# Gauss bounds of quadratic extensions 

By FRANZ LEMMERMEYER (Saarbrücken)


#### Abstract

We give a simple proof of results of Lubelski and Lakein on Gauss bounds for quadratic extensions of imaginary quadratic Euclidean number fields.


## 1. Preliminaries

Let $k$ be a number field with class number 1 ; in the following, $N$ will denote the absolute value of the norm, i.e. $N \alpha=\left|N_{k / \mathbb{Q}} \alpha\right|$. We define the Euclidean minimum $M(k)$ by $M(k)=\inf \left\{\delta>0: \forall \xi \in k \exists \eta \in \mathbb{Z}_{k}\right.$ such that $N(\xi-\eta)<1\}$. An ideal $I$ in the maximal order $\mathbb{Z}_{K}$ of a quadratic extension $K / k$ is called primitive if it is not divisible by any non-unit $a \in \mathbb{Z}_{k}$. Since $h(k)=1$, there exists a relative integral basis $\{1, \omega\}$ of $\mathbb{Z}_{K}$.

The following lemma and its proof are well known for $k=\mathbb{Q}$ ([2], 14.12):

Lemma 1. Let $k$ be a number field with class number 1, and suppose that $K / k$ is a quadratic extension. Then every primitive ideal $I$ has the form $I=(a+\omega) \mathbb{Z}_{k}+c \mathbb{Z}_{k}$ for algebraic integers $a, c \in \mathbb{Z}_{k}$, where $c$ is a generator of the ideal $c \mathbb{Z}_{k}=N_{K / k} I$.

Proof. Choose $\alpha=a+b \omega$ such that $I=(\alpha, c)$ (cf. [2], 6.19). Writing $c \omega \in I$ as a linear combination of $a+b \omega$ and $c$ shows easily that $b \mid a$ and $b \mid c$. Since $I$ is primitive, $b$ must be a unit, and we may assume without loss of generality that $b=1$.

## 2. Quadratic number fields

The following theorem is well known (see e.g. Holzer [3]); we will give a very simple proof which we will generalize in the next section.

Theorem 2. Let $K=\mathbb{Q}(\sqrt{m})$ be a quadratic number field with ring of integers $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ and discriminant $\Delta$, where

$$
\omega=\left\{\begin{array}{ll}
\sqrt{m}, & \text { if } m \equiv 2,3 \bmod 4, \\
\frac{1+\sqrt{m}}{2}, & \text { if } m \equiv 1 \bmod 4 .
\end{array} \quad \text { and } \quad \Delta= \begin{cases}4 m, & \text { if } m \equiv 2,3 \bmod 4, \\
m, & \text { if } m \equiv 1 \bmod 4 .\end{cases}\right.
$$

Let $\mu_{K}$ be defined by $\mu_{K}=\left\{\begin{array}{cl}1, & \text { if } \Delta=5 \\ \sqrt{\Delta / 8}, & \text { if } \Delta \geq 8 \\ \sqrt{-\Delta / 3}, & \text { if } \Delta<0 .\end{array}\right.$
Then each ideal class of $K$ contains an integral ideal of norm $\leq \mu_{K}$.
Proof. Let $[I]$ be an ideal class generated by an integral ideal $I$ which we may assume to be primitive. Then $I=(\gamma, c)$ with $(c)=N_{K / \mathbb{Q}} I$ and $\gamma=a+\omega=s+\frac{1}{2} \sqrt{\Delta}$, where $2 s \in \mathbb{Z}$. Applying the Euclidean algorithm to the pair $(s, c)$ we see that there exists a $\gamma=r+\frac{1}{2} \sqrt{\Delta} \in I$ such that

$$
\begin{gathered}
|r| \leq \frac{c}{2} \quad \text { if } \quad \Delta<0, \\
\frac{c}{2} \leq|r| \leq c \quad \text { if } \quad c^{2}>\frac{\Delta}{5}, \\
c \leq|r| \leq \frac{3}{2} c \quad \text { if } \quad \frac{\Delta}{8}<c^{2}<\frac{\Delta}{5} .
\end{gathered}
$$

We claim that $|N \gamma| \leq \frac{1}{4}\left(c^{2}-\Delta\right)<c^{2}$ provided that $c^{2}>\mu_{K}$; this shows that $I_{1}=\gamma^{\prime} c^{-1} I \sim I$ (where $\gamma^{\prime}$ denotes the algebraic conjugate of $\gamma$ ) is an integral ideal such that $\left[I_{1}\right]=[I]$ and $N I_{1}<N I$. Repeating this procedure if necessary we eventually arrive at an integral ideal $I_{n} \sim I$ with norm $\leq \mu_{K}$.

The claimed inequality is proved by going through all the cases:

1. $\Delta<0$ : here $|N \gamma|=\left|r^{2}-\frac{\Delta}{4}\right| \leq \frac{c^{2}+|\Delta|}{4}<1$ since $c^{2}>\mu_{K}=\frac{|\Delta|}{3}$.
2. $c^{2}>\frac{\Delta}{5}$ : here $-c^{2}=\frac{c^{2}-5 c^{2}}{4}<r^{2}-\frac{\Delta}{4}<c^{2}$.
3. $\frac{\Delta}{8}<c^{2}<\frac{\Delta}{5}$ : then $-c^{2}=c^{2}-\frac{8 c^{2}}{4}<r^{2}-\frac{\Delta}{4}<\frac{9 c^{2}-5 c^{2}}{4}=c^{2}$.

