On the context-freeness of a class of primitive words

By L. KÁSZONYI (Szombathely) and M. KATSURA (Kyoto)

Abstract

Let Q be the set of primitive words over a finite alphabet X having at least two letters. It was conjectured in [2] that intersecting Q with the bounded language $L_{n}=\left(a b^{*}\right)^{n}$, we get a context-free language ($a, b \in X, n \in \mathbb{N}$). We proved in [2] that the conjecture is true if n is a product of two prime-powers. Here we generalize this result for the case when n is a product of three prime-powers.

0. Introduction

The properties of primitive words were investigated by several authors. In the papers [1] [2] [3] the still unsolved problem was studied: whether the set Q of all primitive words is non-context-free (we conjecture this). A well-known method to decide on context-freeness is that we investigate not Q itself, but the intersection of Q with a regular language: If Q is contextfree, then this intersection must be context-free as well. We considered in [2] the context-freeness of languages $Q_{n}=Q \cap\left(a b^{*}\right)^{n}$ and proved that if n is a product of two prime-powers then Q_{n} is context-free. Our results suggest that Q_{n} is context-free for an arbitrary positive natural number n, therefore this intersection seems not to be suitable for the proof of the original conjecture on non-context-freeness of Q. However the problem of context-freeness of Q_{n} may be a touchstone for methods used to prove context-freeness of bounded languages.

1. Preliminaries

Let X be a fixed nonempty alphabet having at least two letters. A primitive word (over X) is a nonempty word not of the form w^{m} for any (nonempty) word w and integer $m \geq 2$. The set of all primitive words over X will be denoted by Q. Let $a, b \in X, a \neq b, n \in\{1,2, \ldots\}$, and W be an
arbitrary subset of the language $\left(a b^{*}\right)^{n}$. For $w \in W$ let $w=a b^{e_{0}} \cdots a b^{e_{n-1}}$ and denote the set of all vectors of the form $e(w)=\left(e_{0}, \ldots, e_{n-1}\right)$ by $E(W)$.

The index set $\underline{n}=\{0, \ldots, n-1\}$ will be considered as a "cyclically ordered" set, i.e. the "open intervalls" (i, j) of \underline{n} are defined by $(i, j)=\{k \mid$ $i<k<j\}$ for $i<j$ and by $(i, j)=\{k \mid k<j$ or $k>i\}$ for $i>j$. We will use the notations $[i, j),(i, j]$ and $[i, j]$ for the "half closed" and "closed" intervals defined in the usual manner: $[i, j)=\{i\} \cup(i, j),(i, j]=(i, j) \cup\{j\}$ and $[i, j]=\{i\} \cup(i, j) \cup\{j\}$.

We say that the pairs of indices $\{i, j\}$ and $\{k, l\}$ are crossing if $k \in$ (i, j) and $l \in(j, i)$ or if $l \in(i, j)$ and $k \in(j, i)$. The subsets R and T of \underline{n} are said to be non-nested sets, if there exist two elements i and j of \underline{n} for which $S \subseteq[i, j)$ and $T \subseteq[j, i)$ holds. For the expression "nonnested" we will use the abbreviation n.n.. If there are given more than two subsets of \underline{n}, then for the expression pairwise non-nested we will use the abbreviation p.n.n. . Addition, summation and multiplication in \underline{n} are meant as $(\bmod n)$-operations.

Using minor modifications of known methods in Ginsburg [5], W can be proved context-free by proving that $E(W)$ is a finite union of stratified linear sets. A set $F \subseteq N^{s}$, where $N=\{0,1, \ldots\}, s \geq 1$ is called a stratified linear set iff either $F=\emptyset$ or there are $r \geq 1$ and $v_{0}, \ldots, v_{r} \in N^{s}$ such that

$$
F=\left\{v_{0}+\sum_{i=1}^{r} k_{i} v_{i} \mid k_{i} \geq 0\right\}
$$

and for the vector set $V=\left\{v_{i} \mid 1 \leq i \leq r\right\}$
(1) every $v \in V$ has at most two nonzero components,
(2) if $u=\left(u_{0}, \ldots, u_{s-1}\right)$ and $w=\left(w_{0}, \ldots, w_{s-1}\right)$ are two vectors from V and $\{i, j\},\{k, l\}$ are crossing index-pairs then $u_{i} w_{k} u_{j} w_{l}=0$.

Sets which are finite unions of stratified linear sets are called stratified semilinear sets.

2. Stars, boxes and differences

Let m be a divisor of n and consider the (ordered) subset $S_{m}=$ $\left\langle s_{0}, \ldots, s_{m-1}\right\rangle$ of $\underline{n} . S_{m}$ is an m-star if $s_{k}-s_{k-1}=n / m$ holds for every $1 \leq k \leq m-1$. The index-set \underline{n} may be partitioned into n / m pairwise disjoint m-stars. An m-star will be represented by one of its elements: If $k \in S_{m}$ then we say that S_{m} is an $S_{m}(k)$-star. This notation is ambiguous, e.g. $S_{m}(k)=S_{m}(k+l)$ if l is of the form $l=i n / m, i=0, \ldots, m-1$. If d is a divisor of m and $S_{m} \cap S_{d} \neq \emptyset$ then $S_{d} \subseteq S_{m}$.

