Symmetric units in integral group rings

By VICTOR BOVDI (Nyíregyháza) and M. M. PARMENTER (St. John's)

Abstract. In this paper, we study the question of when the symmetric units in an integral group ring \mathbb{ZG} form a multiplicative group. When G is periodic, necessary and sufficient conditions are given for this to occur.

1. Introduction

Let U(KG) be the group of units of the group ring KG of the group G over a commutative ring K. The anti-automorphism $g \to g^{-1}$ of G extends linearly to an anti-automorphism $a \to a^*$ of KG. Let $S_*(KG) = \{x \in U(KG) \mid x^* = x\}$ be the set of all symmetric units of U(KG).

The subgroup $U_*(KG) = \{x \in U(KG) \mid xx^* = 1\}$ is called the *unitary* subgroup of U(KG). It is easy to see ([4], Proposition 1.3) that if $K = \mathbb{Z}$ then $U_*(\mathbb{Z}G)$ is trivial, i.e. $U_*(\mathbb{Z}G) = \pm G$. If $U(\mathbb{Z}G) \neq \pm G$, then in $U(\mathbb{Z}G)$ there always exist nontrivial symmetric units, for example xx^* where x is a nontrivial unit in $U(\mathbb{Z}G)$.

In this paper we answer the question: for which groups G do the symmetric units of the integral group ring $\mathbb{Z}G$ form a multiplicative group? If K is a commutative ring of characteristic p and G is a locally finite p-group this question for KG was described in [2].

Lemma (see [2]). Let K be a commutative ring and G be an arbitrary group. If $S_*(KG)$ is a subgroup in U(KG) then $S_*(KG)$ is abelian and normal in U(KG).

Mathematics Subject Classification: 16534.

Key words and phrases: symmetric units, group rings.

Research supported by the Hungarian National Foundation for Scientific Research, Grant No. F015470, and by NSERC grant A8775, Canada.

Theorem. If $S_*(\mathbb{Z}G)$ is a subgroup in $U(\mathbb{Z}G)$, then the set t(G) of elements of G of finite order is a subgroup in G, every subgroup of t(G) is normal in G and t(G) is either abelian or a hamiltonian 2-group. Conversely, suppose that the group G satisfies the above conditions and G/t(G) is a right ordered group. Then $S_*(\mathbb{Z}G)$ is a subgroup in $U(\mathbb{Z}G)$.

2. Proof of the theorem

If the subgroup t(G) of the group G has the given properties and the quotient group G/t(G) is right ordered, then by Theorem 5.2 [1]

$$V(\mathbb{Z}G) = G \cdot V(\mathbb{Z}t(G))$$

Hence, every element $u \in S_*(\mathbb{Z}G)$ can be written as bw, where b is an element of G and $w \in U(\mathbb{Z}t(G))$. Suppose that b is of infinite order and $w = \alpha_1 g_1 + \ldots + \alpha_s g_s$. Then $bw = w^* b^{-1}$ and $\operatorname{Supp}(bwb) = \{bg_1 b, \ldots, bg_s b\} = \{g_1^{-1}, \ldots, g_s^{-1}\}$. Thus $bg_1 b = g_i^{-1}$ and $(bg_1)^2 = g_i^{-1}g_1$ is an element of finite order, which is a contradiction.

We conclude that $S_*(\mathbb{Z}G) \subseteq U(\mathbb{Z}t(G))$. If t(G) is abelian then $S_*(\mathbb{Z}G)$ is a subgroup. On the other hand, if t(G) is a hamiltonian 2-group then by Corollary 2.3 in [4], $V(\mathbb{Z}t(G)) = t(G)$ and so $S_*(\mathbb{Z}G)$ coincides with the centre of t(G) and is again a subgroup.

So now we assume that $S_*(\mathbb{Z}G)$ is a subgroup in $U(\mathbb{Z}G)$. We first show that any subgroup of t(G) is normal in G (this also proves that t(G) is a subgroup of G). If not, then there exist $x \in t(G), y \in G$ with $y^{-1}xy \notin \langle x \rangle$. But then $u = 1 + (1 - x)y\hat{x}$ is a nontrivial bicyclic unit in $\mathbb{Z}G$ (where $\hat{x} = 1 + x + \ldots + x^{n-1}, n = o(x)$), and MARCINIAK and SEHGAL proved in [3] that $\langle u, u^* \rangle$ is a nonabelian free subgroup of $U(\mathbb{Z}G)$. In particular, this means that $uu^* \neq u^*u$ and that uu^*, u^*u do not commute with each other. Since uu^* and u^*u are in $S_*(\mathbb{Z}G)$, this contradicts the lemma.

We now have that t(G) is either abelian or hamiltonian. To finish the proof, we need only to show that if $Q = \langle a, b \mid a^4 = 1, a^2 = b^2, ba = a^3b \rangle$ is the usual quaternion group and g is of odd prime order p, then $Q \times \langle g \rangle$ contains a pair of noncommuting symmetric units.