The only possibility not covered by the proof is $c^{2}=\Delta / 5$; since the odd part of $\Delta$ is squarefree, this will happen if and only if $\Delta=5$ and $c= \pm 1$. This completes the proof of the theorem.

### 3.2. Quadratic extensions of imaginary quadratic fields

Let $k=\mathbb{Q}(\sqrt{-n})$, where $n \in\{-1,-2,-3,-7,-11\}$. These are the Euclidean among the imaginary quadratic fields, and it is known (cf. [5]) that for all $\xi \in k$ there exist integers $\eta \in \mathbb{Z}_{k}$ such that $N(\xi-\eta) \leq M$, where the Euclidean minimum $M=M(k)$ is given by

$$
M= \begin{cases}\frac{|n|+1}{4}, & \text { if } \Delta \equiv 0 \bmod 4 \\ \frac{(|n|+1)^{2}}{16|n|}, & \text { if } \Delta \equiv 1 \bmod 4\end{cases}
$$

Fix an embedding of $k$ into $\mathbb{C}$; then $N \xi=|\xi|^{2}$ for all $\xi \in k$, and the above result translates into

Lemma 3. Let $k=\mathbb{Q}(\sqrt{-n})$ be Euclidean; then for all $\xi \in k$ there exist $\eta \in \mathbb{Z}_{k}$ such that $|\xi-\eta|^{2} \leq M$.

Now we redo our computations in the proof of Theorem 1, assuming $a, c, m$, etc. to be integers (resp. half-integers) in $k$; the discriminant $\Delta$ is now replaced by the relative discriminant $d=\operatorname{disc}_{K / k}(1, \omega)$, and we have $\Delta=\operatorname{disc}(K / \mathbb{Q})=d_{0}^{2} N d$, where $d_{0}=\operatorname{disc}(k / \mathbb{Q})$. Now

$$
\frac{\left|r^{2}-d / 4\right|}{|c|^{2}} \leq \frac{4\left|r^{2}\right|+|d|}{4|c|^{2}} \leq \frac{4 M|c|^{2}+|d|}{4|c|^{2}}
$$

and this expression is $<1$ if and only if

$$
\begin{equation*}
|c|^{2}>\frac{|d|}{4(1-M)}=\frac{\sqrt{\Delta}}{4\left|d_{0}\right|(1-M)} . \tag{1}
\end{equation*}
$$

For $k=\mathbb{Q}(\sqrt{-1})$ we have $M(k)=\frac{1}{2}$ and $d_{0}=-4$, hence $\mu_{K}=\sqrt{\Delta} / 8$. Evaluating (1) for the other fields gives

Theorem 4. Let $k=\mathbb{Q}(\sqrt{-n})$ be Euclidean, and let $K / k$ be a quadratic extension with absolute discriminant $\Delta$. Then every ideal class of $K$ contains an integral ideal of norm $\leq \mu_{K}$, where

$$
\mu_{K}=\frac{\sqrt{\Delta}}{4\left|d_{0}\right|(1-M)}= \begin{cases}\sqrt{\Delta} / 8, & \text { if } n \in\{-1,-2,-3,-11\} \\ \sqrt{\Delta} / 12, & \text { if } n=-7 .\end{cases}
$$

These are exactly the bounds given by LAKEIN [4]; another proof is due to Mordell [7]. The result in the special case $k=\mathbb{Q}(\sqrt{-1})$ was already known to S. Kuroda and J. A. Nyman (cf. [4]). After the completion of this article $I$ discovered that S. Lubelsky (in his posthumously published paper [6]) had already found the formula connecting the bounds given in Theorem 2 with the Euclidean minima of imaginary quadratic number fields; his results remained unnoticed, probably because he used the language of quadratic forms.

In [1], Robin Chapman has generalized Theorem 2 to quadratic extensions of imaginary quadratic fields with class number 1.

Acknowledgement. I would like to thank Sachar Paulus, Felicity George, and Chris Smyth for some helpful discussions on Euclideanlike algorithms in quadratic number fields from which this note originated, and Robin Chapman for considerably simplifying the proofs. I also thank the referee for his careful reading of the manuscript.

## References

[1] R. J. Chapman, Ideals in Quadratic Extensions of Imaginary Quadratic Fields of Class Number 1 (to appear).
[2] H. Сонn, A Classical Introduction to Algebraic Numbers and Class Fields, Springer Verlag, 1978, 2nd printing 1988.
[3] L. Holzer, Zahlentheorie II, Teubner Verlag, Leipzig, 1959.
[4] R. Lakein, A Gauss bound for a class of biquadratic number fields, J. Number Theory 1 (1969), 108-112.
[5] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Expo. Math. 13 (1995), 385-416.
[6] S. Lubelsky, Unpublished Results on Number Theory I, Quadratic forms in a Euclidean ring, Acta Arith. 6 (1961), 217-224.
[7] L. J. Mordell, A norm ideal bound for a class of biquadratic number fields, Norske Vid. Selsk. Forh. (Trondheim) 42 (1969), 53-55.

FRANZ LEMMERMEYER
UNIVERSITÄT DES SAARLANDES
FB 14 INFORMATIK
D-66041 SAARBRÜCKEN
GERMANY
E-MAIL: lemmermf@cs.uni-sb.de
(Received August 6, 1996)

