Publ. Math. Debrecen 51 / 1-2 (1997), 145–151

Sasakian anti-holomorphic submanifolds of locally conformal Kaehler manifolds

By LIU XIMIN (Tianjin)

Abstract. Some necessary and sufficient conditions for an anti-holomorphic submanifold in a locally conformal Kaehler manifold to be a Sasakian submanifold are obtained.

1. Introduction

The differential geometry of the CR submanifolds of a locally conformal Kaehler (l.c.K.) manifold have been studied in the last ten years (cf. [2]–[5]). A. BEJANCU introduced the concept of Sasakian anti-holomorphic submanifolds in a Kaehler manifold [1]. The Sasakian anti-holomorphic submanifolds in an l.c.K. manifold are studied by F. VERROCA [7], she gives some characterizations for them under the condition that the normal connection is flat. In the present paper we make a further study of the Sasakian anti-holomorphic submanifolds of an l.c.K. manifold, we give some characterizations for them so that the results in §4 of [7] are still true without supposing that the normal connection is flat.

2. Preliminaries

Let (\overline{M}, g, J) be a Hermitian manifold of complex dimension n with Kaehler 2-form Ω_0 , i.e. $\Omega_0(X, Y) = g(X, JY), X, Y \in T\overline{M}$. Then \overline{M} is a

Mathematics Subject Classification: 53C40, 53C15.

Key words and phrases: Anti-holomorphic submanifold, locally conformal Kaehler manifold, Sasakian anti-holomorphic submanifold.

Liu Ximin

locally conformal Kaehler (l.c.K.) manifold if there exists a closed 1-form ω_0 on \overline{M} such that [6]

(2.1)
$$d\Omega_0 = \omega_0 \wedge \Omega_0.$$

The 1-form ω_0 is called the Lee form, then the Lee vector field is the vector field B_0 such that $g(B_0, X) = \omega_0(X)$. If $\overline{\nabla}$ denotes the Riemannian connection of \overline{M} , then one has:

(2.2)
$$(\bar{\nabla}_X J)Y = \frac{1}{2}(\theta_0(Y)X - \omega_0(Y)JX - \Omega_0(X,Y)B_0 - g(X,Y)A_0)$$

for any $X, Y \in T\overline{M}$, where $\theta_0 = \omega_0 \cdot J$ is the anti-Lee 1-form and $A_0 = -JB_0$ is the anti-Lee vector field.

An *m*-dimensional submanifold M of \overline{M} is called a CR submanifold if the tangent bundle TM is expressed as a direct sum of two distributions D and D^{\perp} , such that D is holomorphic (i.e. $J_x D_x = D_x, x \in M$) and D^{\perp} is totally real (i.e. $J_x D_x^{\perp} \subset T_x^{\perp} M$), in particular, if $J_x D_x^{\perp} = T_x^{\perp} M$, then M is called anti-holomorphic submanifold. Denote by P and Q the projection morphism of TM to D and D^{\perp} , respectively, then, restricted to M, P + Q = I.

For $X \in T_x M$, denote

$$(2.3) JX = \phi X + FX$$

where ϕX and FX are, respectively the tangent part and the normal part of JX, then we have

(2.4)
$$\phi = J \cdot P, \quad F = J \cdot Q, \quad F \cdot \phi = 0, \quad \phi \cdot Q = 0$$

(2.5)
$$\phi^2 = -P = -I + Q.$$

The Gauss and Weingarten formulas are given by

(2.6)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \text{ and } \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$$

respectively, where $X, Y \in TM$, $N \in T^{\perp}M$. Now ∇, h, A and ∇^{\perp} are the induced connection, the second fundamental form, the Weingarten operator and the normal connection, respectively. Denote by θ, ω and Ω the forms induced on M by θ_0, ω_0 and Ω_0 , respectively. Then one has

(2.7)
$$\theta = \omega \cdot \phi + \omega_0 \cdot F, \qquad \Omega(X, Y) = g(X, \phi Y), \quad X, Y \in TM.$$

146

For $X, Y \in TM$, define

(2.8)
$$dF(X,Y) = \frac{1}{2} (\nabla_X^{\perp} FY - \nabla_Y^{\perp} FX - F[X,Y]).$$

From (2.2), we have

(2.9)
$$\nabla_X^{\perp} FY = \nabla_X^{\perp} JQY = (\bar{\nabla}_X JQY)^{\perp} = ((\bar{\nabla}_X J)QY + J\bar{\nabla}_X QY)$$
$$= F\nabla_X QY - \frac{1}{2}(\omega(QY)FX + g(X, QY)A_0).$$

Let $E_1, \ldots, E_p, JE_1, \ldots, JE_p$ be an orthonormal basis for D, then the normal vector field

$$H_D = \frac{1}{2p} \sum_{i=1}^{p} (h(E_i, E_i) + h(JE_i, JE_i))$$

is well defined and is called the D-mean curvature vector of M.

Definition 2.1. Let M be an anti-holomorphic submanifold of an l.c.K. manifold $\overline{M}; M$ is called normal if for any $X, Y \in TM$

(2.10)
$$N^{(1)}(X,Y) \equiv [\phi,\phi](X,Y) - 2J(dF)(X,Y) = 0.$$

Here $[\phi, \phi]$ is the Nijenhuis torsion of ϕ . *M* is called contact if $H_D \neq 0$ and

(2.11)
$$(dF)(X,Y) = -\Omega(X,Y)H_D, \qquad X,Y \in TM.$$

A normal contact anti-holomorphic submanifold of an l.c.K. manifold is called a Sasakian anti-holomorphic submanifold.