Let p_{1}, \ldots, p_{ν} be pairwise distinct prime divisors of n and let $\xi \in \underline{n}$. We define the ν-box $B\left(\xi ; p_{1}, \ldots, p_{\nu}\right)$ as follows:

$$
B\left(\xi ; p_{1}, \ldots, p_{\nu}\right)=\left\{\xi-\sum_{i=1}^{\nu} \varepsilon_{i} n / p_{i} \mid \varepsilon_{1} \in\{0,1\}, \ldots, \varepsilon_{\nu} \in\{0,1\}\right\}
$$

For $\pi=\left\{p_{1}, \ldots, p_{\nu}\right\}$ we will use the abbreviation $B(\xi ; \pi)$ for $B\left(\xi ; p_{1}, \ldots, p_{\nu}\right)$. If $\pi=\emptyset$ then let $B(\xi ; \emptyset)=\{\xi\}$.

To every vector $e=\left(e_{0}, \ldots, e_{n-1}\right)$ and ν-box $B=B\left(\xi ; p_{1}, \ldots, p_{\nu}\right)$ there corresponds a difference $\Delta(B, e)$ defined by the rule

$$
\Delta(B, e)=\sum_{\rho \in B}(-1)^{\sigma(\rho)} e_{\rho}, \text { where } \sigma(\rho)=\sum_{i=1}^{\nu} \varepsilon_{i}, \text { if } \rho=\xi-\sum_{i=1}^{\nu} \varepsilon_{i} n / p_{i}
$$

In other words, a difference defined for a vector e and a box B is a signed sum of such components of e the indices of which belong to B, and if the index-pair $\{i, k\}$ is an "edge" of the box B then the corresponding members e_{i} and e_{k} of the sum have opposite signs.

Example. Let $n=105=3 \cdot 5 \cdot 7$, and select $p=3, q=5$ and $r=7$. Then the set $S_{15}=S_{15}(3)=\langle 3,10,17,24,31,38,45,52,59,66,73,80,87$, $94,101\rangle$ is a 15 -star and the 5 -star $S_{5}=S_{5}(3)=\langle 3,24,45,66,87\rangle$ is a substar of S_{15}.

Let $\xi=77, \nu=3$, then the 3 -box $B(77 ; 3,5,7)$ is the folowing set:

ε_{1}	ε_{2}	ε_{3}	$\rho=\xi-\left(\varepsilon_{1} \cdot n / 3+\varepsilon_{2} \cdot n / 5+\varepsilon_{3} \cdot n / 7\right)$	$\sigma(\rho)$
0	0	0	$\rho=77-(0 \cdot 35+0 \cdot 21+0 \cdot 15)=77$	0
0	0	1	$\rho=77-(0 \cdot 35+0 \cdot 21+1 \cdot 15)=62$	1
0	1	0	$\rho=77-(0 \cdot 35+1 \cdot 21+0 \cdot 15)=56$	1
0	1	1	$\rho=77-(0 \cdot 35+1 \cdot 21+1 \cdot 15)=41$	2
1	0	0	$\rho=77-(1 \cdot 35+0 \cdot 21+0 \cdot 15)=42$	1
1	0	1	$\rho=77-(1 \cdot 35+0 \cdot 21+1 \cdot 15)=27$	2
1	1	0	$\rho=77-(1 \cdot 35+1 \cdot 21+0 \cdot 15)=21$	2
1	1	1	$\rho=77-(1 \cdot 35+1 \cdot 21+1 \cdot 15)=6$	3
		$B(77 ; 3,5,7)=\{6,21,27,41,42,56,62,77\}$		

The difference $\Delta(B, e)$ corresponding to the box B is the following:

$$
\Delta(B, e)=e_{77}-e_{62}-e_{56}+e_{41}-e_{42}+e_{27}+e_{21}-e_{6}
$$

In order to prove that a given subset of N^{n} is stratified linear the following result is useful:

Lemma 1. For $i=0, \ldots, n-1$ let the δ_{i} be arbitrarily prescribed "signs", i.e. let $\delta_{i} \in\{0,1,-1\}$ and consider the set $E=\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid\right.$ $\left.\delta_{0} e_{0}+\ldots+\delta_{n-1} e_{n-1} \neq 0\right\}$. Then E is a stratified semilinear set.

For the proof of Lemma 1 see [4].
Corollary 2. Let B be an arbitrary box.
If $E(B)=\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid \Delta(B, e) \neq 0\right\}$, then $E(B)$ is a stratified semilinear set.

