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Generic submanifolds of generalized complex space forms

By MUKUT MANI TRIPATHI (Lucknow)

Abstract. In the present paper we study generic submanifolds (in the sense of
Ronsse) of generalized complex space forms, where such submanifolds generalize/imply
holomorphic, totally real, slant, CR-, anti-holomorphic, f -, generic (in the sense of
Chen), generalized CR-, and skew CR submanifolds. Some examples along with an open
problem are given. A necessary and sufficient condition for integrability of totally real
distribution has been found. Ricci tensor and scalar curvature of generic submanifolds
have been studied. The paper ends with some results for totally umbilical generic
submanifolds.

1. Introduction

The theory of submanifolds of an almost Hermitian manifold is one of the
most interesting topics in differential geometry. In an almost Hermitian
manifold, its almost complex structure J transforms a vector into a vector
perpendicular to it. Perhaps this was the natural motivation to study
submanifolds of an almost Hermitian manifold, according to the behaviour
of its tangent bundle under the action of the almost complex structure J
of the ambient manifold.

There are two well-known classes of submanifolds, namely, holomor-
phic (invariant) submanifolds and totally real (anti-invariant) submani-
folds. In the first case the tangent space of the submanifold remains in-
variant under the action of the almost complex structure J where as in
the second case it is mapped into the normal space.

Study of differential geometry of CR-submanifolds, as a generalization
of invariant and anti-invariant submanifolds, of an almost Hermitian man-
ifold was initiated by A. Bejancu in 1978 [2] and was followed by several
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geometers (see [3], [7], [14], [33] and references cited therein). A subman-
ifold M of an almost Hermitian manifold is called a CR-submanifold if
the tangent bundle TM of M can be decomposed as the direct sum of
a holomorphic (invariant) and a totally real (anti-invariant) distributions.
CR-submanifolds have good interactions with other parts of mathematics
and substantial applications to (pseudo-) conformal mappings and relativ-
ity (see [3], [11] and references cited therein).

If a submanifold M of an almost Hermitian manifold admits a holo-
morphic distribution D = TM ∩ J(TM) then it is called a f-submanifold
(Yano and Ishihara [31]). Later on this submanifold was defined as
generic submanifold (Chen [6]) and this is a further generalization of the
concept of CR-submanifold.

Later, Chen introduced slant submanifolds [8] as another general-
ization of invariant and anti-invariant submanifolds of almost Hermitian
manifolds. On a submanifold M of an almost Hermitian manifold, for a
vector 0 6= Xx ∈ TxM , the angle θ(Xx) between JXx and the tangent
space TxM is called the Wirtinger angle of Xx. If the Wirtinger angle is
independent of x ∈ M and Xx ∈ TxM , then M is called a slant submani-
fold [8]. Invariant and anti-invariant submanifolds are slant submanifolds
with θ = 0 and θ = π/2 respectively. Slant submanifolds of almost Her-
mitian manifolds are characterized by the condition P 2 +λ2I = 0 for some
real number λ ∈ [0, 1], where PX is the tangential part of JX for X ∈ TM
and I is the identity transformation.

In 1990, Ronsse [22] introduced generic and in particular, skew CR-
submanifolds of an almost Hermitian manifold which differs from but
implies the generic submanifold given by Chen and the generalized CR-
submanifold introduced by Mihai [17]. On a submanifold M of an almost
Hermitian manifold, the tangent space TxM, x ∈ M can be decomposed as
the direct sum of the mutually orthogonal P -invariant distinct eigenspaces
Ker(P 2 + λ2

i (x)I)x of P 2
x where λi(x) ∈ [0, 1], i = 1, . . . , q. If dimensions

of the eigenspaces Ker(P 2 + λ2
i (x)I)x and q are independent of x ∈ M ,

then M is called a generic submanifold [22]. Moreover, if λi’s are also
independent of x ∈ M then a generic submanifold is called a skew CR-
submanifold.

We observe that skew CR-submanifolds also generalize slant subman-
ifolds. Thus generic submanifolds (in the sense of Ronsse) generalize holo-
morphic, totally real, CR- and slant submanifolds.

In this paper we study generic submanifolds of generalized complex
space forms. Section 2 is devoted to some preliminaries. Section 3 con-
tains some examples and an open problem. Integrability of totally real
distribution is the subject matter of Section 4. Some results on generic
submanifolds of generalized complex space forms are given in Section 5.
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Ricci tensor and scalar curvature of generic submanifolds have been stud-
ied in Section 6. In the last section totally umbilical generic submanifolds
have been studied.

2. Preliminaries

(a) Almost Hermitian manifolds and its different classes

Let M be an almost Hermitian manifold (AH -manifold) with an almost
Hermitian structure (J, g). If J is integrable, i.e. the Nijenhuis tensor
[J, J ] of J vanishes then the AH -manifold is called a Hermitian manifold .
The fundamental 2-form Ω of an AH -manifold is defined by Ω(X, Y ) ≡
g(X,JY ) for all X, Y ∈ TM . An AH -manifold is called an almost Kähler
manifold if the fundamental 2-form Ω is closed. An AH -manifold becomes

a nearly Kähler manifold [12] if (∇XJ)X = 0,
a Kähler manifold if ∇J = 0,
a locally conformal Kähler manifold [29] if dΩ = Ω ∧ ω and [J, J ] = 0

for all X ∈ TM , where ∇ is the Levi-Civita connection of the Riemannian
metric g and ω is certain closed 1-form (the Lee form) on M .

