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Abstract

Let CZ be the linear space of all smooth periodic functions. The paper considers the linear
operators L from C7 into itself which possess the formal transpose L': Cy —~Cy, that is, there
exists a linear operator L': C7—-C; such that

[y w@dx = [ o)L w)(x)dx

for all @, weCg, where W is the (2n)-cube in R". One shows that these operators can always be
expressed in the form

(n (Lo)(x) = (2n)~" lEzz” L(x,Dg,e'™> for @€Cy,

where the mapping x—L(x, /) lies in C7 for each /€Z" and the derivative D% L(x, /) is tempered
with a polynomial. On the other hand supposing that for a given function L(-, -): R"XZ"-C
the mapping x-L(x, /) lies in CZ and that there exist constants #€R and 0=dJ-<1 such that

(2) D% L(x, )| = (1+|/|2)e+el= /2 for all [€Z", xER™,

one ver fies that the operator L defined by (1) maps CZ into itself and that the formal transpose
L’ of L exists,

For the operators L: Cy +C; which own the formal transpose L', the existence of the one-
sided inverse K of the maximal extension L %: HF— H;F is proved under the following coercivity
condition (posed on L)

®) 1L @l o = Callgllg= v —Cilllly e forall peCs,

where C,=0 and C,=0. The spaces H;* are certain weighted subspaces of the space D, of all
periodic distributions and the norm in the space H;F is denoted by || -|x. The weight function k&~
is assumed to obey the condition that k™ (/)= with |/|—~e, and k" is defined by k¥([)=k(—{).
Furthermore, sufficient criteria under which the one-sided inverse K can be expressed as the exten-
sion of a Fourier series operator are revealed.

1. Introduction

Let L(x,D) be a linear partial differential operator with smooth periodic
coefficients. Then L(x, D)¢ can be expressed in the form

(1. (L D)p)(®) = )" 3 Lz D)gie™
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for all ¢ lying in the space C3 of all smooth periodic functions. With the help of
the symbol L(x, /) one is able to show existence, uniqueness and regularity results
for the distributional equation L(x, D)u=f, where u and f lie in the space D,
of all periodic distributions. The exposition is usually done in the frame of the
Hilbert spaces H? of generalized trigonometric polynomials. For the elliptic case
we refer to [2], pp. 131—299 and [4], pp. 95—124. In the contribution [6] one has
considered (global) hypoelliptic operators and in [7] one has exposed the existence
and uniqueness theory for 7-coercive operators. For the generalizations we refer
also to [3]. there the operators of the following form

1.2) (AD)9) () = @R 3 A1) gre ™

have been studied, where A is a mapping Z"-C.
This paper generalizes the notion of a partial differential operator by examing
the operators defined by

(1.3) (L(x, D)o)(x) = (2m)~" ,g’zln L(x, 1) @,

for ¢ lying in Cz. Here L(-, -): R"XZ"~C is a mapping satisfying some tem-
perating criteria (cf. Theorem 2.3). We call these operators Fourier series operators.
For the operators (1.3) which own the formal transpose L'(x, D): Cy—~Cy,

we will construct a one-sided continuous inverse K of the maximal operator L

under the assumption that a certain a priori estimate holds for L’(x, D) (cf. Theo-
rem 3.5 and Corollary 3.6). In addition we prove that the operator K can be expressed
as the extension of a Fourier series operator in the case when “k is large enough”
(cf. Corollary 4.3) and in the case when L(x, D) is hypoelliptic (cf. Theorem 5.1).

2. Spaces H; and Fourier series operators

2.1. Let W be a cube of R" such that
2.1 W= {x€R"|—n < x; < = for j€{l, ..., n}}.

Furthermore, denote by C: the linear subspace of all those C=(R")-functions which
are periodic with respect to W. In the space C; we set a locally convex topology
defined by the semi-norms ¢,: C—R such that

(2.2) 4. () = f}‘,‘i (DY) (x)], oENG.

It is well-known that C;° is a Frechet space and that ¢ belongs to Cg° if and only if
it owns the form

23) V() = Q)" 3 e,
1ezn

where the scalars y,€C satisfy the condition
(2.4) sup Wl (1+IFY" = Cay

for every seR (cf. [1], p. 131).
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The periodic distribution is a continuous linear form C:—-C. Let D, denote
the linear space of all periodic distributions. Then T lies in D if and only if there
exist 1N, and C=0 such that

(2.5) |TY| = CIZ g,(W) for all WYeCz.

a|=t

We use weak dual topology in Dy.
Let k: Z"-R be a positive function such that there exist constants C=0
and N=C with which

(2.6) k(I+2) =CA+||»"?k(z) forall I,zeZ"
Denote by K, the family of these mappings. Clearly one has for all /€Z"
(2.7) k) C 1+~ = k() = k(0)C (1 +|I|})V2.