Corollary 3. Let B_{1}, \ldots, B_{z} be a collection of pairwise non-nested boxes. Then the set

$$
E\left(B_{1}, \ldots, B_{z}\right)=\left\{e \mid \Delta\left(B_{1}, e\right) \neq 0, \ldots, \Delta\left(B_{z}, e\right) \neq 0\right\}
$$

is a stratified semilinear set.
Let $n=p_{1}{ }^{r_{1}} \ldots p_{s}{ }^{r_{s}}$ and $\Pi=\left\{\pi_{1}, \ldots, \pi_{\gamma}\right\}$ be a partition of the set $\left\{p_{1}, \ldots, p_{s}\right\}$, and let ξ_{i} be an arbitrary element of \underline{n}. To every pair $\left(\xi_{i} ; \pi_{i}\right)$ there corresponds a box $B\left(\xi_{i} ; \pi_{i}\right)$. For every partition Π we consider such collections of $B\left(\xi_{i}, \pi_{i}\right)$-s which are pairwise non-nested sets. The union - over the pairs $\left(\xi_{i}, \pi_{i}\right)$ for fixed $\left\{\pi_{1}, \ldots, \pi_{\gamma}\right\}$ - of the corresponding $E\left(B\left(\xi_{1}, \pi_{1}\right), \ldots, B\left(\xi_{\gamma}, \pi_{\gamma}\right)\right)$-s is denoted by $E(\Pi)$:

$$
\begin{gathered}
E(\Pi)=\bigcup\left\{E\left(B\left(\xi_{1}, \pi_{1}\right), \ldots, B\left(\xi_{\gamma}, \pi_{\gamma}\right)\right) \mid B\left(\xi_{1}, \pi_{1}\right), \ldots, B\left(\xi_{\gamma}, \pi_{\gamma}\right)\right. \\
\text { are p.n.n. sets }\} .
\end{gathered}
$$

By Corollary 3. the vector set $E(\Pi)$ is stratified semilinear for every partition Π.

Example. Let $n=30$, i.e. $p=2, q=3$ and $r=5$. The partitions of the set $\{2,3,5\}$ are as follows: $\Pi_{1}=\{\{2\},\{3\},\{5\}\}, \Pi_{2}=\{\{2\},\{3,5\}\}$, $\Pi_{3}=\{\{3\},\{2,5\}\}, \Pi_{4}=\{\{2,3\},\{5\}\}$ and $\Pi_{5}=\{\{2,3,5\}\}$. $E\left(\Pi_{1}\right)=\bigcup\left\{\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid e_{\xi_{1}}-e_{\xi_{1}-15} \neq 0, e_{\xi_{2}}-e_{\xi_{2}-10} \neq 0\right.\right.$,

$$
\left.e_{\xi_{3}}-e_{\xi_{3}-6} \neq 0\right\}
$$

$$
\left.\left\{\xi_{1}, \xi_{1}-15\right\},\left\{\xi_{2}, \xi_{2}-10\right\} \text { and }\left\{\xi_{3}, \xi_{3}-6\right\} \text { are p.n.n. sets }\right\} .
$$

$E\left(\Pi_{2}\right)=\emptyset$ since the boxes $B\left(\xi_{1} ; 2\right)=\left\{\xi_{1}, \xi_{1}-15\right\}$ and $B\left(\xi_{2} ; 3,5\right)=$ $\left\{\xi_{2}, \xi_{2}-6, \xi_{2}-10, \xi_{2}-16\right\}$ are for every choice of ξ_{1} and ξ_{2} nested sets. Similarly, $E\left(\Pi_{3}\right)=\emptyset$.

$$
E\left(\Pi_{4}\right)=\bigcup\left\{\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid e_{\xi_{1}}-e_{\xi_{1}-10}-e_{\xi_{1}-15}+e_{\xi_{1}-25} \neq 0\right.\right.
$$ $e_{\xi_{2}}-e_{\xi_{2}-6} \neq 0 \mid\left\{\xi_{1}, \xi_{1}-10, \xi_{1}-15, \xi_{1}-25\right\}$ and $\left\{\xi_{2}, \xi_{2}-6\right\}$ are n.n. sets $\}$.

$E\left(\Pi_{5}\right)=\bigcup\left\{\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid e_{\xi}-e_{\xi-6}-e_{\xi-10}-e_{\xi-15}+e_{\xi-16}+\right.\right.$ $\left.\left.e_{\xi-21}+e_{\xi-25}-e_{\xi-1} \neq 0\right\} \mid \xi \in \underline{n}\right\}$.

Chains of boxes. Let $B_{1}=B\left(\xi ; p_{1}, \ldots, p_{s}\right)$ and q a fixed element of the set $\pi=\left\{p_{1}, \ldots, p_{s}\right\}$. Consider the sequence $\Lambda=\Lambda\left(B_{1}, q\right)=$ $\left(B_{1}, \ldots, B_{\tau}\right)$ where $B_{i}=B(\xi+(i-1) n / q ; \pi)$ if $i=1, \ldots, \tau$. We will refer to Λ as a chain of boxes. If $\tau=q$ then we will say that Λ is a full chain.