An AH -manifold with J -invariant Riemannian curvature tensor R, i.e.

R(JX, JY, JZ, JW ) = R(X, Y, Z, W ), X, Y, Z, W ∈ TM,

is called an RK -manifold (Vanhecke [30]).
All nearly Kähler and para-Kähler [21] (F -space [23]) manifolds be-

long to the class of RK -manifolds. There are examples of flat para-Kähler
manifolds (and hence of RK -manifolds) which are not Kähler [15, 24, 26].

An AH -manifold M is said to have (pointwise) constant type if for
each x ∈ M and for all X, Y, Z ∈ TxM such that

g(X,Y ) = g(X, Z) = g(X, JY ) = g(X, JZ) = 0,

g(Y, Y ) = 1 = g(Z, Z)

we have

R(X, Y, X, Y )−R(X, Y, JX, JY ) = R(X,Z, X, Z)−R(X,Z, JX, JZ).

The notion of constant type was first introduced by A. Gray for a nearly
Kähler manifold [12].

It is known that if M is an RK -manifold then it has (pointwise)
constant type iff there is a differentiable function α on M satisfying (Van-
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hecke [30])

R(X,Y, X, Y )−R(X,Y, JX, JY )

= α(g(X,X)g(Y, Y )− g(X,Y )2 − g(X, JY )2)

for all X,Y, Z ∈ TM . Furthermore, M has global constant type if α is
constant. The function α is called the constant type of M .

An RK -manifold of constant holomorphic sectional curvature c and
constant type α is denoted by M(c, α). For M(c, α) it is known that [30]

4R(X,Y )Z = (c + 3α)(g(Y, Z)X − g(X, Z)Y )

+ (c− α)(g(X, JZ)JY − g(Y, JZ)JX + 2g(X,JY )JZ)

for all X,Y, Z ∈ TM . If c = α then M(c, α) is a space of constant
curvature.

A complex space form M(c) (a Kähler manifold of constant holomor-
phic sectional curvature c) belongs to the class of AH -manifolds M(c, α)
(with the constant type zero).

An AH -manifold M is called a generalized complex space form
M(f1, f2) (Tricerri and Vanhecke [25]) if its Riemannian curvature
tensor R satisfies

(2.1) R = f1R1 + f2R2

where f1 and f2 are smooth functions on M and

R1(X, Y )Z = g(Y, Z)X − g(X, Z)Y,(2.2)

R2(X, Y )Z = g(X,JZ)JY − g(Y, JZ)JX + 2g(X,JY )JZ(2.3)

for all X, Y, Z ∈ TM . We have the inclusion relation M(c) ⊂ M(c, α) ⊂
M(f1, f2).

(b) Submanifolds of a Riemannian manifold

Let M be a submanifold of a Riemannian manifold M with a Riemannian
metric g. Then Gauss and Wiengarten formulae are given respectively by

∇XY = ∇XY + h(X,Y ) and ∇XN = −ANX +∇⊥XN

for all X, Y ∈ TM and N ∈ T⊥M , where ∇, ∇ and ∇⊥ are respectively
the Riemannian, induced Riemannian and induced normal connections in
M , M and the normal bundle T⊥M of M respectively, and h is the second
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fundamental form related to A by g(h(X,Y ), N) = g(ANX, Y ). Moreover,
if J is a (1,1) tensor field on M , for X,Y ∈ TM and N ∈ T⊥M we put

JX = PX + FX, PX ∈ TM, FX ∈ T⊥M,(2.4)

JN = tN + fN, tN ∈ TM, fN ∈ T⊥M.(2.5)

In this case we have

(∇XJ)Y = ((∇XP )Y −AFXY − th(X,Y ))(2.6)

+ ((∇XF )Y + h(X, PY )− fh(X,Y )),

where

(∇XP )Y ≡ ∇XPY − P∇XY and (∇XF )Y ≡ ∇⊥XFY − F∇XY.

Let R (resp. R) be the curvature tensor of M (resp. M). Then the
equations of Gauss and Codazzi are given by

g(R(X,Y )Z, W ) = g(R(X, Y )Z, W )− g(h(X, W ), h(Y,Z))(2.7)

+ g(h(X,Z), h(Y, W )),

(R(X,Y )Z)⊥ = (∇Xh)(Y,Z)− (∇Y h)(X, Z),(2.8)

respectively, where (R(X, Y )Z)⊥ is the normal component of R(X,Y )Z,
and

(2.9) (∇Xh)(Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

The submanifold M is defined [5] to be
totally geodesic in M if h = 0,
minimal if H ≡ Trace(h)/Dim(M) = 0, and
totally umbilical if h(X,Y ) = g(X, Y )H.