Furthermore one sees that the functions k,+k,, k k. and k* are lying in K, for
all k; and k,€K, and scR. The basic example about the elements of K, is the
function k;: Z"—+R defined by k,(I)=(1+|/|>*2, s€R.

Definition 2.1. A distribution T€D] belongs to the space Hf if and only if

(2.8) (% Zz' | Tik (DI?)? < e,
leZ”

where 1,:=(2r)~" and

(2.9) T, := T(e— &),

The mapping T-||Tl:=(4, 3 |Tk(D)*)** is clearly a norm in Hf. By
1EZ"
using the properties of /,-spaces one sees that the linear space HJ is a separable

and reflexive Banach space. Furthermore it can be equipped with a scalar product
defined by

(2.10) (U V) = Ay S vk ()
1€Z"

The space C7 is a dense subspace of HF for each k€K, and then the space Hf
can be interpreted as a completion of C with respect to the scalar product
(-, N C&XC>—+C such that

((p, 'j/) = j'u Z alwlk(!)g»
leZn
where ¢, is the Fourier coefficient of ¢ defined by
o= @(e=i®) = [o(x)e~i0 dx,
W
Let k*cK, be defined through k*(/)=k(—1). One has for all ¢ and YcCZ
(2.11) oW) = [oMYXdx =1 3 oy,
W
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and then by Hdlder’s inequality we obtain

(2.12) le@)l = Nl ¥l

where | ¢||; is the norm induced by the scalar product (2.10). In view of the inequal-
ity (2.12) one sees that

(2.13) IT(@)| = [Tl @l forall TeHi and ¢€eCT.

This means that the topology of HJ is stronger than the topology induced by D,.
Thus we have established that

(2.14) CecHlcD, foreach kek,,

where both inclusions are topological.
Let H* be the dual space of H}. Then due to the Frechet—Riesz Theorem
one has ’

Theorem 2.2. Assume that k lies in K.. Then for every LcHX* there exists
Ve Hy v such that

(2.15) Lo =V(p) forall ¢eC=

and ||L|=|V|yx. Conversely the linear form L: Cy —~Cy defined by Lo=V(p)
with VEHy. can be (uniquely) extended to a continuous linear form on Hy.

We finally formulate an algebraic criterion for the compactness of the imbedding
A: HE —~HF, where k and k~ lie in K, (cf. [4], pp. 111—112).

Theorem 2.3. The imbedding /. is compact if and only if the weight functions k
and k™ obey

(2.16) k(DK™ () -0 for |[I] —=oo.

PRrOOF. At first we suppose that (2.16) holds. Let {7,}Jc HJ be a sequence
such that

(2.17) ITWllk~ = M for all neN.

Then one has for all /eZ" and neN

(2.18) APk (D] = | Tl = M.
The inequality (2.18) implies that one is able to find a subsequence {7, } such that
(2.19) 2 T, =T hk(@)*~ 0 with j k-

[ll=e

for each ¢=0 (cf. [4], pp. 111—112).
Let ¢ be an arbitrary positive number and let g€R such that k(/)/k"()=e
for |/|=¢. Then we obtain

(2.20) 1T, — Tl = 2'2(2Me+ IHZS' \T,, — Tk (D).

Hence due to (2.19) one sees that {7, } is a Cauchy sequence in Hj.
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The converse is easy to see by applying the assumption to the sequence {u;}CCy
defined through

(221) Nj(x) = ’LI em:"’/k“ (IJ')’
where {/;}JCZ" is an (arbitrary) sequence such that |/;| - with j—~o. [}

2.2. Suppose that L is a linear operator Cy—C: such that its formal trans-
pose L': C7—Cg exists, in other words, one can find a linear operator L': CT—~CT
satisfying the relation

2-22) (L)) = [(Lo)®)V¥ (x)dx = (9)(L'Y).
w

In the sequel we show that this kind of operator L can always be expressed in the form
(2.23) (L(x, D)p)(x) = 4, 5 L(x,1)¢;e"® for x€R",
1€zn

where L(-, -) is a mapping R"XZ"-C such that the function x—L(x, /) belongs
to C7 for each /€Z" and that the derivative DXL(x,/) is tempered with a poly-
nomial in /.

