The Fourier transform of exponential polynomials

By L. SZEKELYHIDI (Debrecen)

1. Introduction. In this paper we introduce the Fourier transform of exponen-
tial polynomials which is a natural generalization of the Fourier transform of almost
periodic functions and it seems to be useful to determine all exponential polynomial
solutions of some functional equations, linear differential and difference equations
with polynomial coefficients, some types of partial differential equations, etc. Here
we indicate some possible applications too.

In what follows C denotes the set of complex numbers, and if fis a function

defined on an Abelian group, then the functions 7, f and f will be defined by
@& NE) =/(x+y), f()=F(-x).

First of all we list some notions and results concerning polynomials and exponen-
tial polynomials which we shall use in the sequel and which can be found in [1],
(2], [4], [6], [7].

Let G be an Abelian topological group and ¥V a complex topological linear
space. By a V-valued polynomial on G we mean a function p: G-V of the form

n
p= 2> A, where A,: G-V is the diagonalization of a continuous k-additive,
k=0
symmetric function from G* into V. Here A, is called a monomial of degree k if
A, #0. The degree of polynomials is defined in a natural way. A basic fact on poly-
nomials 1s that the above representation of p is unique (see e.g. [2], [4], [6]).
The continuous homomorphisms of G into the multiplicative group of nonzero
complex numbers are called exponentials. By a V-valued exponential polynomial

on G we mean a function f: G-V of the form f= 2 Py - my, where p is a V-valued

polynomial and nz, is an exponential on G. Sxmllarly to polynomials, this representa-
tion of f is unique, if the exponentials are different (see [5], [6]).

2. The Fourier transform. In this paragraph G and V will denote a topological
Abelian group, and a complex topological linear space, respectively. We introduce
a polynomial-valued linear operator M on the space of V-valued exponential poly-
nomials on G by the formula M( f)=p,, if p, is the polynomial coefficient of the
exponential my =1 in the unique representation of the exponential polynomial f by
means of polynomials and different exponentials, We remark that M is analoguous
to the invariant mean on almost periodic functions, and in fact, they coincide on
trigonometric polynomials. The basic properties of M are summarized in the next
theorem, which is a consequence of the definition.
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Theorem 2.1. The operator M defined above is linear and has the following
properties:
(i) M(p)=rp,
(i) M(pf) =pM(f)
(i) M(r,f) =, [M(f)],

@v) M) =M
Jor all exponential polynomials f, polynomials p, and y in G.
We remark, that properties (ii)—(iii) characterize M in some sense; namely,

if a polynomial-valued linear operator on the space of all exponential polynomials
is homogeneous with respect to polynomials and commutes with all translations,

then it is a constant multiple of M.
For a V-valued exponential polynomial f on G we define the polynomial-valued
function f on the exponentials by the formula

J(m) = M(f - ).

Clearly f-m is an exponential polynomial and we realize f(m) as the polyno-
mial coefficient of m in the unique representation of f. The function f will be called
the Fourier transform of f. This coincides with the usual Fourier transform on

trigonometric polynomials.
The fundamental properties of the map f—f are summarized in the next two
theorems which can be proved easily by theorem 2.1.

Theorem 2.2. (“Inversion theorem™.) Let f: G-~V be an exponential polynomial.

Then
f=Zimm

where the sum is taken over all exponentials m.

Theorem 2.3. The map f—f defined above is linear and has the following pro-
perties.

@ p(m)=0 for m#=1,
@) ()" (m)=p-j(m),
(i) (5,0)" (m) = m(y)- (5, /) (m),
ONONOESICN
for all exponential polynomials f, polynomials p, exponentials m and y in G.

In the next theorems we list further properties concerning differentiation of
the Fourier-transform in the cases G=R" and G=R which are fundamental in
view of ordinary and partial differential equations. Here 0 denotes the vector valued
operator grad=(d,, ...,d,) on R" and in the case n=1 we write D instead of d,.
Further, 7 denotes the identity operator.
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Theorem 2.4. Let P be a complex polynomial in n variables and f: R"—~CM
an exponential polynomial. Then, for all exponentials m on R" we have

(P@)f)" (m) = P(0+dm(0)- 1) f (m).

PROOF. It is enough to show that (9*f)"(m)=(d+dm(0)-I)f(m) holds for
each multiindex o.

By induction on |«/, it is enough to prove that for 1=j=n we have (9, /)" (m)=
=(9;+09;m(0))f(m). But this follows from the equation:

@; )" (m)=M@©;f-m) = M[0;(f-m)—f-0;m] =
= M[9;(f-m)]—M(f0;m) = 0; M(f-m)—M[f-(—d;m(0)) ] =
= ;f(m)+8,m(0)-f(m) = (9;+8,m(0)) -7 (m)
as M clearly commutes with partial differentiation.