(c) Generic and other classes of submanifolds of AH -manifolds

Let M be a submanifold of an AH -manifold M . Then the operator P 2
x is

symmetric ((g(P 2X, Y ) = g(X,P 2Y )) on TxM and therefore its eigenval-
ues are real and it is diagonalizable. Moreover, its eigenvalues are bounded
by −1 and 0. For each x ∈ M we may set

Dλ
x = Ker(P 2 + λ2(x)I)x

where I is the identity transformation and λ(x) belongs to the closed real
interval [0, 1] such that −λ2(x) is an eigenvalue of P 2

x . Since P 2
x is symmet-

ric and diagonalizable, there is some integer q such that−λ2
1(x), . . . ,−λ2

q(x)
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are distinct eigenvalues of P 2
x and TxM can be decomposed as the direct

sum of the mutually orthogonal P -invariant eigenspaces, i.e.

TxM = Dλ1
x ⊕ · · · ⊕ Dλq

x .

If λi(x) > 0 then Dλi
x is even-dimensional. Note that D1

x = Ker(Fx)
and D0

x = Ker(Px). Here D1
x is the maximal J -invariant while D0

x is the
maximal anti-J -invariant subspace of TxM . For more details we refer
to [22, 28].

Now, we recall the definitions of generic and skew CR-submanifolds
of an AH -manifold defined by Ronsse [22].

Definition. A submanifold M of an AH -manifold M is called a generic
submanifold of M if there are k functions λ1, . . . , λk defined on M with
values in the open interval (0, 1) such that the following two conditions
hold:

(i) −λ2
1(x), . . . ,−λ2

k(x) are distinct eigenvalues of P 2 at x ∈ M with

TxM = D1
x ⊕D0

x ⊕Dλ1
x ⊕ · · · ⊕ Dλk

x ,

where D1
x = Ker(Fx), D0

x = Ker(Px) and Dλi
x = Ker(P 2 + λ2

i (x)I)x, i ∈
{1, . . . , k},

(ii) the dimensions ofD1
x, D0

x, Dλ1
x , . . . ,Dλk

x are independent of x ∈ M .
If in addition, each λi is constant, then M is called a skew CR-submanifold .
If k = 0 (i.e. in (i) TxM = D1

x ⊕D0
x) then (i) implies (ii) (Remark 2 [27]).

Condition (ii) in the above definition enables one to define P -invariant
mutually orthogonal distributions

Dλ =
⋃

x∈M

Dλ
x , λ ∈ {0, 1, λ1, . . . , λk},

on M such that

TM = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk .

In view of the study of Nomizu [18], these distributions are differentiable.
For X ∈ TM we write

(2.11) X = U1X + U0X + Uλ1X + · · ·+ UλkX,

where U1, U0, Uλ1 , . . . , Uλk are orthogonal projection operators of TM on
D1,D0,Dλ1 , . . . ,Dλk respectively.

For a generic submanifold M of M we have

T⊥M = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk ,
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where D1 = Ker(t), D0 = Ker(f), FDλ = Dλ and tDλ = Dλ, λ ∈
{0, λ1, . . . , λk}.

A generic submanifold of an AH -manifold becomes
– a CR-submanifold [3] if k = 0,
– a proper CR-submanifold [3] if k = 0 and D1 6= {0} 6= D0,
– a holomorphic (invariant) submanifold [34] if k = 0 and D0={0},
– a totally real (anti-invariant) submanifold [32] if k = 0 and
D1 = {0},

– a slant submanifold [8] if D1 = {0} = D0, k = 1 and λ1 is
constant,

– an anti-holomorphic submanifold [3] (generic submanifold in the
sense of Yano and Kon [33]) if k = 0 and JD0 = T⊥M.

The generic submanifold in the sense of Ronsse also implies the generic
submanifold in the sense of Chen [6, 20] (f-submanifold in the sense of
Yano and Ishihara [31]) and generalized CR-submanifold in the sense of
Mihai [17]. Throughout the paper generic submanifolds are in the sense
of Ronsse unless specifically stated otherwise.

3. Some examples

First we give an example of a generic submanifold of an AH -manifold.

Example 3.1. We consider the Euclidean space <8 and denote its
points by x = (xi). Let (ej), j = 1, . . . , 8 be the natural basis defined
by ej = ∂/∂xj . We define a (1, 1) tensor field J by

Je1 = −e2, Je2 = e1, Je3 = −e8, Je8 = e3,

Je4 = − cos ν(x)e5 + sin ν(x)e6, Je5 = cos ν(x)e4 + sin ν(x)e7,

Je6 = − sin ν(x)e4 + cos ν(x)e7, Je7 = − sin ν(x)e5 − cos ν(x)e6,

where ν : <8 → (0, π/2) is some smooth function. Then <8 possesses an
almost Hermitian structure (J, g), where g is the canonical metric on <8

given by g(ei, ej) = δij , i, j = 1, . . . , 8.
The submanifold <5 = {x∈<8|x6, x7, x8 =0} of <8 is a generic sub-

manifold with D1 = Span{e1, e2}, D0 = Span{e3} and Dλ = Span{e4, e5},
where for x ∈ <5, λ(x) ≡ cos ν(x).

