Injective and projective graphs

JOHN K. LUEDEMAN

Introduction

The category of graphs*), G, has as objects all finite graphs and as morphisms
all graph homomorphisms. In this paper we beging a study of G by establishing
that G has enough injective objects, and then demonstrate the existence of an injec-
tive hull of a graph. Dually, we then describe the projective objects of G.

Injective Graphs and Injective Hulls

The injectivity of graph 7 is concerned with the lifting of graph homomorphism
into 1.

Definition. A graph I is injective if, and only if, given any graph B and any sub-
graph A of B, each graph homomorphism f: A—I has an extension f: B—I
which is also a graph homomorphism.

The characterization of injective graphs is straightforward.
Theorem 1. A graph G is injective if, and only if, G is a complete graph.

ProOOF. “if”: Let 4 be a subgraph of B and f: A—-K, be a graph homomor-
phism. Extend f to f: B—~K, by choosing some k€K, and defining f(b)=k for
all be B\ A. Clearly, f preserves edges since K, is complete.

“only if”: Let G be injective, |G|=n and suppose there are a, b€G not con-
nected by an edge. Let 4={a, b} be the discrete subgraph of B=K, and define
f(a)=a and f(b)=>b. Since G is injective, f has a graph homomorphism extension

: K,~G and since there is an edge connecting a and b in K,, there must be an
edge connecting a=f(a) and b=f(b) in G. This is a contradiction so G=K,.

Definition. A graph G is self-injective if, and only if, each graph homomor-

phism f: A—G from a subgraph 4 of G can be extended to a graph endomor-
phism of G.

*) All of our graphs may have loops.
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Corollary 2. A graph G is self-injective if, and only if, G=K,, or G is totally
disconnected.

Proor. “if”: If G is totaily disconnected, G is self-injective (but not injective
unless G=K,). If G=XK,, G is injective and so is certainly self-injective.

“only if”: If G is self-injective it is either totally disconnected or has an edge.
Let the edge join a and b. If x, y€G are not connected by an edge, let A={a, b}
have no edges and define f: A—G by f(a)=x, f(b)=y. For G to be self-injective
there is g: G—G and so x=g(a) and y=g(b) are joined by an edge.

We now turn out attention to the existence of injective hulls.

Definition. A subgraph A of B is essential in B if, and only if, for any graph
G, if f: B—~G is a graph homomorphism whose restriction to A is one-to-one,
then f: B—G is also one-to-one. B is also called an essential extension of A.

!

Lemma 3. Let A be a subgraph of B which is a subgraph of C, then A is essential
in C if, and only if, A is essential in B and B is essential in C.

Proor. “if”: Let f: C—~G be a graph homomorphism whose restriction to
A is one-to-one. Then, since A is essential in B, fy: B—~C, the restriction of f to
B, is one-to-one. Since B is essential in C, fis one-to-one. Hence A is essential in C.

“only if”: Let f: C—~G be a graph homomorphism whose restriction f3 to
B is one-to-one. Then f, is one-to-one so f is one-to-one since A is essential in C.
Thus B is essential in C.

Let f: B—~G be a graph homomorphism whose restriction to A4 is one-to-one.
If |G|=n, then GESK, and since K, is injective, f has an extension f: C—K,,
and f,=f, is one-to-one. Since A is essential in C, f is one-to-one and so fis one-
to-one. Hence A is essential in B.

Theorem 4. The following statements are equivalent for a subgraph A of B:
(1) B is an injective, essential extension of A,

(2) B is a maximal essential extension of A,

(3) B is a minimal injective extension of A.

Proor. (1)—(2): Suppose B is not maximal and ASBEC with C an essential
extension of A. Since B is injective, there is a graph homomorphism g: C—-B
extending the identity mapping i: B—~B. Since i is one-to-one, g is one-to-one.
Since g maps C onto B, |B|=|C|=n. Butthen B=K, since B is injective so C=B.
Thus B is a maximal essential extension of A4.