Lemma 2.4. Suppose that L is a continuous linear operator Cy —~Cy. Then L
can be expressed as a Fourier series operator defined by
(2.24) (Lo)(x) = 4, ' EZZ L(x, )@, '*® =: (L(x, D)9)(x),

where
1° the mapping x—~L(x, 1) lies in C for each I€Z"
and
2° for each a€Nj one can find constants C,=0 and pu,cR such that

(2.25) |IDAL(x, 1) = C,(1+|l]*)«* for all xeW and I[cZ".

Conversely, suppose that L(-, -): R"XZ"—~C is a mapping satisfying 1° and
2°. Then the relation (2.24) introduces a linear continuous operator L: C—~Cy .

PROOF. 4. Let L be a continuous linear mapping Cg—~C:. Then for each
x€Np there exists N,€N such that for all €CZ

(2.26) sup D3 (Lo)(x)| = C;.I 2, sup [Di(@)(x)|

Bl=N, xew
(cf. [8], p. 42). Applying this inequality with ¢=¢** we obtain
sup (D:(L(el(l.x))(x)e—i(l.x))J =
XEW

(2.27) = [;‘] sup IDL(L(e))(x)| 1)l =
= 2 > wne = ck,. 0,
r=a |6I=N,

where we denoted (1 +|/|[*)taa=k,_(I).
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Define now a relation through
(2.28) (Lo)(x) = g(x)(p), for ¢@cCy and x€R".

Then g(x) lies in D, (for a fixed x€R"): Clearly g(x) is a well-defined linear form
Cy —C. Furthermore, the convergence

@~ in C?
implies (in view of (2.26)) that
(2.29) fup (L) (x)— (Le)(x)| - 0

and then
g2(x)(9,) = (Lo,)(x) ~ (Lo)(x) = g(x)(9).

This says that g(x) belongs to D_.
The expression (2.28) yields us

230) LO@= 3 E0)-100= 4 3 (5 (@0)-1e~ ) g0 =

=: 'ln 2 L(x, f) @ ex'(!.x),
leZn

where we used the fact that

(2.31) To— F T for TeD, and $eCe
1eZ”

The mapping L(-, -): R"XZ"-~C such that
(2.32) L(x, 1) = 471 (g(x))- e~ =
= A1 g(x) (") e~ ") = 271 L") (x)e="0®
is well-defined and the mapping x—L(x,/) lies in Cy. By taking into account
relations (2.27) and (2.32) we obtain the validity of (2.25). Hence the first part of
the proof is ready.
B. We now assume that the mapping L(-, -): R*XZ"-~C satisfies 1° and 2°.

The distribution @€D; lies in Cy if and only if for each NEN there exists Cy=0
such that

(2.33) lo) = Cx(1+11B)~N* forall IeZ"
(cf. the subsection 2.1). Hence one sees in view of (2.25) that the sum (with @cCZ)

An 2 DL(L(x, 1) @i e'™2)
162

is (absolutely) uniformly convergent for each «€Nj. This yields that D%(Lg)(x)
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exists and that
(2.34) |D3(Lo)(x)| = ""L 2, DL D) )| =

1A

i 3 3 (5] prLce pineig) =

1EZn f=a

I

b = 3 (5) ok Ok n @l =

I€Z" f=a

C. 3 1+ @il /knsr () =
ledn

E= C::Z 2 Flollkysr() =

€Z" |y|=N,

C:Z 2 (DY o)l/kn (1) =

IEZ" |y| =N,

=Cih 2 sup I(Di”¢)(x)ll€Zz'N1/kn+1(f),

|y| =N, *EW

[0

IIA

where N is a sufficiently large natural number. This completes the proof. |
We are now ready to verify

Theorem 2.5. Suppose that the linear operator L defined on C obeys

(i) L maps C, into itself,

(ii) there exists the formal transpose L': Cy—~C3 of L.

Then L: C—~Cg is continuous so that it can be expressed as a Fourier series
operator (2.24), where the mapping L(-, -) satisfies 1° and 2°.

PrOOF. We show that L: Cy—~C;7 is a closed operator. Let {¢,}<C: bea
sequence such that

(2.35) ¢, ~ @ in C7

and

(2.36) Lo, -~y in CzZ.

