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Abstract. In this note the following theorem is proved: if a polynomial mapping between
locally convex linear topological spaces is continuous in one point, then it is continuous every-
where.

It is a wellknown and trivial property of linear mappings between linear top-
ological spaces, that continuity in one point implies continuity everywhere (see e.g.
KELLEY—NAMIOKA [3]). The aim of this work is to prove the same property for
polynomial mappings between locally convex linear topological spaces.

Let E, F be linear topological spaces. Following the terminology of NAcCH-
BIN [4], we say that the mapping P: E—~F is a polynomial, if it has a representa-
tion of the form

P(x) = B(x)+...+A(x)+F,

where F,: E—~F is a k-homogeneous polynomial, that is
B(x) = Ax(x, ..., X)

holds for all x in E with some k-linear and symmetric operator 4,: E*-=F
(k=1,...,n), and F, is an element of F (which can be called a 0-homogeneous
polynomial). Polynomial mappings play an important role in the theory of func-
tional equations, as all solutions of a wide class of functional equations can be
expressed by polynomial mappings (see AczgL [1], SZEKELYHIDI [5]).

We note, that similar results concerning regularity properties of polynomial
mappings on topological groups have appeared recently in SzEKELYHIDI [6], but
here we apply completely different technique using the observation that a multi-
linear mapping can always be identified with a linear mapping on some tensor
product space. It would be interesting to know, whether a similar method can be
applied to polynomial mappings on topological groups using some tensor product
of topological groups. If so, then some results of SzEKELYHIDI [6] could be gener-
alized.

Theorem 1. Let E, F be locally convex linear topological spaces, n a positive
integer, and A: E"—~F an n-linear mapping, which is continuous at the origin. Then
A is continuous everywhere.
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Proor. We denote by T the tensor product of n copies of E, equipped with
the locally convex topology, which has the local base formed by the convex circled
texensions of the sets U,;®...QU,, where U, runs through a given local base of
E (i=1,...,n) (see KELLEY—NAMIOKA [3], p. 152). Further, we denote by @ the
canonical homomorphism (x;, ..., X,) =X, ®...®x, of E" into T, which is ob-
viously continuous. Let a: T—F be the linear mapping defined by the condition

A = aod,

Obviously, a is uniquely determined by A (see KELLEY—NAMIOKA [3], p. 152). We
show, that a is continuous at the origin. Let W CF be a convex circled neighbor-
hood of the origin, then there exists a convex circled neighborhood UCE of the
origin such that A(UX...XU)cW. Obviously UX...XU is convex and circled.
By the definition of the topology of T, the convex circled extension of U®...QU
is a neighborhood of the origin in 7. On the other hand, the convex circled extension

of UR...®@U is the set of all elements of the form Zm' 2;z;, where z; belongs to
i=1

U®..®U, and f‘[).,-lél (see KELLEY—NAMIOKA [3], p. 14). It means, that
i=1

z;=x,®...9x,,, where x; belongs to U (i=1,...,m, j=1,...,n), and hence

a(Znz)= Zha@) = 3 hatx,8..8x) = 3 hACx a3

and this element belongs to W, as W is convex and circled. Hence, a is continuous
at the origin. Then by linearity it follows that @ is continuous everywhere (see Kf1r-
LEY—NAMIOKA [3], p. 37), and then the continuity of @ and @ implies that 4 is
continuous everywhere.

Theorem 2. Let E, F be locally convex linear topological spaces and P: E—~F
be a polynomial. If P is continuous at one point, then it is continuous everywhere.

PrROOF. As any translate of a polynomial is a polynomial again, we may sup
pose that P is continuous at the origin. Let

P(x) = Ay(Xy oy ) ¥ ..o+ A, () + 4,

where A, is k-additive and symmetric (k=0, 1, ...,n). By the obvious identity
(see e.g. HosszU [2], SzEKELYHIDI [5))

where 4%, . is the usual difference operator (see e.g. SZEKELYHIDI [5]), we have
that A4, is continuous at the origin of E”". Using the previous theorem, and then
applying the same argument for the function x—P(x)—A4,(x,...,x) we get the
statement by induction.
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By the same method as in SzEReLYHIDI [6] we infer from Theorem 2 the fol-
lowing

Corollary 3. Let E, F be locally convex linear topological spaces and P: E—~F
be a polynomial. If P is bounded on some non-void open set, then it is continuous every-
where.
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