Convolution of temperate distributions

By JAN KUCERA (Pullmann, Wash.)

Let $\|\cdot\|_0$ be the norm in the space $L^2(\mathbb{R}^n)$ of square integrable functions. We put $L_q = \{ \varphi : R^n \to C; \|\varphi\|_q^2 = \sum_{|\alpha+\beta| \leq q} \|x^\alpha D^\beta \varphi\|_0^2 < + \infty \}, \quad q \in \mathbb{N}. \quad \text{Here } D^\beta \varphi \text{ is the generalized}$ derivative defined by Sobolev in [1]. Each space L_q , and its dual L_{-q} , is Hilbert. The proj $\lim L_q = \mathscr{S}$ is the space of rapidly decreasing functions, and the ind $\lim_{L_{-q}} L_{-q}^{q+\infty} = \mathscr{S}'$ is the space of temperate distributions. The Fourier transformation $\mathcal{F}: L_k \to L_k$ is a topological isomorphism for any integer k.

For $\varphi \in \mathcal{S}$, $f \in \mathcal{S}'$, we use the dilation $d_{\lambda} \varphi(x) = \varphi(\lambda x)$, $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, $\lambda \neq 0$, $(d_{\lambda} f) \varphi = |\lambda|^{-n} f(d_{\lambda^{-1}} \varphi)$ and translation $(\tau_h \varphi)(x) = \varphi(x - h)$, $x, h \in \mathbb{R}^n$, $(\tau_h f) \varphi = \varphi(x - h)$ $=f(\tau_{-h}\varphi)$. It is convenient to introduce the weight-function $W(x)=(1+|x|^2)^{1/2}$,

 $x \in \mathbb{R}^n$.

Definition. Let $f \in \mathcal{S}'$ and $\varphi \in \mathcal{S}$. The C^{∞} -function $x \mapsto f(\tau_x d_{-1}\varphi)$ is called convolution of f and φ and is denoted by $f * \varphi$. For each $p, q \in N$, we define

$$0_{p,q}^* = \{ f \in \mathcal{G}'; \|f\|_{p,q}^* = \sup\{ \|f * \phi\|_q; \, \phi \in \mathcal{G}, \|\phi\|_p \le 1 \} < + \infty \}.$$

The space $\mathscr S$ is dense in L_p . Hence for each $f\in 0^*_{p,q}$ the continuous map $\varphi\mapsto f*\varphi\colon (\mathscr S,\|\cdot\|_p)\to L_q$ can be continuously extended to L_p . Therefore $0^*_{p,q}$ is a subspace of $\mathscr L(L_p,L_q)$. We denote the norm of $\mathscr L(L_p,L_q)$ restricted to $0^*_{p,q}$ by The identity maps id: $0_{p,q+1}^* \rightarrow 0_{p,q}^* \rightarrow 0_{p+1,q}^*$, $p, q \in N$ are continuous. Hence the limits $0_q^* = \inf_{p \to \infty} \lim_{p \to \infty} 0_{p,q}^*$ and $0^* = \operatorname{proj lim}_{q \to \infty} 0_q^*$ make sense.

Definition. Let $f \in 0_{p,q}^*$ and $g \in L_{-q}$. The functional $\varphi \mapsto g(d_{-1}f * \varphi) : L_p \to C$ is called the convolution of f and g. We denote it by f * g.

For $f \in 0_{p,q}^*$ and $g \in \mathcal{S}$ we have two definitions of f * g. They coincide. Also, if f and g are both functions, our convolution f*g is the same as the convolution defined by an integral.

Theorem 1. A linear map $L: L_{-q} \to L_{-p}$, resp. $L: L_{-q} \to \mathcal{G}'$, $p, q \in N$, is translation invariant and continuous iff there exists a unique $f \in 0_{p,q}^*$, resp. $f \in 0_q^*$, such that $Lg=f*g, g\in L_{-q}$.

PROOF. The only if part is evident. Let $L: L_{-q} \rightarrow L_{-p}$ be translation invariant and continuous. Its conjugate L^* : $L_p \rightarrow L_q$ is then also translation invariant and continuous. Hence $L^*\varphi\in C^\infty(\mathbb{R}^n)$ for any $\varphi\in\mathscr{S}$. The continuous functional $\varphi \mapsto (L^*d_{-1}\varphi)(0)$: $\mathscr{S} \to C$ defines a distribution $f \in \mathscr{S}'$.