In virtue of the assumption (ii) for each ®cCy

(2.37) (Lo (@) = @u(L'®) ~ ¢(L'®) = Lo(P)

and then by (2.36) Lo =1y. The closedness of L proves (by the Closed Graph Theo-
rem) that L is continuous. The last assertions follow from Lemma 2.4 and then
the proof is complete. |}

A sufficient criterion under which the assumptions (i) and (ii) of Theorem 2.5
hold is given by the following

Theorem 2.6. Assume that the mapping x—~L(x,1) lies in CT for each IcZ"
and that one can find numbers pucR and 0=J6<1 such that for each acN} there
exists a constant C,=0 with which the inequality

(2.38) |D% L(x, 1) = Ca(1+|/|2)w+olabi2
for all I€Z", xcW holds. Then we have

4
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39 the linear operator given through (2.23) maps CZ into itself,
4% the formal transpose L'(x,D): Cy—~Cg of L(x,D) exists and
@39) D=4 Z( [LO:-DeR)e ) dy) et
W

Jor every ¢€Cy.
ProOF. In virtue of (2.38) the sum > L(y, I)¢,e'"? is uniformly convergent.
lgzn
Hence we get via a direct computation

(2.40) (Lx, D)) (@) = [(L(. D)) p(y)dy =
W
= f(a,.lezznz.(y, D™ o(y)dy =

=2 J ( [LO Do) dy) =
3 T

— 231‘%'” ll’l (L’(x! D) (P)—l o W(L’(xs D) ‘P)‘

We now check that L'(x, D)¢ defined through (2.39) lies in C°. Employing (2.33)
our only task is to show that for every €N}

[I*(L’(x, D)@))| = C,,, forevery I€Z".
The condition (2.38) yields

@.41) (2 D)o} = | [LO Do) D3 dy| =
W

2 2[0;] [ID}L(y, DD 9)(»)] =
y=a W

= 3 sup |[DIL(y, DI |1 D2 gy =
ysayeWw

< Z[a] C,(l+m“)‘“""""IIDi"J!L'ﬂv) =
T=a }'

=G, (1+ |1|Z)m+dlabre,

The inequality (2.41) tells us that for every méN one is able to find a constant
Cam,o=>0 such that

(2.42) ll'(L’(x, D)q,),| = Cp, o (14 |20+ 811+ G- 112,
Since d<1 our assertion follows from (2.42) by choosing m large enough. |j

2.3. Define a linear operator L,: HF-—H via the requirement (here L is
further linear operator C7—~Cg satisfying the condition (i) of Theorem 2.5)

{D(L.) =Cy,

(2.43) Lo = Lo (= Lix; D)(p) for @eED(Ly).
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Then L, is densely defined and because of the existence of the formal transpose L,
one sees that L, is closable in HF. This is based on the fact that the topology of
HF is stronger than the topology of D;. Let L, be the smallest closed extension of
L, (cf. [8], pp. TT—79).

Furthermore, let L;# be a linear operator HJ—-HF defined by

D(L,:#) = {u€ H{ | there exists an element feH such that
(2.44) u(Lyp) = f(p) for all peCy},
LYy

The operator L; # is closed and L, CL; ¥ (that is, L;# is an extension of Lg).

3. The construction of a one-sided inverse of L ¥

3.1. We at first establish some semi-Fredholm properties of the minimal opera-
tor L, . Afterwards we give the existence results for the solutions of the maximal

equation L; ¢ u=f(by employing the duality between H and Hj,.). Let L;: HF' -~ H}"
be the dual operator of L,. The kernel (the range) is denoted by N(L;) (and R(L;),
resp.). We show

Theorem 3.1. Suppose that a linear operator L: Cy—~Cy obeys condition (i1)
of Theorem 2.5 and that there exist constants C,>0 and C,=0 such that

(3.1 ILollk = Cill@la~—Call@lk for all @eCy,
where k™€K, is chosen so that
(3.2) k™(l) »e, with [l] »ece.
Then the operator L, is a semi-Fredholm operator with
(3.3) dim N(Ly) < ee.
ProoF. In virtue of (3.1) for all ueD(L;)
(3.4) Cyllul~ = | Lgull+Cs [lullx-

Hence every bounded sequence of N(L;) possesses a convergent subsequence
(since the imbedding A: Hf, - —HF is compact). This shows the validity of (3.3).

