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Symmetric units in integral group rings

By VICTOR BOVDI (Nýıregyháza) and M. M. PARMENTER (St. John’s)

Abstract. In this paper, we study the question of when the symmetric units in
an integral group ring ZG form a multiplicative group. When G is periodic, necessary
and sufficient conditions are given for this to occur.

1. Introduction

Let U(KG) be the group of units of the group ring KG of the group
G over a commutative ring K. The anti-automorphism g → g−1 of G
extends linearly to an anti-automorphism a → a∗ of KG. Let S∗(KG) =
{x ∈ U(KG) | x∗ = x} be the set of all symmetric units of U(KG).

The subgroup U∗(KG) = {x ∈ U(KG) | xx∗ = 1} is called the unitary
subgroup of U(KG). It is easy to see ([4], Proposition 1.3) that if K = Z
then U∗(ZG) is trivial, i.e. U∗(ZG) = ±G. If U(ZG) 6= ±G, then in U(ZG)
there always exist nontrivial symmetric units, for example xx∗ where x is
a nontrivial unit in U(ZG).

In this paper we answer the question: for which groups G do the
symmetric units of the integral group ring ZG form a multiplicative group?
If K is a commutative ring of characteristic p and G is a locally finite p-
group this question for KG was described in [2].

Lemma (see [2]). Let K be a commutative ring and G be an arbitrary
group. If S∗(KG) is a subgroup in U(KG) then S∗(KG) is abelian and
normal in U(KG).
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Theorem. If S∗(ZG) is a subgroup in U(ZG), then the set t(G) of
elements of G of finite order is a subgroup in G, every subgroup of t(G)
is normal in G and t(G) is either abelian or a hamiltonian 2-group. Con-
versely, suppose that the group G satisfies the above conditions and G/t(G)
is a right ordered group. Then S∗(ZG) is a subgroup in U(ZG).

2. Proof of the theorem

If the subgroup t(G) of the group G has the given properties and the
quotient group G/t(G) is right ordered, then by Theorem 5.2 [1]

V (ZG) = G · V (Zt(G)).

Hence, every element u ∈ S∗(ZG) can be written as bw, where b is an
element of G and w ∈ U(Zt(G)). Suppose that b is of infinite order and w =
α1g1 + . . . + αsgs. Then bw = w∗b−1 and Supp(bwb) = {bg1b, . . . , bgsb} =
{g−1

1 , . . . , g−1
s }. Thus bg1b = g−1

i and (bg1)2 = g−1
i g1 is an element of

finite order, which is a contradiction.

We conclude that S∗(ZG) ⊆ U(Zt(G)). If t(G) is abelian then S∗(ZG)
is a subgroup. On the other hand, if t(G) is a hamiltonian 2-group then
by Corollary 2.3 in [4], V (Zt(G)) = t(G) and so S∗(ZG) coincides with the
centre of t(G) and is again a subgroup.

So now we assume that S∗(ZG) is a subgroup in U(ZG). We first show
that any subgroup of t(G) is normal in G (this also proves that t(G) is a
subgroup of G). If not, then there exist x ∈ t(G), y ∈ G with y−1xy /∈ 〈x〉.
But then u = 1 + (1 − x)yx̂ is a nontrivial bicyclic unit in ZG (where
x̂ = 1 + x + . . . + xn−1, n = o(x)), and Marciniak and Sehgal proved
in [3] that 〈u, u∗〉 is a nonabelian free subgroup of U(ZG). In particular,
this means that uu∗ 6= u∗u and that uu∗, u∗u do not commute with each
other. Since uu∗ and u∗u are in S∗(ZG), this contradicts the lemma.

We now have that t(G) is either abelian or hamiltonian. To finish the
proof, we need only to show that if Q = 〈a, b | a4 = 1, a2 = b2, ba = a3b〉
is the usual quaternion group and g is of odd prime order p, then Q× 〈g〉
contains a pair of noncommuting symmetric units.

Recall ([4], p. 34) that if x is of order n in G and (i, n) = (j, n) = 1,
and ik ≡ 1 (mod n), then

u = (1 + xj + . . . + xj(i−1))(1 + xi + . . . + xi(k−1)) +
1− ik

n
x̂

is a (Hoechsmann) unit in ZG.
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First assume p 6= 3. Then ag and bg are of order 4p, and setting
i = j = 3 (and 3k ≡ 1 (mod 4p)) we obtain units

u = (1 + (ag)3 + (ag)6)(1 + (ag)3 + . . . + (ag)3(k−1)) +
1− 3k

4p
âg

v = (1 + (bg)3 + (bg)6)(1 + (bg)3 + . . . + (bg)3(k−1)) +
1− 3k

4p
b̂g .

Now u1 = (ag)−2u and v1 = (bg)−2v are symmetric units. We claim
that u1 and v1 do not commute. Since (ag)−2 and (bg)−2 are central, this
is equivalent to showing that u and v do not commute.

Since 1−3k
4p âg and 1−3k

4p b̂g are central, this is equivalent to showing
that u2 and v2 do not commute where

u2 = (1 + (ag)3 + (ag)6)(1 + (ag)3 + · · ·+ (ag)3(k−1))

= 1 + 2(ag)3 + 3(ag)6 + . . . + 3(ag)3(k−1) + 2(ag)3k + (ag)3(k+1)

v2 = 1 + 2(bg)3 + 3(bg)6 + . . . + 3(bg)3(k−1) + 2(bg)3k + (bg)3(k+1) .

Since all terms with even exponents are central, this is equivalent to
showing that u3 and v3 do not commute where

u3 = 2(ag)3 + 3(ag)9 + . . . + 3(ag)3(k−2) + 2(ag)3k

v3 = 2(bg)3 + 3(bg)9 + . . . + 3(bg)3(k−2) + 2(bg)3k.

But in u3v3 only 4 products are not divisible by 3. Since 3k ≡ 1
(mod 4p), these reduce to 4abg6 + 8a3bg4 + 4abg2. In v3u3, the same
products reduce to 4a3bg6 + 8abg4 + 4a3bg2. Because all other products
are divisible by 3, we see u3v3 6= v3u3.

If p = 3, the same argument works with i = j = k = 5. In this
case, direct calculation shows that if u and v are defined as before, the
symmetric units (ag)4u and (bg)4v do not commute. ¤

Note that when G is periodic, the theorem shows that S∗(ZG) is a
subgroup only in the obvious cases – namely when G is either abelian or
a hamiltonian 2-group.

We remark that it is possible to avoid using the result from [3] and
to prove that every subgroup of t(G) is normal in G by a direct argument
instead. We have decided to use [3] in order to indicate how useful the
Marciniak–Sehgal result can be.
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