(2)-~(3): Let B be a maximal essential extension of 4 and C be a minimal
injective extension of A. Then if |A4|=n, C=K,, since K, is injective. Without loss
of generality, ASK,. The identity mapping i: A-~ASK,=C has an extension
f: B—~C which is one-to-one. Thus |B|=n so, without loss of generality, ASBCC.
However, C is essential over 4 since |4|=|C|=n. Thus B=C and B is a minimal
injective extension of A.
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(3)+(1): Let B be a minimal injective extension of A. Thus if |4|=n, B=K,.
But K, is essential over 4 so B is an injective essential extension of 4.

Definition. A graph G is the injective hull of a subgraph A if, and only if, G is
an injective essential extension of A.

Theorem 5. Let B and C be injective hulls of A. Then there is a graph isomor-
phism g: B—C whose restriction to A is the identity map i: A—~A.

PROOF. By the injectivity of B and C there exisis a graph homomorphism g:
B—~C as shown in Figure 1.
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Figure 1.

Since |B|=|C|=|A4|=n, g maps B onto C since g is one-to-one since B is essential
over A. By Theorem 3, C is complete so g~* is a bijection which preserves edges
and so is a graph isomorphism.

Given a subgraph A4 of B and a graph homomorphism f: 4—~C, we ask when
f has a unique extension f: B—C.

Definition. A subgraph A is dense in B if, and only if, whenever f:* B—~C and
g: B—~C are graph homomorphisms which agree on A4, then f=g.

Lemma 6. A is dense in B if, and only if, |A|=|B|.

Proor. “onlyif”: Let C=K,,n=|B| andlet f: A—~C be the identity mapping.
Extend fto g,: B—~C by g,(b)=a, for all b6 B\ 4, and g,: B—~C be the inser-
tion mapping. Then g;(@)=g.(a) for acA but g,(b)=g.(b). Thus |A4|=|B|.

“if”: If f: B~C and g: B—~C agree on A, then they agree on the vertex set
of B and so are equal.

Corollary 7. If A is essential in B and B is self-injective, then End (4)=End (B)
where End (G) is the collection of graph endomorphisms of G.

Projective Graphs

In Category Theory, the dual concept to “injective” is “projective”.

Definition. A graph P is projective if, and only if, given graphs 4 and B and an
onto graph homomorphism f: 4-B, for each graph homomorphism g: P—B,
there exists a graph homomorphism /: P-—~A for which f-h=g.

We characterize projective graphs as totally disconnected graphs in the following
theorem.

Theorem 8. A graph P is projective if, and only if, P is the disjoint union of
a totally disconnected graph and finitely many copies of K,.
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PRrOOF. “if”: Let f: A—B be a graph epimorphism and g: P—B be a graph
homomorphism. Define h: P—+A by choosing for each edge pg in P, an edge xy
in A for which f(x)=g(p) and f(¥)=g(g), and set h(p)=x and h(g)=y. This
guarantees that f preserves edges. For each isolated vertex p€ P, choose a€ A with
f(a)=g(p), then set h(p)=a. Then h is a graph homomorphism and foh=g.

“only if”: Let P be projective. We will show that P has no paths of length 2
or more. Let g: P—~P be the identity homomorphism. Define the graph A as
follows: (1) for each edge e in P, form the complete graph K, with vertices a., b,
in 4 and edge a.b,, (2) for e=f require K, and K, to be disjoint, (3) for each
isolated vertex p€ P adjoin the isolated vertex @, to 4. Then P is a homomorphic
image of 4 by the map f: A-— P given by f(a.)=p, f(b.)=¢q where pg=e is an
edge in P, and f(a,)=p for isolated vertices a, in A. Clearly, if Phas a path of
length 2 or more, there is no graph homomorphism h: P— A with foh=gq.

Apologia

In the last several pages we have characterized injective and projective graphs.
While the problem of characterizing such graphs is @ priori interesting, the results
are somewhat disappointing. The reason that injective graphs are complete and
projective graphs are totally disconnected arises from the fact that we consider all
subgraphs of a graph. Perhaps it might be more interesting to consider only induced
subgraphs of a graph. However, in this situation we lose the possibility of each
graph possessing an injective hull as our discussion of the injective hull demon-
strates.

In the next two sections we consider injectives in the categories of bipartite
graphs and trees.