In our proofs we will frequently use the following
Lemma 4. Let $\Lambda=\Lambda\left(B_{1}, q\right)=\left(B_{1}, \ldots, B_{q}\right)$ be a full chain of boxes. For $i=1, \ldots, q$ we consider the differences $\Delta\left(B_{i}, e\right)$ corresponding to B_{i}. Then

$$
\sum_{i=1}^{q} \Delta\left(B_{i}, e\right)=0 \quad \text { holds for every } \mid e \in N^{n}
$$

Proof. Let $B_{i}=B\left(\xi_{i} ; \pi\right)$ and $q \in \pi$. Then

$$
\Delta\left(B_{i}, e\right)=\Delta\left(B\left(\xi_{i} ; \pi \backslash\{q\}\right), e\right)-\Delta\left(B\left(\xi_{i}-n / q ; \pi \backslash\{q\}\right), e\right)
$$

holds by the definition of $\Delta\left(B_{i}, e\right)$. This means, that in the sum

$$
\sum_{i=1}^{q} \Delta\left(B_{i}, e\right)=\sum_{i=1}^{q}\left(\Delta\left(B\left(\xi_{i} ; \pi \backslash\{q\}\right), e\right)-\Delta\left(B\left(\xi_{i-1} ; \pi \backslash\{q\}\right), e\right)\right)
$$

every term $\Delta\left(B\left(\xi_{i} ; \pi \backslash\{q\}\right), e\right)$ appears twice but with opposite signs.
Example. Let $n=105=3 \cdot 5 \cdot 7$, and consider the 2-box $B(58 ; 3,5)=$ $\{58,37,23,2\}$. The chain $\Lambda(B(58 ; 3,5), 3)$ is the following:
$\Lambda(B(58 ; 3,5), 3)=\{\{58,37,23,2\},\{93,72,58,37\},\{23,2,93,72\}\}$.
The sum of the corresponding differences is
$\left(e_{58}-e_{37}-e_{23}+e_{2}\right)+\left(e_{93}-e_{72}-e_{58}+e_{37}\right)+\left(e_{23}-e_{2}-e_{93}+e_{72}\right)=0$.
We need to define some special subsets of a given chain Λ of boxes, consisting of such members of Λ which are non-nested relative to a given pair $\{i, j\}$ of elements in $\underline{n}: \Lambda] i, j[=\{B \mid B \in \Lambda, B$ and $\{i, j\}$ are nonnested sets\}.

3. The main theorem

This section is devoted to the proof of the following:

Theorem 1. Let $a, b \in X a \neq b$ and $n=p^{f_{1}} q^{f_{2}} r^{f_{3}}$, where p, q and r are pairwise different prime numbers, $f_{1}, f_{2}, f_{3} \geq 1$. Let further $L=$ $\left(a b^{*}\right)^{n}$. Then $Q \cap L$ is a context-free language.

Proof. Without loss of generality we may assume that $p<q<r$. As we have seen in the special case $p=2, q=3$ and $r=5$, the set $\{p, q, r\}$ has five different partitions: $\Pi_{1}=\{\{p\},\{q\},\{r\}\}, \Pi_{2}=\{\{p\},\{q, r\}\}$, $\Pi_{3}=\{\{q\},\{p, r\}\}, \Pi_{4}=\{\{r\},\{p, q\}\}$ and $\Pi_{5}=\{\{p, q, r\}\}$. Let

$$
\begin{equation*}
E(n)=\bigcup\left\{E\left(\Pi_{i}\right) \mid i=1, \ldots, 5\right\} \tag{2.1}
\end{equation*}
$$

We will prove that

$$
\begin{align*}
& E(Q \cap L)=E(n) \text { if } p q \neq 6 \text { and } \tag{2.2}\\
& E(Q \cap L)=E(n) \cup C \text { if } p q=6 \tag{2.3}
\end{align*}
$$

where $C=\bigcup\left\{\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid e_{j_{2}}-e_{i_{1}} \neq 0, e_{j_{1}}-e_{i_{2}} \neq 0, e_{j_{3}}-e_{i_{3}} \neq 0\right\} \mid\right.$ $i_{2}-i_{1}=i_{1}-j_{2}=j_{2}-j_{1}=n / 6, j_{3}-i_{3}=n / r$, the sets $\left\{i_{1}, i_{2}, j_{1}, j_{2}\right\}$ and $\left\{j_{3}, i_{3}\right\}$ are n.n. sets $\}$.

If $e \in N^{n} \backslash E(Q \cap L)$ then the function φ defined on \underline{n} by the rule $\varphi(i)=e_{i}$ is an $n / p, n / q$, or n / r-periodic function of i. Using this fact it is easy to show that $e \notin E(n)$ and - in case of $p q=6$ - that $e \notin(E(n) \cup C)$. Therefore $E(n) \subseteq E(Q \cap L)$ if $p q \neq 6$ and $E(n) \cup C \subseteq E(Q \cap L)$ if $p q=6$.