Example 3.2. Let 1 < min(h1, h2) < h1 + h2 < n such that M1 is
a complex submanifold of Ch1 , M2 is a totally real submanifold of Ch2

and M3 is a proper slant submanifold of Cn−h1−h2 . Then the product
M1 ×M2 ×M3 is a skew CR submanifold of the complex manifold Cn.
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It is known that a differentiable manifold M admits a CR-structure
(in the sense of Greenfield [13]) iff there is a differentiable distribution
D and a (1, 1) tensor field J on M such that for all vector fields X and Y
in D

J2X = −X and [JX, JY ]− [X, Y ] = J [JX, Y ]− J [X,JY ] ∈ D.

A manifold endowed with a CR-structure is called a CR-manifold (Be-
jancu [3], pp. 128–130).

In [4], Blair and Chen proved the following theorem (as justification
of the name CR-submanifold).

Theorem. Every CR-submanifold of a Hermitian manifold is a CR-
manifold.

Thus, for a CR-submanifold M of an AH -manifold M with D1 6= {0}
to be a CR-manifold, it is sufficient that M is Hermitian. However, this
is not necessary, and in the following example we find a CR-submanifold
M = <3 of an AH -manifold M = <4 in which M is a CR-manifold and
the almost Hermitian structure of M is not Hermitian.

Example 3.3. Consider the Euclidean space <4 and denote its points
by x = (x1, x2, x3, x4). Let (ej), j = 1, . . . , 4 be the natural basis defined
by ej = ∂/∂xj , g be the canonical metric defined by g(ei, ej) = δij , i, j =
1, . . . , 4. For every x ∈ <4, the set (Ej) defined by

E1 = e1, E2 = cos(x1)e2 + sin(x1)e3,

E3 = − sin(x1)e2 + cos(x1)e3, E4 = e4,

forms an orthonormal basis, i.e. g(Ei, Ej) = δij . As the point x varies in
<4 the above set of equations defines four vector fields also denoted by
(Ej). Now, the following identities

J(E1) = E2, J(E2) = −E1, J(E3) = E4, J(E4) = −E3

define an almost complex structure J on <4. Then <4 is a non-Hermitian
AH -manifold with the almost Hermitian structure (J, g) (Konderak [15]).

Consider the hypersurface <3 = {x ∈ <4 | x4 = 0}. Since each
real hypersurface of an AH -manifold is a CR-submanifold ([3], p. 21), <3

is a CR-submanifold of <4. Here the holomorphic distribution is D1 =
Span{E1, E2}, and the anti-invariant distribution is D0 = Span{E3}.

It is straightforward to check that (D, J) defines a CR-structure on the
CR-hypersurface <3. Moreover, since [E1, E2] = E3, D1 is not integrable.
On the other hand, D0 is integrable.
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In view of the above example we have the following open problem.

Problem 3.4. Does a non-Hermitian AH -manifold admit a CR-
submanifold which is not a CR-manifold?

4. Integrability of the totally real distribution

First we prove a lemma.

Lemma 4.1. Let M be a generic submanifold of an AH -manifold.
Then the totally real distribution D0 is integrable iff

(4.1) dΩ(X, Y, Z) = 0, Y, Z ∈ D0, X ∈ TM.

Proof. For X ∈ TM, Y, Z ∈ D0, we have

3dΩ(X, Y, Z) = XΩ(Y, Z) + Y Ω(Z, X) + ZΩ(X, Y )− Ω([X, Y ], Z)

− Ω([Y, Z], X)− Ω([Z, X], Y )

= −g([Y,Z], JX) = g(P [Y,Z], X).

Thus (4.1) implies and is implied by the integrability of D0. ¤
Using the above lemma we can prove the following

Theorem 4.2. Let M be one of the almost Kähler, Kähler or locally
conformal Kähler manifold. Then in order that a submanifold M of M is
one of a generic, anti-holomorphic, CR- or generalized CR-submanifold it
is necessary that the totally real distribution D0 is integrable.

5. Generic submanifolds

Let M be a submanifold of a generalized complex space form
M(f1, f2). If M is anti-invariant or invariant then it is easy to verify that
TM and T⊥M are invariant under the action of R(X, Y ) for all X, Y ∈
TM , i.e. R(X, Y )Z ∈ TM and R(X,Y )N ∈ T⊥M for all X,Y, Z ∈ TM
and N ∈ T⊥M .

If f2 6= 0 and TM is invariant under the action of R(X, Y ) then

R(X, Y )X = f1R(X,Y )X − 3f2g(JX, Y )JX

which implies that g(JX, Y )JX ∈ TM so that either JX ∈ TM or
g(JX, Y ) = 0. Since J is linear, M is either invariant or anti-invariant.