Bipartite graphs

Recall that a (non directed) graph G=(V, E) is bipartite if, and only if, V is
partitioned into disjoint nonempty subsets V; and ¥V, with ECV;XV,. Let
G=(V, E) and H=(U, F) be bipartite graphs. A graph homomorphism f: G—+H
satisfies f: V;—=U,, f: Vo—U, and v,Ev, implies f(v,) Ef(vo).

Theorem 9. A bipartite graph G=(V, E) is injective in the category of bipartite
graphs if, and only if. G=K,,, where V is partitioned into V, and V, with |V;|=m
and |V,|=n.

PRrROOF. “if”: Let G be a bipartite graph with parts ¥, and V,, 4 be a sub-
graph with parts 4,CV; and 4,CV,, and let f: A—K,,, be any homomrphism.
Extend fto f:G—~K,,, by choosing some k and k’ in the two parts of K,,,,; and
setting f(@)=k for all ac V;\4, and f(a)=k for all acV,\A4,. Clearly f preser-
ves edges since K, , is complete.

“only if”: Let G=(V, E) be an injective bipartite graph with parts ¥, and V,.
Suppose there is ©,€¥; and v,€V, not connected by an edge. Let A={a, b} be
the discrete subgraph of K, and define f: A—-G with f(a)=v, and f(b)=uv,.
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Since G is injective f has an extension f: K,—~G. Since there is an edge joining a
and b in K,, there must be an edge connecting v, and v, in G. This is a contradiction.
Thus G is a complete bipartite graph.

Similar to the case for graphs, we have the following Theorem for bipartite
graphs. Since the proof for the bipartite case is similar to the general case, it is
omitted.

Theorem 10. Let G be a bipartite graphs with parts |G,|=m and |G,|=n. Then
G has an injective hull isomorphic to K,, ,.

Forests and Trees

Recall that a forest is an acyclic graph (possibly with loops). A subobject of a
forest is a forest.

In the category of forests, K, is the only injective object as shown by Theo-
rem 11.

Theorem 11. A forest F is injective if, and only if, F=K, or F=K,.

Proor. “if”: K, and K, are injective in the category of graphs and so are injec-
tive in the category of forests.

“only if”": Let F be an injective forest. It is easily seen that F is complete. The
only complete forests are K; and K.

Recall that a Tree is a connected acyclic graph. Theorem 11 shows that if we
allow non-induced subgraphs, we require our injective objects to be complete. This
contrasts with Theorem 12 below.

Notation. Let F be the category of the trees with induced subtrees as sub-
objects.

Theorem 12. In the category 7, all irees are injective.

PrOOF. Let A, B, Tc7 with A a subtree of B and f: A—-T be a tree homo-
morphism. For each b€ B\ A4, there is a unique leaf a€A4 for which the path from
a to b is of shortest length (otherwise B would have a cycle). Extend f: A-T to
f: B=T by requiring f(b)=f(a). Then f is a tree homomorphism and f(B) is a
subtree of T. Thus T is injective.

While in the category 7, injectives need not be complete, the fact that all trees
are injective is surprising. This fact does point cut that the concept of an injective
hull is trivial in this category.

In Theorem 12, if we require that trees have no loops (the more commonly
accepted definition), the result holds true.

If we require that all subobjects of trees be induced subforests, we have the
following result.

Theorem 13. If in the category of trees we require subobjects to be induced sub-
the forests, injective objects are stars.
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ProoF. Let P; be the path with three vertices as pictured in Figure 2 and denote
the injective tree as I.

a

b

T e L

Cc

Figure 2.

Let S={a, ¢} bethediscrete induced subforest of P;. Given x, y€7, f: S—1I defined
by f(@)=x, f(c)=y, has an extension f: P;—~I. Thus x and y are either adjacent or
connected by a path of length 2. This says that 7 is a tree of diameter 2, or a star.
(Note that if f(a)=f(c), the star has a loop on its center.)

Conversely let S be a star (possibly with a loop on its center) B be a tree, and
A an induced subforest of B. Suppose f: A—~S is a graph homomorphism. Define
f: B—~S, an extension of f, by f(b)=c, the center of S, for hEB\A. Then fis
a graph homomorphism for if b, b, is a edge of B, without loss of generality f(b,)=c
and f(b,) is either a leaf of S or c. In either case, f(b,)f(b,) is an edge of S.
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