In contradiction to (2.2) and (2.3) let us now assume that

$$
e^{*}=\left(e_{0}^{*}, \ldots, e_{n-1}^{*}\right) \in E(Q \cap L) \backslash E(n)
$$

holds if $p q \neq 6$, or

$$
e^{*}=\left(e_{0}^{*}, \ldots, e_{n-1}^{*}\right) \in E(Q \cap L) \backslash(E(n) \cup C) \quad \text { holds if } p q=6
$$

Step 1. Since $e^{*} \in E(Q \cap L)$, there exists an index-pair $\{i, j\}$ such that $j-i=n / r$ and $e_{j}^{*}-e_{i}^{*} \neq 0$ holds. Let $S_{r}(i)=\left\langle s_{0}, \ldots, s_{r-1}\right\rangle$. From the definition of $S_{r}(i)$ it follows that $j \in S_{r}(i)$. We will show that there exists another index-pair $\{k, l\}$ with the same properties, i.e. such that $l-k=n / r$ and $e_{l}^{*}-e_{k}^{*} \neq 0$ holds. Let us consider the equality $\left(e_{s_{1}}^{*}-e_{s_{0}}^{*}\right)+\ldots+\left(e_{s_{0}}^{*}-e_{s_{r-1}}^{*}\right)=0$. If on the left side of the equality one term differs from zero, then another such term must exist as well.

Step 2. We say that the $p q$-star $S_{p q}=\left\langle s_{0}, \ldots, s_{p q-1}\right\rangle$ is a rigid star relative to the vector $e=\left(e_{0}, \ldots, e_{n-1}\right)$ if for the elements $s_{\alpha}, s_{\alpha+q}, s_{\beta}$, and $s_{\beta+q}$ of $S_{p q}$

$$
\begin{equation*}
e_{s_{\alpha+q}}-e_{s_{\alpha}}=e_{s_{\beta+q}}-e_{s_{\beta}} \quad \text { holds whenever } \quad \alpha \equiv \beta \quad(\bmod p) \tag{2.4}
\end{equation*}
$$

In Steps $1-7$ we will show that every $S_{p q}$-star of \underline{n} is a rigid star relative to the vector e^{*}.

Case 1. In the following Steps $3-5$ let $p=2$.
Step 3. Let $\{i, j\}$ and $\{k, l\}$ as in Step 1 , and consider the $2 q$-star $S_{2 q}=\left\langle s_{0}, \ldots, s_{2 q-1}\right\rangle$. Denote the set of all one-boxes of the form $B(\xi, 2)=$ $\{\xi, \xi-n / 2\}$ contained in $S_{2 q}$ by Φ and consider the subsets of Φ consisting of such boxes $B=\left\{s_{\alpha}, s_{\alpha+q}\right\}$, for which B and $\{i, j\}$ are non-nested sets by $\Phi(i, j)$ (in case of $\{k, l\}$ and $\left\{s_{\alpha}, s_{\alpha+q}\right\}$ by $\Phi(k, l)$ respectively). We will say that the star $S_{2 q}$ is well-positioned relative to the intervals $[i, j]$ and $[k, l]$ if

$$
\begin{align*}
& \Phi=\Phi(i, j) \cup \Phi(k, l) \tag{2.5}\\
& \Phi(i, j) \cap \Phi(k, l) \neq \emptyset \tag{2.6}
\end{align*}
$$

We will show that
(2.7) If the 2q-star $S_{2 q}$ is well-positioned relative to $[i, j]$ and $[k, l]$ then $S_{2 q}$ is a rigid star relative to the vector e^{*}.

Let us consider the chain $\Lambda=\Lambda\left(B_{1}, q\right)=\left(B_{1}, \ldots, B_{\tau}\right)$. Here B_{1} and B_{τ} satisfy the following conditions:
(2.8) $B_{1}=B(\sigma+n / 2+n / q ; 2, q)=\{\sigma+n / 2+n / q, \sigma+n / 2, \sigma+n / q, \sigma\}$ and σ is the element of the set $S_{2 q} \backslash[i, j]$ which lies - according to its cyclic order - nearest to j.
(2.9) $B_{\tau}=B(\xi ; 2, q)$, where ξ is that element of the set $S_{2 q} \backslash[i, j]$ which lies - according to its cyclical order - nearest to i.

Let us consider the vector set
$E\left(\Pi_{4}\right)=\left\{\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid \Delta\left(B\left(\xi_{1} ; 2, q\right), e\right) \neq 0, \Delta\left(B\left(\xi_{2} ; r\right), e\right) \neq\right.\right.$

$$
\left.0\} \mid B\left(\xi_{1} ; 2, q\right) \text { and } B\left(\xi_{2} ; r\right) \text { are n.n. sets }\right\} .
$$

Here $B\left(\xi_{1} ; 2, q\right)=\left\{\xi_{1}, \xi_{1}-n / q, \xi_{1}-n / 2, \xi_{1}-n / q-n / 2\right\}, B\left(\xi_{2} ; r\right)=$ $\left\{\xi_{2}, \xi_{2}-n / r\right\}$ holds by the definition of boxes, while $\Delta\left(B\left(\xi_{1} ; 2, q\right), e\right)=$ $e_{\xi_{1}}-e_{\xi_{1}-n / q}-e_{\xi_{1}-n / 2}+e_{\xi_{1}-n / q-n / 2}$ and $\Delta\left(B\left(\xi_{2} ; r\right), e\right)=e_{\xi_{2}}-e_{\xi_{2}-n / r}$ holds by the definition of differences.

