS.

Proof. 1) =⇒ 2). Let a ∈ S. Then there exists an ideal I of S such
that I ⊆ aS and aS ⊆ √

I. Then an ∈ I for some positive integer n. Since
I is an ideal of S contained in aS, we have San ⊆ aS.

2) =⇒ 1). Let K be a right ideal of S and let a be an element of
K. Then there exists a positive integer n such that San ⊆ aS. Hence
SanS is an ideal of S contained in K. Let I be the union of all ideals of
S contained in K. Then SanS ⊆ I. This implies that a ∈ √I and hence
we obtain K ⊆ √

I.

A right ideal P in a semigroup S is said to be right primary provided
xSy ⊆ P and x /∈ P implies y ∈ √P . Clearly every prime ideal is right
primary. A right ideal K is completely prime if, for any x, y ∈ S, xy ∈ K
implies either x ∈ K or y ∈ K. A right ideal K is completely semiprime
if, K =

√
K.

Theorem 1. Let S be a right π-duo semigroup and let K be a right
ideal of S. Then:

(1)
√

K is an ideal of S and equals the intersection of completely
prime ideals containing K.

(2) If K is right primary, then
√

K is a completely prime ideal of S.

Proof. (1) Let x ∈ √K and let s ∈ S. Then there exists a positive
integer n such that S(xs)n ⊆ xsS. By induction on k we will prove
(xs)kn ∈ xkS. In case k = 1 the assertion is clear. So suppose that the
assertion is true for k, that is (xs)kn = xkt for some t ∈ S. Since S(xs)n ⊆
xsS, t(xs)n = (xs)u for some u ∈ S. Then (xs)(k+1)n = (xs)kn(xs)n =
xkt(xs)n = xk(xs)u ∈ xk+1S. This completes the induction. Hence we
obtain xs ∈ √K. Let m be a positive integer such that Sxm ⊆ xS. Then
(sx)mn+1 = s(xs)mnx ∈ SxmS ⊆ xS ⊆ K. Hence sx ∈ √

K. These
prove that

√
K is a two-sided ideal of S. Obviously

√
K is a completely

semiprime ideal of S. Hence
√

K is the intersection of completely prime
ideals by [4, Theorem II.3.7].
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(2) Assume that K is right primary and let a, b ∈ S with ab ∈ √K.
Then (ab)k ∈ K for some positive integer k. Since S is right π-duo,
Sam ⊆ aS and Sbn ⊆ bS for some positive integers m, n. Suppose that
a, b /∈ √K. Since (ab)k−1aSbn ⊆ (ab)k−1abS ⊆ K, we obtain (ab)k−1a ∈
K. Then (ab)k−1Sam ⊆ (ab)k−1aS ⊆ K. Hence we obtain (ab)k−1 ∈ K.
By induction on k, we obtain ab ∈ K. Then aSbn ⊆ abS ⊆ K. Hence
we have a ∈ K or bn ∈ √

K. Therefore a ∈ √
K or b ∈ √

K. This is a
contradiction.

Corollary 1. Let S be a right π-duo semigroup. Then every com-
pletely semiprime right ideal is an ideal.

Now we consider primary decompositions of ideals.

Theorem 2. Let S be a π-duo semigroup with ascending chain condi-
tion on ideals. Then every ideal is written as a finite intersection of right
primary ideals.

Proof. We say that an ideal of S is irreducible if it is not the in-
tersection of two strictly larger ideals. Using noetherian induction, we
know that every ideal of S is written as a finite intersection of irre-
ducible ideals. Hence it suffices to prove that any irreducible ideal is
right primary. So, let I be an irreducible ideal of S. For an element
a ∈ S, we set (I : Sa) = {s ∈ S | sSa ⊆ I}. Suppose that I is

not right primary. Then there exist x ∈ S \ I and y ∈ S \ √I such
that xSy ⊆ I. Since S satisfies the ascending chain condition on ideals,
there exists an integer k > 1 such that (I : Syi) = (I : Syk) for all
i ≥ k. Now we claim that (I : Syk) ∩ (Syk+1 ∪ I) = I. To prove this,
take an arbitrary z ∈ (I : Syk) ∩ (Syk+1 ∪ I). We may assume that
z ∈ (I : Syk) ∩ Syk+1. Then we can write z = syk+1 where s ∈ S

and a ∈ I. Then (syk+1 + a)Syk ⊆ I, and hence syk+1Syk ⊆ I. Since

S is right π-duo, there exists m such that Sy(k+1)m ⊆ yk+1S. Hence
sSy(k+1)myk ⊆ I. This implies that s ∈ (I : Sykm+k+m) = (I : Syk).
Thus z = syyk ∈ sSyk ⊆ I. This proves our claim. Since S is also
left π-duo, there exists n such that y(k+1)nS ⊆ Syk+1, and so we have
(I : Syk) ∩ (Sy(k+1)nS ∪ I) = I. Since x /∈ (I : Syk), (I : Syk) is strictly

larger than I. Since y /∈ √I, Sy(k+1)nS ∪ I is also strictly larger than I.
This contradicts the irreducibility of I.