324 J. Kucera

For any $\varphi \in \mathcal{G}$, $x \in \mathbb{R}^n$, we have $(f * \varphi)(x) = f(\tau_x d_{-1}\varphi) = (L^* d_{-1}\tau_x d_{-1}\varphi)(0) =$ $=(L^*\tau_{-x}\varphi)(0)=\tau_{-x}(L^*\varphi)(0)=(L^*\varphi)(x)$. Further,

$$||f||_{p,q}^* = \sup \{||L^*\varphi||_q, \varphi \in \mathcal{S}, ||\varphi||_p \le 1\} = ||L^*||, \text{ i.e., } f \in 0_{p,q}^*.$$

The uniqueness of f is evident and the respective part of the theorem immediately follows.

Definition. Let \mathcal{F} be the Fourier transformation with the kernel $\exp(-2\pi ix, y)$ and Δ the Laplace operator. Each map $f \mapsto (1-\Delta)^{-k} f = \mathcal{F}^{-1}(d_{2\pi}W^{-2k} \cdot \mathcal{F}f)$: $\mathscr{S}' \to \mathscr{S}'$, $k \in \mathbb{N}$, is injective. We define spaces $(1-\Delta)^{-k} L_{-q} = \{(1-\Delta)^{-k} f; f \in L_{-q}\}$ and $(1-\Delta)^k L_q = \{f \in \mathscr{S}'; (1-\Delta)^{-k} f \in L_q\}, k, q \in \mathbb{N}, \text{ and provide them with the topologies which make the operator <math>(1-\Delta)^{-k}$ a topological isomorphism.

For each $k, g \in N$, the spaces $(1-\Delta)^{-k}L_{-q}$ and $(1-\Delta)^kL_q$ are Hilbert and

mutually dual with the duality form:

$$\langle u, v \rangle \mapsto ((1 - \Delta)^k u), ((1 - \Delta)^{-k} v): (1 - \Delta)^{-k} L_{-q} \times (1 - \Delta)^k L_q \to C.$$

Lemma. \mathcal{G} is dense in each $(1-\Delta)^{-k}L_{-\alpha}$.

PROOF. The operator $(1-\Delta)^{-k}$: $\mathscr{S} \to \mathscr{S}$ is bijective. Since \mathscr{S} is dense in L_{-a} , $\mathcal{S}=(1-\Delta)^{-k}$ \mathcal{S} is dense in $(1-\Delta)^{-k}L_{-a}$.

Proposition. For any $k, q \in N$, we have:

(1) $L_q \subset (1-\Delta)L_q \subset (1-\Delta)^2 L_q \subset \dots$ with all maps id: $(1-\Delta)^k L_q \to (1-\Delta)^{k+1} L_q$ continuous.

(2) $L_{-q} \supset (1-\Delta)^{-1} L_{-q} \supset (1-\Delta)^{-2} L_{-q} \supset \dots$ with all maps id: $(1-\Delta)^{-k-1} L_{-q} \to (1-\Delta)^{-k} L_{-q}$ continuous.

(3) ind $\lim_{k \to \infty} (1-\Delta)^k L_q$ is the strong dual of the Fréchet space

proj lim $(1-\Delta)^{-k}L_{-a}$.

Proof. (1) & (2) are evident.

(3) follows from [3, CH IV, Th. 4.4] since, by lemma,

proj
$$\lim_{k\to\infty} (1-\Delta)^{-k} L_{-q}$$
 is dense in each $(1-\Delta)^{-k} L_{-q}$.

Theorem 2. ind $\lim_{q \to 0} (1-\Delta)^k L_q = 0_q^*, q \in \mathbb{N}$.

PROOF. Take
$$f \in 0_{p,q}^*$$
 and put $r=1+\left[\frac{1}{2}n\right]$, $k=1+\left[\frac{1}{2}(p+r)\right]$. Then

 $W^{-2k}\in L_p$, $\varphi=\mathcal{F}d_{2\pi}W^{-2k}\in L_p$, and $g=f*\varphi\in L_q$. Since $\mathcal{F}g=\mathcal{F}f\cdot d_{2\pi}W^{-2k}$, we have $g=(1-\Delta)^{-k}f$ and $f\in (1-\Delta)^kL_q$. The maps

$$f \mapsto f * \varphi \mapsto (1 - \Delta)^k (f * \varphi) = f: 0_{p,q}^* \to L_q \to (1 - \Delta)^k L_q$$

are both continuous, hence $id: 0^*_{p,q} \to (1-\Delta)^k L_q$ and $id: 0^*_q \to \inf_{k \to \infty} (1-\Delta)^k L_q$ are continuous too.