Thus we are able to state
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Theorem 5.1. Let M be a submanifold of M(f1, f2) with f2 6= 0.
Then M is invariant or anti-invariant iff R(X,Y )Z ∈ TM for all X, Y, Z ∈
TM . Consequently, if M is a generic submanifold of M(f1, f2) such that
D0 6= {0} 6= D1⊕Dλ1 ⊕ · · · ⊕Dλk , then R(X,Y )Z ∈ TM for all X, Y, Z ∈
TM iff f2 = 0.

In particular, the above theorem provides Proposition 3.1 of [9], Pro-
position 2 of [16] and Theorem 3.2 of [1].

Proposition 5.2. Let M be a generic submanifold of an AH -manifold
M and D be a distribution on M . For X,Y ∈ D the following two state-
ments are equivalent:

(a) h(X,PY ) = h(PX, Y ),

(b) (ANPX + PANX) ⊥ D, N ∈ T⊥M.

Moreover, if M is Kähler then (a) is equivalent to each of the following
equivalent statements:

(c) (∇XF )Y − (∇Y F )X = 0, (d) F [X, Y ] = ∇⊥XFY −∇⊥Y FX.

Proof. In view of g(h(X, Y ), N) = g(ANX, Y ), (a) ⇐⇒ (b). Using
(2.6) we can prove the equivalence of (a), (c) and (d). ¤

The above proposition is an improvement over Lemma 4.2 of [22]. In
view of the above proposition we make the following

Definition 5.3. For a distribution D on a submanifold M of an AH -
manifold M we say that P is D-commutative if one of the equivalent state-
ments of (a) and (b) of the above proposition holds.

Note that P is D-commutative for each distribution D on M iff PAN +
ANP = 0 for all N ∈ T⊥M . If M is a generic submanifold, then P is D0-
commutative. If M is a generic submanifold of a Kähler manifold, then P
is D1-commutative iff D1 is integrable. If M is a generic submanifold of a
nearly Kähler manifold then P is D1-commutative if D1 is integrable.

For each Dλ, λ ∈ {0, 1, λ1, . . . , λk} on a generic submanifold of an
AH -manifold we choose a local orthonormal basis: E1, . . . , En(λ), where
n(λ) = Dim(Dλ) and put

(5.1) Hλ =
∑

i

h(Ei, Ei), i ∈ {1, . . . , n(λ)}.

A generic submanifold of an AH -manifold with Hλ = 0 will be called
Dλ-minimal and it will be minimal if H0 + H1 + Hλ1 + · · ·+ Hλk

= 0.
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Proposition 5.4. Let M be a generic submanifold of an AH -manifold.
If P is Dλ-commutative, λ 6= 0, then M is Dλ-minimal.

Proof. Choose a local orthonormal basis for
Dλ : E1, . . . , En(λ)/2, . . . , En(λ), where E(n(λ)/2)+i = PEi/λ, (1 ≤ i ≤
n(λ)/2). Then we have

h(Ei, Ei) + h(PEi/λ, PEi/λ) = h(Ei, Ei) + h(P 2Ei, Ei)/λ2

= h(Ei, Ei) + h(−λ2Ei, Ei)/λ2 = 0.

Consequently Hλ = 0. ¤
As an application of the above proposition we get

Corollary 5.5. If M is an invariant submanifold of a Kähler or nearly
Kähler manifold then M is minimal.

Let M be a submanifold of M(f1, f2). Then Gauss equation becomes

(5.2)

R(X,Y, Z, W ) = f1(g(Y,Z)g(X, W )− g(X, Z)g(Y, W ))

+ f2(g(X, PZ)g(PY, W )− g(Y, PZ)g(PX,W )

+ 2g(X,PY )g(PZ, W )) + g(h(X,W ), h(Y, Z))

− g(h(X,Z), h(Y, W ))

for all X, Y, Z, W ∈ TM . In particular,

−R(X,Y, X, Y ) = f1(g(X, X)g(Y, Y )− g(X, Y )2) + 3f2g(X, PY )2

+ g(h(X,X), h(Y, Y ))− ‖h(X,Y )‖2.(5.3)

If X and Y are orthogonal unit vectors in TxM then the sectional curvature
of a plane section determined by X and Y will be

KM (X ∧ Y ) = f1 + 3f2g(X, PY )2(5.4)

+ g(h(X,X), h(Y, Y ))− ‖h(X,Y )‖2.
Theorem 5.6. If M is an anti-invariant totally geodesic submanifold

of M(f1, f2), then

R(X, Y, Y, X) = f1(g(X, X)g(Y, Y )− g(X, Y )2).

Thus if f1 is constant then M is a space of constant curvature f1 .

Proof. Putting h = 0 and P = 0 in (5.3) we get the proof. ¤
The above theorem leads to the following two corollaries.
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Corollary 5.7. If M is an anti-invariant totally geodesic submanifold
of M(c, α), then M is a space of constant curvature (c + 3α)/4.

Corollary 5.8 (Proposition 3.2 [9]). If M is a totally geodesic anti-
invariant submanifold of a complex space form M(c), then M is a space
of constant curvature c/4.