252 Yasuyuki Hirano

A semigroup S is said to be right regular (resp. left regular) if a ∈ a2S
(resp. a ∈ Sa2) for any element a ∈ S. A semigroup S is said to be com-
pletely regular if S is right and left regular. For other equivalent conditions
for a semigroup S to be completely regular, see e.g. [4, Proposition IV.1.2].

Corollary 2. Let S be a right π-duo semigroup. Then S is right
regular if and only if S is completely regular.

Proof. Suppose that S is right regular. Then we can easily see that
K =

√
K for any right ideal of S. Then S is a right duo semigroup by

Theorem 1. Then we have a ∈ a2S ⊆ Sa2. Hence S is also left regular.

A semigroup S is weakly commutative if for any x, y ∈ S, (xy)n ∈ ySx
for some positive integer n.

Proposition 2. A π-duo semigroup S is weakly commutative.

Proof. Since S is left and right π-duo, there are positive integers
m, n such that S(yx)m ⊆ yxS and (yx)nS ⊆ Syx. Let k = mn. Then
S(yx)k ⊆ yxS and (yx)kS ⊆ Syx. Hence we can write x(yx)k = (yx)a
and (yx)ky = b(yx) for some a, b ∈ S. Then we see that (xy)2k+2 =
x(yx)kyx(yx)ky = (yx)ayxb(yx) ∈ ySx. This implies that S is weakly
commutative.

A semigroup S is said to be archimedean if for any a, b ∈ S, there
exists a positive integer n for which an ∈ SbS. Combining Proposition 1
with [4, Corollary II.5.6], we obtain the following corollary.

Corollary 3. Let S be a π-duo semigroup. Then S is a semilattice of
archimedean semigroups.

At this point we give some examples of right π-duo semigroups.

Example 1. Let A = {ai | i = 1, 2, 3, . . . } and let F be the free
semigroup on A. Let n be a positive integer and let I be the ideal of F
generated by {xn | x ∈ F} and let S = F/I (see [3, Section 7 of Chapter I]).
Then S = (F \I)∪{0}. For any a ∈ S, an = 0, and hence S is right π-duo.
We shall show that {0} is a prime ideal of S, but it is not completely prime.
Let x, y ∈ F \ I and take am ∈ A such that am does not appear in the
words x, y. Then xamy 6= 0. Hence {0} is a prime ideal of S. However
we see that an−1

1 /∈ {0}, but (an−1
1 )2 ∈ {0}. Hence {0} is not completely

prime. We can easily see
√
{0} = S.
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Example 2. Let F ⊂ K be two fields and suppose that there exists
an automorphism σ of K of order n such that σ(F ) 6⊆ F . For example,
suppose n ≥ 3 and let F = Q( n

√
2 ) and let K be the splitting field of

xn − 2 over Q. Then K = Q( n
√

2, ζ), where ζ denotes a primitive nth
root of 1. Then the the automorphism σ of K defined by σ( n

√
2 ) = n

√
2ζ

and σ(ζ) = ζ is of order n and σ(Q( n
√

2 )) = Q( n
√

2ζ) 6⊆ Q( n
√

2 ). Let
R = K[x; σ] be a skew polynomial ring with ax = xσ(a) for a ∈ K.
Consider the subsemigroup

S = F ∪
∞⋃

i=1

xiK

of the multiplicative semigroup of R. We can easily see that S is right
duo. Then, for any a ∈ S, an is central. However

xS = xF ∪
∞⋃

i=2

xiK

is not a left ideal of S, because Fx = xσ(F ) 6⊆ xF . Therefore S is π-duo,
but is not left duo.

Example 3. Let Sn denote the semigroup constructed in Example 2
using F = Q( n

√
2 ) and the splitting field K of xn − 2 over Q. Then Sn is

a semigroup with zero for each positive integer n ≥ 3. Let S denote the
direct sum of S3, S4, . . . ; then S is right π-duo. But there is no positive
integer N such that SaN ⊆ aS for all a ∈ S.

3. Applications to ring theory

Throughout this section, R denotes an associative ring with identity.
The Jacobson radical of R is denoted by J(R). For a subset F of a ring
R, rR(F ) denotes the right annihilator of F in R.

A ring R is said to be right π-duo if the multiplicative semigroup of
R is right π-duo. Let R be a ring and let K be a right ideal of R. Define
the core of K (written Core(K)) to be the sum of all those (two-sided)
ideals of S contained in K. Thus the core is the unique largest ideal of S
contained in K. Then R is right π-duo if and only if for any right ideal
K, K ⊆

√
Core(K).

A ring R is said to be reduced if R has no nonzero nilpotent elements.

Theorem 3. Let R be a right π-duo ring. Then:

(1) Every idempotent of R is central.
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(2) Every completely semiprime right ideal is a two-sided ideal. In
particular, every maximal right ideal of the ring R is a two-sided ideal.

(3) Every right primitive factor ring of R is a division ring.

(4) R/J(R) is reduced.