In the sequel we use the inequality $|x| \le W(x-y) \cdot W(y)$, $x, y \in \mathbb{R}^n$. Take $k, q \in \mathbb{N}, g \in L_q$, $\varphi \in \mathcal{S}$, and put $\psi = (1-\Delta)^k \varphi \in \mathcal{S}$. Then there are constants A, B, C such that

$$\begin{split} \|(1-\Delta)^{k} g * \varphi\|_{q}^{2} &= \|g * \psi\|_{q}^{2} = \sum_{|\alpha+\beta| \leq q} \int_{R^{n}} x^{2\alpha} |g * D^{\beta} \psi|^{2} dx = \\ &= \sum_{|\alpha+\beta| \leq q} \int_{R^{3n}} x^{2\alpha} g(x-y) D^{\beta} \psi(y) \overline{g(x-z)} D^{\beta} \overline{\psi(z)} dx dy dz \leq \\ &\leq \sum_{|\alpha+\beta| \leq q} \int_{R^{3n}} W^{|\alpha|} (y) D^{\beta} \psi(y) W^{|\alpha|} (z) D^{\beta} \overline{\psi(z)} \int_{R^{n}} W^{|\alpha|} (x-y) g(x-y) \end{split}$$

$$W^{|\alpha|}(x-z)\overline{g(x-z)}\,dxdydz \le A\|g\|_q^2 \sum_{|\alpha+\beta|\le q} \|W^{|\alpha|}D^{\beta}\psi\|_0^2 \le B\|\psi\|_q^2 \le C\|\phi\|_{q+2k}^2.$$

Hence $(1-\Delta)^k g \in 0^*_{q+2k,q}$ and

id:
$$(1-\Delta)^k L_q \to 0^*_{q+2k, q}$$
 as well as id: $\inf_{k \to \infty} (1-\Delta)^k L_q \to 0^*_q$

are continuous.

Consequences:

- (1) id: $0_q^* \to \mathcal{S}'$ is continuous,
- (2) 0_q^* is strong dual of the Fréchet space $\operatorname{proj lim}_{k\to\infty}(1-\Delta)^{-k}L_{-q}$.

Theorem 3. Each 0_q^* is a complete, reflexive, and bornological space.

PROOF. The space proj $\lim_{k\to\infty} (1-\Delta)^{-k}L_{-q}$ is reflexive, see [3, CH IV, §§ 5.5, 5.6, 5.8]. The strong dual 0_q^* is reflexive and complete. 0_q^* is bornological as an inductive limit of Hilbert spaces $(1-\Delta)^k L_q$.

Theorem 4. Let $f \in \mathcal{G}'$. Then

- (1) $f \in 0_q^*$ iff $f = \sum_{\alpha \in A} D^{\alpha} f_{\alpha}$, where $f_{\alpha} \in L_q$, $\alpha \in A$, and $A \subset N^n$ is finite.
- (2) $f \in 0_q^*$ iff the map $\varphi \mapsto W^q(f * \varphi) : \mathscr{S} \to L^2(\mathbb{R}^n)$ is continuous.

PROOF. (1) Take $\alpha \in N^n$, integer $k \ge \frac{1}{2} |\alpha|$, and $f \in L_q$. We have $\mathscr{F} f \in L_q$ and $g = \mathscr{F}^{-1} \left((2\pi i x)^{\alpha} W^{-2k} (2\pi x) \mathscr{F} f \right) \in L_q$. Then $(1-\Delta)^{-k} D^{\alpha} f = \mathscr{F}^{-1} \left(d_{2\pi} W^{-2k} \mathscr{F} (D^{\alpha} f) \right) = g \in L_q$ and $D^{\alpha} f \in (1-\Delta)^k L_q \subset 0_q^*$. The inverse implication follows from Theorem 2. (2) Let $f \in 0_q^*$. Then the maps $\varphi \mapsto f * \varphi \mapsto W^q (f * \varphi) : \mathscr{S} \to L_q \to L^2(R^n)$ are continuous.