It is easy to show that - for every $m \in\{1, \ldots, \tau\}$ - the sets B_{m} and $B(j ; r)=\{i, j\}$ are non-nested sets, therefore
$\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid \Delta\left(B_{m}, e\right) \neq 0, \Delta(B(j ; r), e) \neq 0\right\} \subset E\left(\Pi_{4}\right)$.
The vector e^{*} is choosen such that $e^{*} \notin E(n)$, therefore
$e^{*} \notin\left\{e=\left(e_{0}, \ldots, e_{n-1}\right) \mid \Delta\left(B_{m}, e\right) \neq 0, \Delta(B(j ; r), e) \neq 0\right\}$ holds as well. But i and j are such that $\Delta\left(B(j ; r), e^{*}\right)=e_{j}^{*}-e_{i}^{*} \neq 0$, hence $\Delta\left(B_{m}, e^{*}\right)=0$ for every $m \in\{1, \ldots \tau\}$. Using this fact it is easy to show that (2.4) holds for the elements of $\Phi(i, j)$. By similar arguments as in the case of $\Phi(i, j)$, (2.4) can be proved for the elements of $\Phi(k, l)$ as well. Finally using (2.5) and (2.6) we can check the validity of (2.4) for the elements of Φ.

Step 4. Let $S_{2 q r}$ be an arbitrary $2 q r$-star of \underline{n} and let us represent $S_{2 q r}$ by its greatest element $(n-s): S_{2 q r}=S_{2 q r}(n-s)$. Without loss of generality we may assume that (in Step 1) i, j, k and l are chosen such that $i=0$, and $k-j<i-l$ holds. We will show that if $q<z<r$, then the $2 q$ star $S_{2 q}(-s+z(n /(2 q r))$ is well-positioned relative to $[i, j]$ and $[k, l]$ (See for the definition Step 3). Let $\left\{\phi_{1}, \phi_{2}\right\} \in \Phi$. We prove that if $\phi_{1} \in[i, j]$ then $\phi_{2} \notin[k, l]$.

Assume indirectly that $\phi_{1} \in[i, j]$ and $\phi_{2} \in[k, l]$. Using (2.10) it is easy to see that $n / 2 \leq \phi_{2}<n / 2+n / 2 r$. But then $0 \leq \phi_{1}<n / 2 r$ holds for $\phi_{1}=\phi_{2}-n / 2$, contradicting the fact that $S_{2 q} \cap[0, n / 2 r]=\emptyset$ by the choice of z. We conclude that if $\left\{\phi_{1}, \phi_{2}\right\} \notin \Phi(i, j)$ then $\left\{\phi_{1}, \phi_{2}\right\} \in \Phi(k, l)$ and therefore (2.5) is valid. It is easy to prove that $\left|S_{2 q} \cap[i, j]\right| \leq 1$ and $\left|S_{2 q} \cap[k, l]\right| \leq 1$ therefore $|\Phi(i, j) \backslash \Phi(k, l)|+|\Phi(k, l) \backslash \Phi(i, j)| \leq 2$. According to $(2.5) \Phi=(\Phi(i, j) \backslash \Phi(k, l)) \cup(\Phi(i, j) \backslash \Phi(k, l)) \cup(\Phi(i, j) \cap \Phi(k, l))$ holds and therefore $|\Phi(i, j) \cap \Phi(k, l)| \geq|\Phi|-2=q-2>0$. Thus (2.6) is valid.

Case 2. In Steps 5-6 let $p>2$.
Step 5. Without loss of generality we may assume that (in Step 1) the indices i, j, k and l are chosen such that $l=n-1$ and $k-j \leq i-j$ hold. Let $S_{p q r}$ be an arbitrary $p q r$-star and $S_{p q}=S_{p q}(\theta)$ be a $p q$-substar of $S_{p q r}$ such that the element θ satisfies the inequalities $k-n / p q r \leq \theta<k$. Consider the full chain $\Lambda_{\rho}=\Lambda(B(\xi ; p, q), \rho)=\left\{B_{1}, \ldots, B_{\rho}\right\}$ where $\xi \in S_{p q}$ and $\rho \in\{p, q\}$. The subsets $\Lambda_{\rho}(i, j)$ and $\Lambda_{\rho}(k, l)$ of boxes in $\Lambda\left(B_{1}, \rho\right)$ are defined by $\left.\Lambda_{\rho}(i, j)=\Lambda_{\rho}\right] i, j\left[\right.$ and $\left.\Lambda_{\rho}(k, l)=\Lambda_{\rho}\right] k, l[$ respectively.

Let $\xi \in S_{p q}$ and $B=B(\xi+n / p ; p)$ be an arbitrary one-box in $S_{p q}$. We say that B is q-reducible if there exists a one-box $B(\eta+n / p ; p)$ such that $\xi \equiv \eta(\bmod n / q), 0 \leq \eta<n / q$ and $\Delta\left(B, e^{*}\right)=\Delta\left(B(\eta+n / p ; p), e^{*}\right)$.