Furthermore, by taking a sequence {L;w,} in Hf, where {u,} is bounded in
D(L;), one sees due to (3.4) that {u,} has a convergent subsequence {u,}. Since
| Lgu,,~fllx—=0 with some f€H, with j-ece, the limit » of {u,} lies in D(Ly)
and L,u=f. Hence L;(B) is closed when B is closed and bounded in D(L;),
which implies that R(L;) is closed (cf. [5], pp. 99—100). This completes the
proof. §

4%
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Corollary 3.2. Let L be such as in Theorem 3.1. Then the relations

(3.5) R(L;) = N(L)* :={f€HITf = 0 for all TEN(L{)}
and

(3.6) R(LY) = *N(L;) = {TeH"|Tu = 0 for all uc N(L;)}
hold.

This is a standard consequence of the properties of semi-Fredholm operators
by taking into account that L *=L;.

3.2. Suppose that the inclusion

(3.7 Dliaaey) © Bl
holds, where k™€K, satisfies
(3.8) k“(I)=1 forall IeZ"

Then Ljj - is a closed operator H{j,v—HJjy-,v so that the dual operator Lj -
is a closed operator H{7-yv—Hjj~. Let J, be the isometrical isomorphism HJ—
- H~ for k€K, (established in Theorem 2.2). In the sequel we exhibit the con-

nection between the operators L;# and Lijgz-yv-

Theorem 3.3. Suppose that a linear operator L: C3—~Cg obeys the condi-
tion (i1) of Theorem 2.5 and that the inclusion (3.7) holds with k™=1. Then the
relation

(3.9) Li¥|gn . = F'o(Lifa=y)o S
is valid.

PROOF. A. At first we show that L;‘#|H:k__CJ;IO(L;?(H‘-)»)OJH-. Suppose that

u lies in Hj-() D(L;#) and that L;# u=f. Let F=J,f (and U=Jy-~u) belong
to Hf» (and to H{jjy~y, resp.) such that

(3.10) Fo = f(p) forall ¢eC7r

and

(3.11) Up = u(p) forall ¢eCy.

The relation L,’,:1F u=jf implies that

(3.12) Fo = f(9) = u(Li@) = U(Ljjgx-y®)
for all ¢€Cy = D(Ljuk~y)- Hence U lies in D(L{j4x~y) and
(3.13) Ly o~y (i~ t0) = L;?(u"}"u =F=Jf

which proves the first part of the assertion.



On one-sided invertibility of linear coercive Fourier series operators 53

B. On the other hand we assume that » lies in D(J;'o(L{]ux~)oJu~). Then
u lies in HJ~ and for all €C;

u(Li9) = (S~ 1) (Ly@) = (e~ ) (Lijx~y @) =
= (H?(uq“(-’n“))(q’) Ji I(Lmn )'(Jn-'“))((o},

since Jy, - u belongs to D(L;{fu-,»). Hence the proof is complete. §

(3.14)

Corollary 3.4. Suppose that a linear operator L: C7 ~Cg obeys condition (i1)

of Theorem 2.5. Then the range R(L; #) is closed in HE if and only if the range R(Lj,~)
is closed in Hj..

Proor. The assertion follows immediately from Theorem 3.3 with A" =1 and
from the fact that R(Lj,) is closed if and only if R(L{};») is closed. |

3.3. In the sequel we construct a one-sided continuous inverse for L $ on R(L; ¥ ).
More precisely, we show that (under certain conditions) there exists a continuous

operator K: R(L,%)~Hf satisfying
(3.15) L¥&n =75 foran ferY.

Theorem 3.5. Suppose that a linear operator L: Cy—~C7 obeys the condition
(i1) of Theorem 2.5 and that there exist constants C,=0 and C,=0 such that

(3.16) 1L @l = Call@le~wr — Call@llajer
for all pcCz, where k™ satisfies (3.2). Then there exists a continuous linear opera-
tor K: JvI{L,{[“)JoJH',‘llr with the property

(3.17) ¥ &n=s forat ferRALY).

PROOF. In virtue of Theorem 3.1, the assumption (3.16) implies that R(L;;)
is closed. Furthermore, one sees by Theorem 3.3 that

(3.18) L = 1o o(Lie)ol,.