Assume $\varphi \mapsto W^q(f * \varphi) : \mathscr{S} \to L^2(\mathbb{R}^n)$ to be continuous. For each $\alpha, \beta \in \mathbb{N}^n$, $|\alpha + \beta| \leq q$, the maps

$$\varphi \mapsto D^{\beta}\varphi \mapsto x^{\alpha}(f * D^{\beta}\varphi) = x^{\alpha}D^{\beta}(f * \varphi) : \mathscr{S} \to \mathscr{S} \to L^{2}(\mathbb{R}^{n})$$

are continuous. Hence $\varphi \to f * \varphi : \mathscr{S} \to L_q$ is continuous too and $f \in 0_q^*$.

326 J. Kucera

Theorem 5. The inductive topology of 0_q^* is generated by the family of seminorms $f\mapsto \|f*\varphi\|_q, \ \varphi\in\mathscr{S}.$

PROOF. Denote by T the topology generated by these seminorms and by T_i the inductive topology of 0_q^* . Since each seminorm $f \mapsto || f * \varphi ||_q : (0_q^*, T_i) \to R$ is continuous, T is weaker than T_i .

Take $U \in T_i$, $0 \in U$. By Theorem 2 there is a bounded set $B \subset \text{proj lim} (1-\Delta)^{-k} L_{-\alpha}$ such that the polar $B^0 \subset U$. By [6, Lemma 4] there exists $\varphi \in \mathscr{S}$ such that $B \subset \varphi * D$,

where D is the unit ball in L_{-q} . For $v \in (1-\Delta)^k L_q$ and $\psi \in \mathcal{S}$, we have $\langle \varphi * \psi, v \rangle = (1-\Delta)^k \varphi * \psi$) $((1-\Delta)^{-k}v) = (1-\Delta)^k \varphi * \psi$. $=\psi((1-\Delta)^kd_{-1}\varphi*(1-\Delta)^{-k}v)=\psi(d_{-1}\varphi*v)$. Since $\mathscr S$ is dense in L_{-q} we can, for any $f \in 0_a^*$, write

$$\sup \{ |\langle g, f \rangle|; g \in B \} \le$$

$$\leq \sup \{ |\langle \varphi * h, f \rangle|; \ h \in D \} = \sup \{ |\langle \varphi * \psi, f \rangle|; \ \psi \in \mathcal{G}, \ \|\psi\|_{-q} \leq 1 \} =$$
$$= \sup \{ |\psi(d_{-1}\varphi * f)|; \ \psi \in \mathcal{G}, \ \|\psi\|_{-q} \leq 1 \} = \|d_{-1}\varphi * f\|_{q}.$$

Hence U contains $\{f \in 0_q^*; \|d_{-1}\varphi * f\|_q \le 1\} \in T$.

For $p, q \in N$, we put $0_{p,q} = \{f: R^n \to C; \varphi \mapsto f\varphi: L_q \to L_q \text{ continuous}\}$. Each $0_{p,q}$ with the topology of $\mathcal{L}(L_p, L_q)$ is a Banach space. We denote its norm by $\|\cdot\|_{p,q}$.

Theorem 6. The Fourier transformation $\mathcal{F}: 0_{p,q}^* \to 0_{p,q}, p, q \in \mathbb{N}$, is a topological isomorphism.

PROOF. For convenience, put $A_k = \sup \{ \| \mathscr{F} f \|_k; f \in L_k, \| f \|_k \le 1 \}, k \in \mathbb{N}$. Take $f \in 0_{p,q}^*$, $\lambda > 0$, and choose $\psi \in \mathscr{S}$ such that $\mathscr{F}\psi(x) = 1$ for $|x| < \lambda$. Then $f * \psi \in L_q$ and $\mathscr{F}(f * \psi) = \mathscr{F}f \cdot \mathscr{F}\psi \in L_q$ are both functions. Thus $\mathscr{F}f$, restricted to $\{x \in \mathbb{R}^n; |x| < \lambda\}$, is a function too. Since λ was arbitrary, $\mathcal{F}f$ is a function.