It is easy to see that for $\rho \in\{p, q\}$ and $(\mu, \nu) \in\{(i, j),(k, l)\} \Lambda_{\rho}(\mu, \nu)$ is a chain of boxes. We show that for every $B \in \Lambda_{\rho}(\mu, \nu), \Delta\left(B, e^{*}\right)=0$ holds. Note that $e^{*} \notin\left\{\left\{\left(e_{0}, \ldots, e_{n-1}\right) \mid \Delta(B, \underline{e}) \neq 0, e_{\mu}-e_{\nu} \neq 0\right\} \mid B\right.$ and $\{\mu, \nu\}$ are n.n. sets $\}$ by the definition of e^{*}. But B and $\{\mu, \nu\}$ are n.n. sets and $e_{\mu} *-e_{\nu} * \neq 0$ therefore $\Delta\left(B, e^{*}\right)=0$. Let $\Lambda_{q}(\mu, \nu)=\Lambda(B(\sigma+$ $n / p+n / q ; p, q), q)=\left\{C_{1}, \ldots, C_{\tau}\right\}$, then for $1 \leq \vartheta \leq \tau \Delta\left(C_{\vartheta}, e^{*}\right)=0$ i.e. $e_{\sigma+(\vartheta-1) n / q+n / p}^{*}-e_{\sigma+(\vartheta-1) n / q}^{*}=e_{\sigma+\vartheta n / q+n / p}^{*}-e_{\sigma+\vartheta n / q}^{*}$ holds. We conclude that if for suitable ϑ and one-box $B=B\left(\xi_{1} ; p\right) B \subset C_{\vartheta}$ holds, then B is q-reducible.

Step 6. Let $\Omega=\Lambda(B(\xi, p), p)=\left\{B_{1}, \ldots, B_{p}\right\}$ be a full chain of oneboxes in $S_{p q}$. According to the result of Step 5 and using the fact that $n / p>n / r$ we can state that all but possibly one element of Ω are q reducible. Without loss of generality we may assume that B_{1}, \ldots, and B_{p-1} are q-reducible. We will show that B_{p} is q-reducible as well. Let us consider the function ψ which is defined on the set of all one-boxes of the form $B(\xi+n / p ; p)$ in $S_{p q}$ as follows:

$$
\begin{aligned}
\psi(B(\xi+n / p ; p))= & B(\eta+n / p ; p) \text { where } \eta \equiv \xi(\bmod n / q) \\
& \text { and } 0 \leq \eta<n / q
\end{aligned}
$$

The q-reducibility of B_{1}, \ldots and B_{p-1} means that $\Delta\left(B_{m}, e^{*}\right)=$ $\Delta\left(\psi\left(B_{m}\right), e^{*}\right)$ holds if $m=1, \ldots, p-1$. By Proposition 6

$$
\begin{equation*}
\Delta\left(B_{p}, e^{*}\right)=-\sum_{m=1}^{p-1} \Delta\left(B_{m}, e^{*}\right) \tag{2.14}
\end{equation*}
$$

To prove that $\Delta\left(B_{p}, e^{*}\right)=\Delta\left(\psi\left(B_{p}\right), e^{*}\right)$ it is enough to show that

$$
\begin{equation*}
\sum_{m=1}^{p} \Delta\left(\psi\left(B_{m}\right), e^{*}\right)=\sum_{m=0}^{p-1} \Delta\left(B\left(\xi_{0}+m n / p q+n / p, p\right), e^{*}\right)=0 \tag{2.15}
\end{equation*}
$$

where ξ_{0} is the smallest element of $S_{p q}$.
Let us consider the full chain $\Omega^{\prime}=\Lambda(B(\theta+n / q ; p), p)=\left\{B_{1}^{\prime}, \ldots, B_{p}^{\prime}\right\}$, where $k-n / p q r \leq \theta<k$ holds (see the definition of θ in Step 5). Here the one-boxes $B_{2}^{\prime}, \ldots, B_{p}^{\prime}$ are q-reducible by the result of Step 5. Box $B(\theta+$ $n / q ; p, q)$ and set $\{k, l\}$ are n.n. sets, therefore $\Delta\left(B(\theta+n / q ; p, q), e^{*}\right)=0$, hence B_{1}^{\prime} is q-reducible as well. It follows by Proposition 6 that

$$
\begin{equation*}
\sum_{m=1}^{p} \Delta\left(\psi\left(B_{m}^{\prime}\right), e^{*}\right)=\sum_{m=0}^{p-1} \Delta\left(B\left(\xi_{0}+m n / p q+n / p, p\right), e^{*}\right)=0 \tag{2.16}
\end{equation*}
$$