Corollary 2.5. Let f: R—~CM be an exponential polynomial. Then, for all expo-
nentials m on R and nonnegative integers k we have:

(D*f)" (m) = (D+m’ (0)- I)* - J(m).

3. Applications. The general properties of the map f—f listed in theorem 2.3
give us the possibility to determine all solutions of functional equations of the form

S+ +gx—y) = 2 () ki (7).

Namely, by the results of [3], [6], all solutions f, g are exponential polynomials,
and in case of the linear independence of the functions h,, ..., h,, and also of the
functions &, ..., k, the same is valid for h;, k; (i=1,...,n). Then, taking the
Fourier-transform of both sides of the equation as a function of x, we have for all
exponentials m and x, y in G

M) M) +)+m(=)Em =) = 3 k) k()

Here, however we know that f(m), g(m) and /;(m) are polynomials and comparing
the monomials of the highest degree in their representations we get relations between
m, m and the functions k; (i=1, ..., n). Repeating this argument we easily obtain
all relations between the representations of the unknown functions.

The property of f—f expressed in Corollary 2.5 gives us the possibility to
determine without integration all solutions of linear differential equations with con-
stant coefficients if the right hand side is any exponential polynomial. Namely, we
can reduce the problem to the determination of all polynomial solutions of equations
of similar type with a polynomial right hand side by taking the Fourier transform
of both sides. As polynomial solutions can be found very easily by comparing the
coefficients, this latter problem is trivial. By the same method we can find a par-
ticular solution of linear differential equations with polynomial coefficients, if the
right hand side is any exponential polynomial. In concrete cases the computations
are very simple and systematic (see [8]).
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The property of f—f expressed in theorem 2.4 shows that by the above method
we can find all exponential polynomial solutions of inhomogeneous linear partial
differential equations with constant or polynomial coefficients if the inhomogeneous
term is an exponential polynomial. In particular, we derive explicit formulas for
the solutions of Cauchy problems for evolution-type partial differential equations
if the initial functions and the inhomogeneous term are exponential polynomials.

In the case G=R" all exponentials have the form x-&** for some A€C"

(where (4, x)= j‘ J;x;) and for all exponential polynomials f, the value of the

Fourler-transform of f at the exponential function m(x)=e** will be denoted
by f(2) instead of f(m).

Let P be a complex polynomial on R”. Then, by theorem 2.4 for all complex
exponential polynomials f and A€C" we have (P(9)f)"(A)=P(@+A)-f(2) where
0+4 denotes the operator (0;+4,, ..., 0,+4,).

Now we study the Cauchy-problem for the heat equation, that is the problem

o,u = a*du
M {u(x 0) = uy(x)
] ] .

We suppose that u,: R"—C is an exponential polynomial, and we try to find an
exponential polynomial u,: R"XR—C which is a solution of the above problem.
It is known that our problem has at most one solution. We remark, that 9, denotes

the differential operator d,., on R*XR, and 4= Z 02,

Observing, that all exponentials on R"XR have the form (x, 1) et +nt
with some A€C", u€C, we denote the value of the Fourier-transform of u at the
exponential m(x, t)=e&***# by (A, ). Then by taking the Fourier-transform
of both sides of the first equation in (1) we obtain

) Oy ti(A, w) +p-0(4, p) = a*(4+2(4, 3)+ (4, A)a(4, p).

Here (4,0)= 23i7: We know that #(4, g) is a polynomial for all A€C", ucC.
For a fixed pa]l‘ ,1 ulet
a2, W(x, 1) = ay() 1V +... +ao(x),

where g, is a polynomial (k=0,1,...,N) and ay#0. Substituting into (2) and
comparing the coefficients of ¥ we have p=a*(4, 2). Then comparing the coeffi-
cients of #* for k=0, 1, ..., N—1, we have

A 41(x) =

(4 +20,0) 4.

Obviously a,(x)=1,(2)(x), and hence

2k
a(x) = 1—!(4 +20, (D) (k=0,1,..., N).

Here N denotes the smallest nonnegative integer for which ay#0, ay.,=0. The
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existence of such an N follows from the fact that #,(1) is a polynomial. (We supposed
here, that #,(4)#0.)

Using the inversion formula we have

Theorem 3.1. Let u,: R"~C be an exponential polynomial. Then the unique
solution of the Cauchy-problem (1) can be written in the form:

= 3 3E@r2G.9N

NI ﬁo(l)(x) N, e(‘v x)+a(a, )t
AEC"NO 1

Jor all xcR", teR.