Recall ([4], p. 34) that if x is of order n in G and (i, n) = (j, n) = 1, and $ik \equiv 1 \pmod{n}$, then

$$u = (1 + x^{j} + \dots + x^{j(i-1)})(1 + x^{i} + \dots + x^{i(k-1)}) + \frac{1 - ik}{n}\hat{x}$$

is a (Hoechsmann) unit in $\mathbb{Z}G$.

First assume $p \neq 3$. Then ag and bg are of order 4p, and setting $i = j = 3 \pmod{3k} \equiv 1 \pmod{4p}$ we obtain units

$$u = (1 + (ag)^3 + (ag)^6)(1 + (ag)^3 + \dots + (ag)^{3(k-1)}) + \frac{1 - 3k}{4p}\widehat{ag}$$
$$v = (1 + (bg)^3 + (bg)^6)(1 + (bg)^3 + \dots + (bg)^{3(k-1)}) + \frac{1 - 3k}{4p}\widehat{bg}.$$

Now $u_1 = (ag)^{-2}u$ and $v_1 = (bg)^{-2}v$ are symmetric units. We claim that u_1 and v_1 do not commute. Since $(ag)^{-2}$ and $(bg)^{-2}$ are central, this is equivalent to showing that u and v do not commute.

Since $\frac{1-3k}{4p}\widehat{ag}$ and $\frac{1-3k}{4p}\widehat{bg}$ are central, this is equivalent to showing that u_2 and v_2 do not commute where

$$u_{2} = (1 + (ag)^{3} + (ag)^{6})(1 + (ag)^{3} + \dots + (ag)^{3(k-1)})$$

= 1 + 2(ag)^{3} + 3(ag)^{6} + \dots + 3(ag)^{3(k-1)} + 2(ag)^{3k} + (ag)^{3(k+1)}
$$v_{2} = 1 + 2(bg)^{3} + 3(bg)^{6} + \dots + 3(bg)^{3(k-1)} + 2(bg)^{3k} + (bg)^{3(k+1)}.$$

Since all terms with even exponents are central, this is equivalent to showing that u_3 and v_3 do not commute where

$$u_3 = 2(ag)^3 + 3(ag)^9 + \ldots + 3(ag)^{3(k-2)} + 2(ag)^{3k}$$
$$v_3 = 2(bg)^3 + 3(bg)^9 + \ldots + 3(bg)^{3(k-2)} + 2(bg)^{3k}.$$

But in u_3v_3 only 4 products are not divisible by 3. Since $3k \equiv 1 \pmod{4p}$, these reduce to $4abg^6 + 8a^3bg^4 + 4abg^2$. In v_3u_3 , the same products reduce to $4a^3bg^6 + 8abg^4 + 4a^3bg^2$. Because all other products are divisible by 3, we see $u_3v_3 \neq v_3u_3$.

If p = 3, the same argument works with i = j = k = 5. In this case, direct calculation shows that if u and v are defined as before, the symmetric units $(ag)^4u$ and $(bg)^4v$ do not commute.

Note that when G is periodic, the theorem shows that $S_*(\mathbb{Z}G)$ is a subgroup only in the obvious cases – namely when G is either abelian or a hamiltonian 2-group.

We remark that it is possible to avoid using the result from [3] and to prove that every subgroup of t(G) is normal in G by a direct argument instead. We have decided to use [3] in order to indicate how useful the Marciniak–Sehgal result can be. 372 Victor Bovdi and M. M. Parmenter : Symmetric units in integral group rings

References

- [1] A. A. BOVDI, Group of unit in integral group ring, Uzhgorod University, 1987. (in Russian)
- [2] VICTOR BOVDI, L. G. KOVÁCS and S. K. SEHGAL, Symmetric units in modular group algebras, *Comm. Algebra* 24 (3) (1996), 803-808.
 [3] Z. S. MARCINIAK and S. K. SEHGAL, Constructing free subgroups of integral group
- [3] Z. S. MARCINIAK and S. K. SEHGAL, Constructing free subgroups of integral group ring units, *Proc. Amer. Math. Soc. (to appear)*.
- [4] S. K. SEHGAL, Units in integral group rings, Longmans, Essex, 1993.

VICTOR BOVDI DEPARTMENT OF MATHEMATICS BESSENYEI TEACHERS COLLEGE 4401 NYÍREGYHÁZA HUNGARY E-MAIL: vbovdi@math.klte.hu

M. M. PARMENTER DEPARTMENT OF MATHEMATICS AND STATISTICS MEMORIAL UNIVERSITY OF NEWFOUNDLAND ST. JOHN'S, NEWFOUNDLAND CANADA A1C 5S7

(Received October 14, 1996)