As a Hilbert space the space H;* can be expressed as the orthogonal sum

(3.19) HE = NLLHaN,
where N is closed in H. Define now a linear operator %: HF—~HJ as the restric-

tion L,"#lm. Then the kernel N(£) is {0}.
Since the range R(Lj;») is closed it follows that the range R(L{},») is closed

in H{,.. Hence due to (3.18) the range R(¥)=R(L; ) is closed in H,, Further-
more the closedness of N implies that the operator #: H"—»R(Lk ) 1s closed.

In view of the Closed Graph Theorem the operator K:=2"': R(L; ) Hf is
continuous. Thus the proof is complete. |}
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Corollary 3.6. Suppose that a linear operator L: Cy—~Cy obeys the condition
(ii) of Theorem 2.5 and that there exists »=0 such that

(3.20) IL @lyuk~y = %l @lliype  for all @eCZ,
where k™ =1, Then there exists a continuous linear operator K:. HF—H}; - such that

(3.21) L¥«n=rs foran feHr.
ProOF. The inequality (3.20) yields that R(L{/-yv) is closed in Hjy-,» and
that N(Lj/ux-y)={0}. The space HJ- can be expressed as the sum
Hi- = N )eN
where N is closed in HJ - . One sees (as in the proof of Theorem 3.5) that the inverse
of L;#h: N-—H satisfies the required conditions. [

Corollary 3.7. Suppose that a linear operator L: C7—~Cy obeys the condition
(i1) of Theorem 2.5 and that there exists a constant y=0 such that for all @cCZ

(3.22) Lol = 7 ll@l~

and

(3.23) HL'(P"uru-)' = 7@y

where k™ =1. Then there exists a continuous linear operator E: HJ-~HJ. with
the properties

(3.24) L¥EN=f forall feHy

and

(3.25) E(Lyu) = u for all ucD(L;).

ProOF. In virtue of the inequalities (3.22) and (3.23) the ranges R(L;) and
R(Lijqk-)v) are closed and

(3.26) N(Ly) = N(L;jg~y) = {0}
As a Hilbert space the space H can be expressed as the orthogonal sum
(3.27) H{ER(L)®R,

and the projection p: HF-~R(L;) is continuous.
Define a linear operator E: H—~HJ - via the formula

(3.28) Ef = Ly (o) +K(UI—p) f),

where K is the operator HF—~HJ. constructed in Corollary 3.6. Then E is con-
tinuous and since

L (L on) = of

(I-p)f=0 forall feR(L),
a direct computation shows the relations (3.24)—(3.25). This finishes the proof. |

and
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4. On properties of the one-sided inverse when X is “large”

4.1. Let L be (as in the previous chapter) a linear operator CZ—~CZ pos-
sessing the formal transpose L’: C7—~Cy. As we have shown in Theorem 3.5,
the inequality
(4.1) IL @llipr = Cll@llk~pr — Cell@lliu»  for all @eCy,
where k™€K, satisfies (3.2), is sufficient to guarantee the existence of a linear conti-

nuous operator K: R(L;#)—- Hf such that

¥ &n=s foranl ferRLY).
Furthermore, in Corollary 3.6 we showed that the inequality

(4.2) ||L'(P||1,r(u~)" =X ||¢'I|mv for all ¢eCy,

where k~ =1, implies the existence of a linear continuous operator K: HJ -Hj-
such that

L¥(kf)=f forall feHE.
In this chapter we turn to the problem of seeking sufficient conditions under
which the operator K can be expressed as a Fourier series operator

4.3) (Ko)(x) = 4, 5 K(x, 1)@, for @eCNRLLY),
Iczn

where the mapping K(-. -) obeys certain regularity properties. The essential tool
will be the boundedness of K on R(L;#).

Let u, be a positive number such that
Ha = inf {4 > 0| 3 1/(1+|I[?)* <eo}}
leZ"

The linear space of all m-times continuously differentiable periodic functions R*—~C
will be denoted by C™. First we show

Lemma 4.1. Suppose that S is a continuous linear operator HF—~H], where
k€K, satisfies the inequality

(4.4) kysm(l) == (1+|1|D7+™72 = Ck(l) forall lcZ®

with constants C=0, y>u, and meN,. Then there exists a mapping g: W —~HF"
such that

1° the function x—~g(x)(v) lies in C™ for each v€ HF,

2° for all v€Hf and @€C; one has

4.5) (Sv)(@) = [2(x)() o(x)dx,
3° for all x,y€W one has 5
(4.6) 8() =8I = MISI (4 3 |2 — eI /kGy oy (D)2