For any $\varphi \in \mathcal{G}$, $\|\mathcal{F}f \cdot \mathcal{F}\varphi\|_q \leq A_q \|f * \varphi\|_q \leq A_q \|f\|_{p,q}^* \|\varphi\|_p \leq A_p A_q \|f\|_{p,q}^* \|\mathcal{F}\varphi\|_p$. Hence $\mathcal{F}f \in O_{p,q}$ and $\mathcal{F}: O_{p,q}^* \to O_{p,q}$ is continuous.

Let $g \in 0_{p,q}$. By [5, Lemma 3], $0_{p,q} \subset L_{q-p-r}$, $r=1+\left\lceil \frac{1}{2}n \right\rceil$. This implies $0_{p,q}\subset \mathscr{S}'$ and $g\in \mathscr{S}'$. For any $\varphi\in \mathscr{S}$, we have $\varphi W^n\in L_p$. Then $g\varphi W^n\in L_q$ and the integral in the next formula is absolutely convergent.

$$\mathcal{F}^{-1}(g\varphi)(x) = \int_{\mathbb{R}^n} g(t) \, \varphi(t) W^n(t) W^{-n}(t) \exp(2\pi i x, t) \, dt =$$

$$= g_t(\varphi(t) \exp(2\pi i x, t)) = \mathcal{F}^{-1} g(\tau_x \mathcal{F} \varphi) = \mathcal{F}^{-1} g(\tau_x d_{-1} \mathcal{F}^{-1} \varphi) =$$

$$= (\mathcal{F}^{-1} g * \mathcal{F}^{-1} \varphi)(x).$$

Further

$$\begin{split} \| \mathscr{F}^{-1} g * \mathscr{F}^{-1} g \|_{q} &= \| \mathscr{F}^{-1} (g \varphi) \|_{q} \leq \\ & \leq A_{q} \| g \varphi \|_{q} \leq A_{q} \| g \|_{p,q} \| \varphi \|_{p} \leq A_{p} A_{q} \| g \|_{p,q} \| \mathscr{F}^{-1} \varphi \|_{p}. \end{split}$$

Hence $\mathscr{F}^{-1}g\in \mathcal{O}_{p,q}^*$ and $\mathscr{F}^{-1}: \mathcal{O}_{p,q} \to \mathcal{O}_{p,q}^*$ is continuous.

Theorem 7. The convolution is continuous on $0_q^* \times L_{-q}$ for any $q \in N$, and not continuous on $0^* \times \mathcal{G}'$.

PROOF. Let U be an absolutely convex 0-neighborhood in \mathcal{G}' and B the unit ball in L_{-q} . Then $U \cap L_{-p}$ is a 0-neighborhood in L_{-q} for any $p \in N$. Since the convolution is continuous on $0^*_{p,q} \times L_{-q}$, there exists a ball B_p in $0^*_{p,q}$ such that $B_p * B \subset U \cap L_{-p}$. The absolutely convex hull A of $U\{B_p; p \in N\}$ is a 0-neighborhood in 0^*_q and $A * B \subset U$.

Denote by 0 the proj $\lim_{q\to\infty} \inf \lim_{p\to\infty} 0_{p,q}$. It is proved in [7] that the multiplication

 $(f,g)\mapsto fg: 0\times \mathcal{G}'\to \mathcal{G}'$ is not continuous. Hence the convolution $(f,g)\mapsto f*g$: $0^* \times \mathcal{S}' \rightarrow \mathcal{S}'$ is not continuous, either.

References

[1] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Trans. of Math. Monographs 7 AMS, Providence 1963.

[2] L. Schwartz, Théorie des distributions, Hermann, Paris 1966.
[3] H. Schaefer, Topological Vector Spaces, Grad. Texts in Math., No. 3, 3rd printing, Springer, Berlin, New York 1971.

- [4] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.
 [5] J. Kucera, Fourier L₂-Transform of Distributions, Czech. Math. J. 19 (1969), 143—153.
- [6] J. KUCERA, K. McKennon, The Topology on Certain Spaces of Multipliers of Temperate Distributions, Rocky Mountain J. of Math. 7 (1977), 377-383.
- [7] J. KUCERA, K. MCKENNON, Continuity of Multiplication of Distributions, Int. J. Math. 4 (1981), 819-822.

WASHINGTON STATE UNIVERSITY PULLMANN (WASH.)

(Received November 10, 1984)