Proof. (1) Let e be an idempotent of R. Then there exists a positive
integer n such that Ren ⊆ eR by Proposition 1. Since e is an idempotent,
we have Re ⊆ eR. Similarly we obtain R(1− e) ⊆ (1− e)R. Clearly these
implies that e is central.

(2) Every completely semiprime right ideal of R is an ideal by Corol-
lary 1. Let K be a maximal right ideal of R and let a ∈ √

K. Then
an ∈ K for some positive integer n. Suppose a ∈ K. Then aR + K = R.
Hence we can write 1 = ar + b for some r ∈ R and some b ∈ K. Then
(1− b)m = (ar)m ∈ K for some m. This deduces 1 ∈ K, a contradiction.
This proves that K is completely semiprime.

(3) Let P be a (right) primitive ideal of R. Then there is a maximal
right ideal K such that P = {a ∈ R | Ra ⊆ K}. Since K is an ideal by
(2), we have P = K. Then R/P = R/K is a division ring.

(4) This follows from the fact that R/J(R) is a subdirect sum of
primitive rings.

Question 1. Let K be a right ideal of a ring R. Then
√

K is an ideal
of the multiplicative semigroup of R by Theorem 1. Is

√
K an ideal of the

ring R?
Recall that R is said to be π-regular if for each element a of R, there

exists a positive integer m and an element x of R such that am = amxam.
A π-regular ring R for which the m in the above can be taken to be 1 for
all a is called regular.

Proposition 3. Let R be a π-regular ring. Then the following state-
ments are equivalent:

1) R is a right π-duo ring.

2) R is a left π-duo ring.

3) Every idempotent of R is central.

Proof. Since the π-regularity of R is left-right symmetric, it suffices
to prove the equivalence of 1) and 3).

1) ⇒ 3). This follows from Proposition 3 (1).
3) ⇒ 1). Let a be an arbitrary element of R. Then there exists a

positive integer m and an element x ∈ R such that am = amxam. Then
we can easily see that e = amx is an idempotent and amR = eR. By
hypothesis, amR = eR is a two-sided ideal of R.
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A ring is said to be completely prime if 0 is a completely prime ideal.
We give an example of a π-duo completely prime ring which is not left
duo.

Example 4. Let F ⊂ K be two fields and suppose that there exists
an automorphism σ of K of order n such that σ(F ) 6⊆ F . Let K[[x; σ]] be
a skew formal power series ring with σ(a)x = xa for a ∈ K, and consider
the subring R = {a0 + a1x + a2x

2 + · · · | a0 ∈ F, ai ∈ K for all i > 0}
of K[[x; σ]]. Let f = akxk + ak+1x

k+1 + · · · be an element of R with
ak 6= 0. Then g = ak + ak+1x + · · · has the inverse g−1 in K[[x; σ]] and
xg−1 ∈ R. Hence Rf 3 xg−1f = xk+1. Hence Rf = Rakxk + Rxk+1 =
{b0akxk + b1x

k+1 + b2x
k+2 + · · · | b0 ∈ F, bi ∈ K for all i > 0}. Then

Rf is a two-sided ideal of R if and only if σk(F ) ⊆ F . In particular, if
k = 1, then Rf is not a two-sided ideal of R. Hence R is not left duo.
However Rfn is a two-sided ideal of R for any f ∈ R. Hence R is a left
π-duo ring. Also we can easily see that R is right duo. Therefore R is a
π-duo completely prime ring, but is not left duo.

A ring R with identity is called a right (resp. left) p.p. ring if every
principal right (resp. left) ideal of R is projective. Clearly a completely
prime ring is a right and left p.p. ring. We can easily see that R is a right
p.p. ring if and only if for any a ∈ R the right annihilator rR(a) of a is
generated by an idempotent. A reduced regular ring is called a strongly
regular ring .

Proposition 4. Let R be a right π-duo, right (or left) p.p. ring. Then
R is reduced and has a right classical quotient ring Q that is strongly
regular.

Proof. As saw in the proof of 1) =⇒ 3) of Proposition 5, every
idempotent of R is central. Let b be an element of R with b2 = 0. Then
rR(b) = eR for some idempotent e. Since b ∈ rR(b), we can write b = ed
for some d ∈ R. Then 0 = be = eb = eed = ed = b. Hence R is reduced.
Let a ∈ R. We have rR(a) = eR for some central idempotent e. Since
aR ∩ eR = 0, we have aR + eR = (a + e)R and a + e is regular (i.e. not a
zero divisor). Let c be a regular element of R and let r ∈ R. Then there
exists a positive integer n such that Rcn ⊆ cR. Then rcn = cs for some
s ∈ R. Since cn is regular, this implies that the set of regular elements of
R satisfies the right Ore condition. Thus R has a right classical quotient
ring Q that is also reduced. Let x be an element of Q. Then x = ac−1

for some a, c in R with c regular. With e as above we have xQ = aQ
and aQ + eQ = Q It follows that Q is von Neumann regular. Since Q is
reduced, Q is strongly regular.
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