4° the mapping g: W —~HF" is continuous and bounded on W.
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PrROOF. A. For every ¢€C; we obtain by (4.4)
4.7) (D)D) = | 3 12917 =
= An D @il kys g D (11" Ky 41y (1) =
1€Z"
= (2..'627: A" /Ky s 1 DP) 2 N @Ik, 0y = C @l

for each |x|=m, where we applied Hélder’s inequality. Hence for every wuw€H[f
there exists a function f, in C? such that

(4.8) u(p) = [fux)e(x)dx forall @eCy

(since C™ is complete equipped with the usual norm topology).
B. Define now a relation g through

(4.9) g(x)(v) == fsu(x) for xeW.
Then for all xéW and »€H one has by (4.7) (with a=0)
(4.10) 1g(X) @) = | fse(x)] = C"||Sv]l = C||S]| []v]lk.

In virtue of (4.7) the function g(x): v—g(x)(v) is well-defined for each xé W and
by (4.10) g(x) lies in HF*. Similarly it is clear (because of (4.9)) that the functions
x—+g(x)(») (for a fixed »¢ HF) and x-—-g(x) are well-defined. Furthermore the
function x—-g(x)(»)=fs,(x) lies in C and by (4.8) one has

@4.11) )@ = [f@o@dx= [g(x)®)ex)dx.
W W

C. For each pair (x, y)ée WXW we obtain
(4.12) (2(x)—2(M)(@)| = | fso(X)—Ffso (W) =
= | 3 (fooh (€ )| =
ez

= (b 3 1600 — &I (D2 (D 3 (Sohkysm(DI =
= (A 3 1600 — DRk, (DPACIST Il
leZn

for all @€Cy. This inequality yields us
(4.13) lg(x)—gMI = C|S| (A":zz:- ") — B k2 L (1))
Since the series ' |eh® —eit|2/k2  (I) is uniformly convergent (in W XW)

1ezn
we see that the right hand side of (4.13) is tending to zero with x—y. The bounded-

ness of g follows immediately from (4.13). Hence the proof is complete. [}
4.2. For each L:=g(x)€H" there exists V:=g (x)€H}+ such that
(4.149) g(x)(®) = g" (x)(¢) forall ¢@cCy
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and [g(x)|=lg"(x)lyx» for all xéW (cf. Lemma 2.2). In the sequel we denote
the function f5, by So.

Theorem 4.2, Suppose that S is a continuous linear operator HJF—H[, where
k€K, satisfies the inequality (4.4). Then the operator S can be expressed as the extension
of a Fourier series operator

(4.15) (SP)(x) = 4y Z S(x, )@, for @eCy,
ezr

where the mapping S(-, -): R"XZ"~C satisfies
1° the mapping x—S(x,!) lies in C* for each IcZ",
20 for each a€N}, |a|=m there exists C,=0 such that for all xcW and I€ Z"

(4.16) D2 S(x, D] = Cakyajo0).
PrOOF. In virtue of Lemma 4.1 one has
(So)(x) = g(x)(@) = & (X)(p) =

= 2 (€ @X)-101=1 2 4'(8" ()17 "D g0
i ik &z

(4.17)

for all xéeW and @€Cy, where we used the fact that

(4.18) Te = :%ﬂ T_,¢, forall TeD, and ¢€cCy.
Define now a function S(-. -): R"XZ"--C by

(4.19) S(x, 1) = A;2(g" (x))- 17",

Then for all xéW one obtains

(4.20) S(x, 1) = 718" (x) (") e ™ = j-18(e ) (x) e,

Hence the function x—S(x, /) lies in C* and

(4.21) DS Dl = 47 5 [E] |DE(S () )| 11| =
= 51 3 (3) s, ., 10791 =
f=a ﬁ v+I181

=4 sg [0;3] Cs ST 1" N, ,,, 11°#] = Cakys (o (1)
where we applied the inequality
(4.22) I(Dz0)(X)| = C, vly,,,.,
for all veHXc Hy . Hg (cf. (4.7)). This completes the proof. |

y+m v+l
Combining Theorems 3.5 and 4.2 we obtain
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Corollary 4.3. Suppose that a linear operator L: C7 —~C; possesses a formal
transpose L':. Cg—~Cy and that there exist constants C,=0 and Cy=0 such
that for all @cCZ

(3.17) I L’Gﬂ'"m" = G llellk~pr — Ca ll@lly/ev»

where k€K, satisfies (4.4) and k™€K, satisfies (3.2). Then there exists a continuous
linear operator K: R(L; #)—-H," with the properties

1° for all feR(L,T)
(3.18) L &n=r
2° for all pcCy NN R(Lgx)
G Ko)) = 4n 3 K(x, 1) g€,
G n

where the mapping K(-, -) satisfies
3% the function x—~K(x, 1) lies in C™,
4° for each aENG, |al=m

(4.24) |D2K(x, D) = Cokysiu(l) for xcW and IcZ.