If ∇F = 0 for a submanifold M of an AH -manifold M , then in view
of Theorem 6.3 of [28] the following three statements follow:
(a) M is a skew CR-submanifold,
(b) each of the distributions D1,D0,Dλ1 , . . . ,Dλk is parallel and conse-
quently M is locally product of leaves of these distributions (In fact, on
Dλi one gets the structure defined by P 2 = −λ2

i I [10]),
(c) each of the subbundles D1,D0,Dλ1 , . . . ,Dλk of T⊥M is parallel with
respect to ∇⊥.

If M is a nearly Kähler manifold then for a submanifold M of M ,
from (2.6) it follows that

(5.5) (∇XF )X + h(X, PX)− fh(X,X) = 0, X ∈ TM.

Proposition 5.9. If ∇F = 0 for a submanifold M of a nearly Kähler
manifold M , then for X ∈ Dλ, λ ∈ {0, 1, λ1, . . . , λk}, h(X, X) is zero or

an eigenvector of f2 with eigenvalue −λ2. In both cases h(X, X) ∈ Dλ.

Proof. Since ∇F = 0, (5.5) ⇒ f2h(X, X) = h(X,P 2X)
= −λ2h(X, X), X ∈ Dλ. ¤

A submanifold M of a Riemannian manifold is said to be
(D-D′)-mixed totally geodesic if h(D,D′) = 0,
D-totally geodesic if h(D,D) = 0,

where D and D′ are differentiable distributions on M .

Next we prove

Theorem 5.10. Let M be a submanifold of a generalized complex
space form M(f1, f2) such that M is nearly Kähler. If ∇F = 0 then for
any unit orthogonal vectors X ∈ Dλ, Y ∈ Dµ, λ 6= µ, we have

KM (X ∧ Y ) = f1 − ‖h(X,Y )‖2.
Moreover, if M is (Dλ-Dµ)-mixed totally geodesic then KM (X ∧ Y ) = f1.

Proof. From Proposition 5.9, h(X,X) ∈ Dλ and h(Y, Y ) ∈ Dµ.
Since Dµ is P -invariant, g(X, PY ) = 0. Therefore from (5.4) we get the
proof. ¤

The Proposition 5.1 of [22] can be obtained from the above theorem.
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For a unit vector X ∈ Dλ, λ 6= 0, of a generic submanifold of an
AH -manifold we define the Dλ-sectional curvature for X by

Hλ(X) = KM (X ∧ PX/λ).

In particular, if M is a CR-submanifold then D1-sectional curvature be-
comes the holomorphic sectional curvature H(X) = KM (X ∧ JX) (Bar-
ros and Urbano [1]).

From (5.4) we obtain

Hλ(X) = f1 + 3λ2f2(5.6)

+ (1/λ2)(g(h(X, X), h(PX, PX))− ‖h(X, PX)‖2).
Theorem 5.11. If M is a generic submanifold of a generalized complex

space form M(f1, f2) such that P is Dλ-commutative then

(5.7) Hλ(X) = f1 + 3λ2f2 − ‖h(X, X)‖2 − (1/λ2)‖h(X, PX)‖2).
Consequently,

(5.8) Hλ(X) ≤ f1 + 3λ2f2

and equality holds if M is Dλ-totally geodesic.

Proof. If P is Dλ-commutative then for X ∈ Dλ we get h(PX, PX)
= −λ2h(X, X). Using above equation in (5.6) we get (5.7). Rest of the
proof is straight forward. ¤

Remark 5.12. If M(f1, f2) is M(c, α), then (5.8) becomes

4Hλ(X) ≤ c(1 + 3λ2) + 3α(1− λ2).

In case of complex space form M(c), α = 0, and we get Proposition 5.2
of [22]. If M is a CR-submanifold of M(c) then the holomorphic sectional
curvature H(X) of M satisfies H(X) ≤ c, which is Theorem 4.3 of [1] on
page 359.

If M(f1, f2) is nearly Kähler then for a unit vector X ∈ D1 we get

h(X, PX) = fh(X, X) = F∇XX.

Consequently,

h(PX,PX) = f2h(X, X) = fF∇XX + F∇PXX.

Thus D1-sectional curvature is

H1(X) = f1 + 3f2 − 2‖fh(X,X)‖2 − ‖F∇XX‖2
+ g(h(X, X), fF∇XX + F∇PXX − 2F∇XX).
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In particular, if M is an invariant submanifold of M(f1, f2), then

H1(X) = f1 + 3f2 − 2‖h(X, X)‖2.
In a special case, if M is an invariant submanifold of M(c, α), then

H1(X) = c− 2‖h(X,X)‖2,
which is the last equation on page 358 of [1].

Let M be a generic submanifold of an AH -manifold. Let
{E1, . . . , En(λ)} and {F1, . . . , Fn(µ)} be local orthonormal bases for Dλ and
Dµ respectively. Then (Dλ −Dµ)-sectional curvature is defined by [22]

ρλµ =
n(λ)∑

i=1

n(µ)∑

j=1

KM (Ei ∧ Fj).