and therefore (2.15) is valid.
Step 7. In Steps 1-6 we proved that every $p q r$-star contains a rigid $p q$-star as a substar. Let $S_{p q r}$ be an arbitrary $p q r$-star of \underline{n}, and $S_{p q}(s)$ a rigid substar of $S_{p q r}$. We prove that all $p q$-substars of $S_{p q r}$ are rigid stars. For $m=0, \ldots, r-1$ let us consider the $p q$-stars $S_{p q}(s+m n / r)$. Assume that there exists an m_{0} for which $S_{p q}\left(s+\left(m_{0}-1\right) n / r\right)$ is rigid, but $S_{p q}(s+$ $\left.m_{0} n / r\right)$ is not, i.e.: there exists a j_{0} such that $j_{0} \in S_{p q}\left(s+m_{0} n / r\right)$ and $e_{j_{0}}^{*}-e_{j_{0}-n / p}^{*} \neq e_{j_{0}-n / q}^{*}-e_{j_{0}-n / q-n / p}^{*}$ holds. It is easy to see that $j_{0}-n / r \in$
$S_{p q}\left(s+\left(m_{0}-1\right) n / r\right)$ and therefore $e_{j_{0}-n / r}^{*}-e_{j_{0}-n / r-n / p}^{*}=e_{j_{0}-n / r-n / q}^{*}-$ $e_{j_{0}-n / r-n / q-n / p}^{*}$ holds by the rigidity of $S_{p q}\left(s+\left(m_{0}-1\right) n / r\right)$. But then $\Delta\left(B\left(j_{0} ; p, q, r\right), e^{*}\right) \neq 0$, therefore $e^{*} \in \Pi_{5}$, which is a contradiction.

Step 8. Using the fact that $e^{*} \in Q$ it is easy to prove that there exist boxes $B_{r}=B\left(\xi_{r} ; r\right), B_{q}=B\left(\xi_{q} ; q\right)$ and $B_{p}=B\left(\xi_{p} ; p\right)$, such that $\Delta\left(B_{r}, e^{*}\right) \neq 0, \Delta\left(B_{q}, e^{*}\right) \neq 0$ and $\Delta\left(B_{p}, e^{*}\right) \neq 0$ hold. Let us fix the box B_{r} and consider for $\mu=1, \ldots, p$ the boxes $B_{q}(\mu)=B\left(\xi_{q}+(\mu-1) n / p ; q\right)$ and for $\nu=1, \ldots, q$ the boxes $B_{p}(\nu)=B\left(\xi_{p}+(\nu-1) n / q ; p\right)$. Using the fact that every $p q$-star is a rigid star it is easy to prove that for every $\mu \in$ $\{1, \ldots, p\}, \Delta\left(B_{q}(\mu), e^{*}\right)=\Delta\left(B_{q}(1), e^{*}\right) \neq 0$ and for every $\nu \in\{1, \ldots, q\}$ $\Delta\left(B_{p}(\nu), e^{*}\right)=\Delta\left(B_{p}(1), e^{*}\right) \neq 0$. An elementary computation shows that if $p q \neq 6$ then there exist indices μ_{0} and ν_{0} such that the boxes $B_{q}\left(\mu_{0}\right)$, $B_{p}\left(\nu_{0}\right)$ and B_{r} are p.n.n. sets. But then $e^{*} \in E\left(\Pi_{1}\right)$, again a contradiction. Similarly, the case $p q=6$ leads to the contradiction that $e^{*} \in C$.

4. Conclusions

The proof of Theorem 1 has some ad hoc elements. To get a development in the general case the systematic investigation of properties of boxes and differences seems to be necessary.

References

[1] P. DÖmösı, S. Horváth and M. Ito, Formal languages and primitive words, Publ. Math. Debrecen 42 (1993), 315-321.
[2] P. DÖmösi, S. Horváth, M. Ito, L. Kászonyı and M. Katsura, Formal languages consisting of primitive words, FCT Conference, Szeged, 1993, LNCS 710 (Z. Ésik, ed.), Springer-Verlag, 1993, pp. 194-203.
[3] P. Dömösi, S. Horváth, M. Ito, L Kászonyı and M. Katsura, Some combinatorial properties of words and the Chomsky-hierarchy, In: Proc. 2nd Int. Coll. on Words, Languages and Combinatorics, Kyoto 1992, World Scientific, Singapore, 1994, pp. 105-123.
[4] L. KÁszonyı, On a class of stratified linear sets, Conference on Modern Applied Mathematics, Illyefalva, 1995, In: PU. M. A. 6 No. 2 (1995), 203-210.
[5] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
[6] M. Ito M. Katsura, Context-free languages consisting of non-primitive words, Intern. J. Computer Math. 40 (1991), 157-168.
[7] H. Petersen, The ambiguity of primitive words, In: Proc. STACS'94, SpringerVerlag, Berlin, 1994.
[8] A. Matescu, Gh. Paŭn, G. Rosenberg and A. Salomaa, Parikh prime words and GO-like territories, 1995 (preprint).
L. KÁSZONYI

DEPARTMENT OF MATHEMATICS
BERZSENYI DÁNIEL FÖISKOLA
H-9700 SZOMBATHELY
HUNGARY
M. KATSURA

DEPARTMENT OF MATHEMATICS
KYOTO SANGYO UNIVERSITY
KYOTO 603
JAPAN
(Received August 16, 1995; revised November 9, 1996)