(Here both sums are actually finite and the values of u can be computed easily
without integration.)
A straightforward extension of our result is the following:

Theorem 3.2. Let u,: R"~C be an exponential polynomial. Then the unique
solution of the Cauchy-problem
{ ou =a*Au

3) u(x, to) = ug(x),

can be written in the form

@ o= 3 3 EEEGIL 4600 ¢ spennrenro
F N=0 H
Jor all xcR", teR.
The next step is to solve the inhomogeneous Cauchy-problem
du = adu+f(x,1),
{u(x,O) = Up(x).

Here we suppose, that u,: R"-=C and f: R"XR~-C are exponential polynomials,
and we seek an exponential polynomial u: R"XR-C which is a solution of (5).
Of course the solution is unique again, and we can reduce the problem to the problem
with homogeneous initial data

ou = a*du+f(x,1),
{u(x, 0)=0.

&)

(6)

In order to solve (6) we make a simple observation: if the function (x, t)—=v(x, 1, 1)
T
is a solution of (3) with wuy(x)=f(x, 1), then the function (x,?)— f o(x,t, 1) dr
0

is a solution of (6).
Using (4) we see, that the function

u(x, f) P ZI f [a"(.d +2<11 3))]" _f(},’ ‘u) (x’ T)e#‘+¢!(‘-‘)<a,1>(‘_t)ﬁ dt . e®

AECr uECN=0¢
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is a solution of (6). If we use the Taylor-formula

J0 ) = 3 BerSCDED oy

which is a finite sum as f(4, g) is a polynomial, then we see that the only task is
to compute integrals of the form

t
0
We now put

t
Iy(@) = fs”e”ds
0

for each nonnegative integer M and «€C. The following theorem is an easy con-
sequence of 3.1 and 3.2.

Theorem 3.3. Let f: R"XR—-C, u,: R"=C be exponential polynomials. Then
the unique solution of the Cauchy-problem (5) can be written in the form u=u,+u,
where

[a*(4+2 () N
) u(x, 1) = ag"

o (A) (x) 1Y - e,

o ok
® weo=3 33 IrERE 76,060
. IN+k(as (A, A) —'_U.) eld x)+ut

for all x€R", and t€R, where for a#0

M= M! M+1
IM(“) ~ Z( l}' (M })' '_':'i" I)H M +1? IM(O) =M+1'

(All sums are actually finite.)

The preceding results can easily be extended for evolution equations of more
general type, as for instance the Cauchy-problem

{ du = P@u+f(x, 1),

i u(x, 0) = ()

where P is a polynomial in n variables, d=(d,,...,d,) and 0,=0,.,, further
f: R"XR—-C and u,: R"-C are exponential polynomials. By the same method
we can produce an exponential polynomial solution, which is the only solution if
uniqueness is guaranteed. As special cases we get explicit (solutions) of the Cauchy-
problem for the Schrédinger, or biharmonic and other equations.

Theorem 3.4. Let f: R*"XR~C, uy: R"~C be exponential polynomials. Then
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the exponential polynomial u=uy+u,, where u;, u, are defined by

s o N
(10) siliche 3 3 HOFN-FH

AEC" N=0 N!

o (A)(x) 1N - eXr 2+ PR,
an s
- e s N
= 3 > 3 3o PO POD ot 76, 0 0 Iy PO - ) o

AECPHECN=0 k= N'k!
for x€R” t€R is a solution of the Cauchy-problem (9).

ProOF. The proof proceeds either by direct computation, as the sums are
finite (which follows from the fact, that u,, f are exponential polynomials, and hence
fio(4), (2, p) are polynomials), or repeating the arguments used in proving Theo-
rem 3.2,

Example 3.5. As an illustration we solve the Cauchy-problem for the Schrédin-
ger-equation

{ ou = idu+txcost—y*sint,

u(x, y,0) = x*+ 2%

Using the notations of theorem 3.1 we have here:
P(%y, Ag) = i(A1 +43D),

. 3 {x‘!-{-y2 for 4i=4;=0
ug(il. -Z)(xs y) = 0 otherwise,

f 2
%—--';—i for Lh=A4=0, u=1i,
5 e 2
J s das D, 7 1) Z+% for h=k=0, p=—i,
0 otherwise.
Finally,
eti—| tetit

+edit—1],

() =S, K="

and hence by (10) and (11) we obtain
u(x, y, 1) = x2+y2+4it,
ug(x, y, 1) = x sin t+y*(cos t —1)—2it+2isin t.
Thus the solution is
u(x, y, t) = x sin t+x*+y*cos t+2i(t+sin 7).

2.
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