If λ 6= µ then from (5.4) we obtain

ρλµ = n(λ)n(µ)f1 + g(Hλ,Hµ)−
n(λ)∑

i=1

n(µ)∑

j=1

‖h(Ei, Fj)‖2.

For λ = 0 we get

ρ00 = n(0)2f1 + ‖H0‖2 −
n(0)∑

i=1

n(0)∑

j=1

‖h(Ei, Ej)‖2.

In order to calculate ρλλ for λ 6= 0 we choose a local orthonormal basis for
Dλ:

E1, . . . , En(λ)/2, . . . , En(λ), where

E(n(λ)/2)+i = PEi/λ, (1 ≤ i ≤ n(λ)/2).

Using this basis we obtain

n(λ)∑

i=1

n(λ)∑

j=1

g(Ei, PEj)2 = n(λ)λ2.

Therefore for λ 6= 0 we get

ρλλ = n(λ)2f1 + 3n(λ)λ2f2 + ‖Hλ‖2 −
n(λ)∑

i=1

n(λ)∑

j=1

‖h(Ei, Ej)‖2.

In view of the above discussion we can state
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Theorem 5.13. Let M be a generic submanifold of a generalized com-
plex space form M(f1, f2). Then

(1) If Hλ is perpendicular to Hµ, λ 6= µ, then ρλµ ≤ n(λ)n(µ)f1

and equality holds iff M is (Dλ-Dµ)-mixed totally geodesic.

(2) If M isDλ-minimal then ρλλ ≤ n(λ)2f1+3n(λ)λ2f2 and equality
holds iff M is Dλ-totally geodesic.

6. Ricci tensor and scalar curvature

Let M be a submanifold of dimension m of a generalized complex
space form M(f1, f2) of dimension 2n. Let {E1, . . . , Em} be a local or-
thonormal basis of TM and {N1, . . . , N2n−m} be a local basis of normal
sections and let ANν ≡ Aν . Then the Ricci tensor S of M is given by

S(X, Y ) =
m∑

i=1

R(X, Ei, Ei, Y ) =
m∑

i=1

[f1(g(Ei, Ei)g(X, Y )

− g(X, Ei)g(Ei, Y )) + 3f2g(PX,Ei)g(Ei, PY )

+ g(h(X,Y ), h(Ei, Ei))− g(h(X, Ei), h(Ei, Y ))]

=(m−1)f1g(X,Y )+3f2g(PX, PY )

+
2n−m∑
ν=1

{(TraceAν)g(AνX,Y )−g(AνX, AνY )}.

Thus we have

Theorem 6.1. Let M be an m-dimensional submanifold of a general-
ized complex space form M(f1, f2) of dimension 2n. Then

S(X,Y ) = (m− 1)f1g(X, Y ) + 3f2g(PX,PY )(6.1)

+
2n−m∑
ν=1

{(TraceAν)g(AνX, Y )− g(AνX, AνY )}.

Next we prove

Theorem 6.2. Let M be an m-dimensional generic submanifold of a
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generalized complex space form M(f1, f2) of dimension 2n. Then

S(X, Y ) =
∑

λ

((m− 1)f1 + 3λ2f2)g(UλX,UλY )(6.2)

+
2n−m∑
ν=1

{(Trace Aν)g(AνX, Y )− g(AνX,AνY )},

λ ∈ {0, 1, λ1, . . . , λk}.

Proof. Using (2.11) in (6.1) we get (6.2). ¤

The above theorem leads to the following

Corollary 6.3. Let M be an m-dimensional generic submanifold of a
generalized complex space form M(c, α) of dimension 2n. Then

S(X,Y ) =
∑

λ

(
m− 1 + 3λ2

4
c +

3(m− 1 + 3λ2)
4

α

)
g(UλX, UλY )

+
2n−m∑
ν=1

{(TraceAν)g(AνX,Y )− g(AνX, AνY )},(6.3)

λ ∈ {0, 1, λ1, . . . , λk}.

In particular, if M is a CR-submanifold of M(c, α) (resp. M(c)), then
(6.3) becomes (5.4) of [1] (resp. (4.7) of [2]). In particular, if M is a totally
real submanifold of a complex space form M(c) then (6.3) becomes (5.4)
of [9].

Let M be an m-dimensional generic submanifold of a generalized com-
plex space form M(f1, f2). Let n(λ) be dimension of Dλ,
λ ∈ {0, 1, λ1, . . . , λk}. Then considering a local orthonormal basis:

E0
1 , . . . , E0

n(0), E
1
1 , . . . , E1

n(1)/2, E
1
(n(1)/2)+1 = PE1

1 , . . . , E1
n(1) = PE1

n(1)/2,

Eλ1
1 , . . . , Eλ1

n(λ1)/2, E
λ1
(n(λ1)/2)+1 = PEλ1

1 /λ1, . . . , E
λ1
n(λ1)