ProOOF. In virtue of Theorem 3.5 there exists a continuous operator

K: R(L,’,#)—-vH,‘“ satisfying (3.18). Let K= Kogq, where ¢q: Hf — R(L;#) is the con-
tinous projection (of Corollary 3.4). Since k obeys the inequality (4.4) we obtain
by Theorem 4.2 that

Ko)x) = 4, 3 K(x, )@+ forall geCs,
leZ"
where K(-, -): R"XZ"-C satisfies 3° and 4°. Hence we have proved the asser-
tion. §
Similarly the combination of Corollary 3.6 and Theorem 4.2 yields

Corollary 4.4. Suppose that a linear operator L: C7—~Cy possesses a formal
transpose L': Cy—~Cy and that there exists a constant x>0 such that

(4.25) IL @llyyai~y» = #ll@line for all  @eCT,

where k€K, satisfies (4.4) and where k™ =1. Then there exists a continuous linear
operator K: H}-—~HJ - with the properties
1° for all feHF

L}k =7,

(K@)(x) = 4, : Zz' K(x, 1)@ e,
E n

2° for all pcCT

where the mapping K(-, -) satisfies 3° and 4° of Corollary 4.3.
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5. On properties of the one-sided inverse when L is (globally) hypoelliptic

Suppose that a linear operator L: C¥—~C owns a formal transpose
L’: Cz—-Cg. Define a linear operator L'_Eo: D.—~D. such that

D(L'_{,) = {u€ D, | there exists an element f¢ D, such that
u(L' @) = f (@) forall peCy),
L*u= b
Then one sees easily that the domain D(L'_i,) is the whole space D,.
We say that the linear operator L: Cy-~Cy possessing a formal transpose

L": Cz—C7 is (D, C)-hypoelliptic when the solutions of the equation L’j.,u: "
with fECZ liein CZ.
It is well-known that the operator L(D) defined by

(1) (LD = 1 3 LI @i,

where L(-): R"—C is polynomial is (D, C7)-hypoelliptic if and only if there
exist constants C=0, R=0 and x€R such that

(5.2) |L(I)| = Ck,(I) forall IcZ" with || =R
(cf. [6]). We show

Theorem 5.1. Suppose that L is a linear operator C7 —~C; possessing a formal
transpose L': Cy —~Cy. Furthermore we assume that L is (D, Cy)-hypoelliptic
and that there exists a constant x=0 such that for all pcCy

(3.16) IL @lyax~y = %@l

where k™ =1. Then there exists a continuous linear operator K: HF—~HJ - with
the properties
1° for all feH}

A it
(3.21) Ly (Kf) =1,
2° the restriction of K on C7 can be expressed as a Fourier series operator
(5.3) (Ko)(x) = l..l CZZ' K(x, ) g, "™ =: (K(x, D)9)(x),

where
3% the mapping x—~K(x,1) lies in CT for each lcZ"
and
4° for each a€Nj there exist C,>0 and p,cR such that

(5.4) |D2K(x, )| = Cok, (I) forall xeéW and I€Z"

Proor. In virtue of Corollary 3.6 there exists a continuous linear operator
K: HF—~HJj. satisfying (3.21). Because of (3.21) and (D, Cy)-hypoellipticity of L
one sees that K maps C3 into itself (with D(K)=C?).
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Let {y,} be a sequence in C7 such that y,—y and Ky,—~f (in C7). Because
the inclusion CZc H} holds (also topologically) we get that Ky,—~Ky in HJj-.
Hence Ky =/, which shows that K: C7—~Cy7 is closed. Due to the Closed Graph
Theorem K is continuous. Thus Lemma 2.4 completes the proof. [§

We remark that the relations (3.21) and (5.3) yield the validity of the equation
(5.5) L(x, D)(K(x,D)p) = ¢ forall ¢€eCy.
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