= PEλ1
n(λ1)/2/λ1, . . . ,

Eλk
1 , . . . , Eλk

n(λk)/2, E
λk

(n(λk)/2)+1 = PEλk
1 /λk, . . . , Eλk

n(λk) = PEλk

n(λk)/2/λk,

in view of (6.2) we get the following

Theorem 6.4. Let M be an m-dimensional generic submanifold of
a generalized complex space form M(f1, f2) of dimension 2n. Then the
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scalar curvature ρ of M is given by

ρ =
∑

λ

n(λ)((m− 1)f1 + 3λ2f2) + m2‖H‖2 − ‖h‖2,(6.4)

λ ∈ {0, 1, λ1, . . . , λk}.
In particular, if M(f1, f2) is M(c, α) then the above equation becomes

ρ =
1
4

(
m2 −m + 3

∑

λ

n(λ)λ2

)
c +

3
4

(
m2 −m−

∑

λ

n(λ)λ2

)
α

+m2‖H‖2 − ‖h‖2, λ ∈ {0, 1, λ1, . . . , λk}.(6.5)

When k = 0, i.e. M is a CR-submanifold then the above equation
becomes (5.5) of [1] and when M is a CR-submanifold of a complex space
form M(c), then (6.5) becomes (4.8) of [2].

In view of (6.2) and (6.4) we have the following two theorems.

Theorem 6.5. Let M be an m-dimensional minimal generic submani-
fold of a generalized complex space form M(f1, f2) of dimension 2n. Then

(a) S−∑
λ((m−1)f1+3λ2f2)g◦(Uλ×Uλ), λ ∈ {0, 1, λ1, . . . , λk}

is negative semi-definite,

(b) ρ ≤ ∑
λ n(λ)((m− 1)f1 + 3λ2f2), λ ∈ {0, 1, λ1, . . . , λk}.

Theorem 6.6. For an m-dimensional minimal generic submanifold
M of a generalized complex space form M(f1, f2) of dimension 2n, the
following three conditions are equivalent:

(1) M is totally geodesic,

(2) S =
∑

λ((m−1)f1+3λ2f2)g◦(Uλ×Uλ), λ∈{0, 1, λ1, . . . , λk},
(3) ρ =

∑
λ n(λ)((m− 1)f1 + 3λ2f2), λ ∈ {0, 1, λ1, . . . , λk}.

The above two theorems lead to the following two corollaries.

Corollary 6.7. Let M be an m-dimensional minimal generic subman-
ifold of M(c, α) of dimension 2n. Then

(a) S −∑
λ(m−1+3λ2

4 c + 3(m−1+3λ2)
4 α)g ◦ (Uλ × Uλ),

λ ∈ {0, 1, λ1, . . . , λk} is negative semi-definite,

(b) ρ ≤ 1
4 (m2−m +3

∑
λ n(λ)λ2)c + 3

4 (m2−m−∑
λ n(λ)λ2)α,

λ ∈ {1, λ1, . . . , λk}.
In particular, we get also Proposition 3.3 of [9].
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Corollary 6.8. For an m-dimensional minimal generic submanifold M
of M(c, α) of dimension 2n, the following three conditions are equivalent:

(1) M is totally geodesic,

(2) S =
∑

λ

(
m−1+3λ2

4 c + 3(m−1+3λ2)
4 α

)
g ◦ (Uλ × Uλ),

λ ∈ {0, 1, λ1, . . . , λk},
(3) ρ = 1

4 (m2−m +3
∑

λ n(λ)λ2)c + 3
4 (m2−m−∑

λ n(λ)λ2)α,

λ ∈ {1, λ1, . . . , λk}.

7. Totally umbilical generic submanifolds

First we prove

Proposition 7.1. If M is a totally umbilical generic submanifold of
a Kähler manifold then either D0 = {0} or 1-dimensional or the mean
curvature vector H is perpendicular to D0.

Proof. If D0 = {0} or Dim(D0) = 1, then the conclusion is obvious.
If Dim(D0) > 1, let X,W ∈ D0 such that g(X, W ) = 0 and ‖X‖ = 1.
Then

g(H, FW ) = g(h(X, X), FW ) = g(AFW X,X)

= g(AFXW,X) = g(h(X, W ), FX) = 0. ¤

In particular, this proposition leads to the Corollary 1 of [4]. Next,
we prove the following

Theorem 7.2. If M is a totally umbilical generic submanifold of a
generalized complex space form M(f1, f2) with f2 6= 0, then M is not
proper.

Proof. Let X ∈ D1, Y ∈ D0 be two non-null vectors. Then from
(2.8), (2.9), PY = 0 and the fact that M is totally umbilical we get
(R(X, PX)Y )⊥ = 0. Also from (2.1) we get

R(X,PX)Y = −2f2g(PX, PX)JY 6= 0 = (R(X, PX)Y )⊥.

Thus we have a contradiction. ¤
As a consequence of the above theorem we get

Corollary 7.3. There exist no totally geodesic proper generic sub-
manifold of a generalized complex space form M(f1, f2) with f2 6= 0.

Remark 7.4. The similar results hold for generalized CR-submani-
folds.
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