Proposition 2.1. If M is a normal (or contact) anti-holomorphic submanifold of an l.c.K. manifold \overline{M} , then

(2.12)
$$N^{(2)}(X,Y) = dF(\phi X,Y) - dF(\phi Y,X) = 0.$$

PROOF. If M is a contact anti-holomorphic submanifold of \overline{M} , then from (2.11) we obtain (2.12) immediately. Now suppose that M is a normal anti-holomorphic submanifold for $\xi \in D^{\perp}$; from (2.10) we obtain

(2.13)
$$(\phi^2[X,\xi] - \phi[\phi X,\xi]) - J(\nabla_X^{\perp} F\xi - \nabla_\xi^{\perp} FX - F[X,\xi]) = 0,$$

so we have

(2.14)
$$\nabla_X^{\perp} F\xi - \nabla_{\xi}^{\perp} FX - F[X,\xi] = 0.$$

Replacing X by ϕX in (2.14) we have

(2.15)
$$\nabla_{\phi X}^{\perp} F\xi = F[\phi X, \xi].$$

Substituting (2.9) into (2.15), we get

(2.16)
$$0 = \nabla_{\phi X}^{\perp} F \xi - F \nabla_{\phi X} \xi + F \nabla_{\xi} \phi X = F \nabla_{\xi} \phi X.$$

On the other hand, from (2.4) and (2.5) we can derive

(2.17)
$$0 = N^{(1)}(X, \phi Y) = [\phi, \phi](X, \phi Y) - 2JdF(X, \phi Y) = [\phi X, QY] - [\phi X, Y] - \phi[\phi X, \phi Y] + \phi[X, PY] - [X, \phi Y] + J\nabla^{\perp}_{\phi Y} FX.$$

Projecting to D^{\perp} we obtain

(2.18)
$$J\nabla^{\perp}_{\phi Y}FX - Q[\phi X, Y] + Q[\phi X, QY] - Q[X, \phi Y] = 0.$$

Operating (2.18) by J we have

(2.19)
$$-\nabla_{\phi Y}^{\perp} F X + F[\phi Y, X] + F[\phi X, QY] - F[\phi X, Y] = 0.$$

From (2.15) we get

(2.20)
$$F[\phi X, QY] = \nabla_{\phi X}^{\perp} FY.$$

From (2.19) and (2.20) we have

$$-\nabla^{\perp}_{\phi Y}FX + F[\phi Y, X] + \nabla^{\perp}_{\phi X}FY - F[\phi X, Y] = 0,$$

i.e. $N^{(2)}(X,Y) = dF(\phi X,Y) - dF(\phi Y,X) = 0.$

Lemma 2.1. [7]. Let M be a CR submanifold of the l.c.K. manifold \overline{M} . Then we have

$$\begin{split} 2g((\nabla_X \phi)Y,Z) &= 3(d\Omega)(X,\phi Y,\phi Z) - 3(d\Omega)(X,Y,Z) + g([\phi,\phi](Y,Z),\phi X) \\ &+ 2g((dF)(\phi Y,Z),FX) + 2g((dF)(\phi Y,X),FZ) \\ &- 2g((dF)(\phi Z,X),FY) - 2g((dF)(\phi Z,Y),FX). \end{split}$$

148

Proposition 2.2. If M is a contact anti-holomorphic submanifold of an l.c.K. manifold \overline{M} , and M is orthogonal to the Lee vector field B_0 , then

(2.21)
$$2g((\nabla_X \phi)Y, Z) = g(N^{(1)}(Y, Z), \phi X) + 2g(N^{(2)}(Y, Z), FX) + 2g(dF(\phi Y, X), FZ) - 2g(dF(\phi Z, X), FY).$$

PROOF. Since M is orthogonal to the Lee vector field B_0 for $X, Y, Z \in TM$, from Lemma 2.1, (2.10) and (2.12) we can obtain (2.21).

3. Sasakian anti-holomorphic submanifolds

Theorem 3.1. Let M be an anti-holomorphic submanifold of an l.c.K. manifold, and M orthonormal to the Lee vector field B_0 . If M is a Sasakian anti-holomorphic submanifold, then

(3.1)
$$(\nabla_X \phi)Y = g(\phi X, \phi Y)JH_D + g(FY, H_D)PX.$$

Conversely, if there exists $\xi \in T^{\perp}M$ such that

$$(3.1)' \qquad (\nabla_X \phi)Y = g(\phi X, \phi Y)J\xi + g(FY, \xi)PX$$

then M is a Sasakian anti-holomorphic submanifold and $\xi = H_D$.

PROOF. Suppose M is a Sasakian anti-holomorphic submanifold. By Proposition 2.1 and Proposition 2.2 we have

$$(3.2) g((\nabla_X \phi)Y, Z) = g(dF(\phi Y, X), FZ) - g(dF(\phi Z, X), FY) = g(\phi Y, \phi X)g(-H_D, FZ) + g(\phi Z, \phi X)g(H_D, FY) = g(\phi Y, \phi X)g(JH_D, Z) + g(H_D, FY)g(PX, Z)$$

for any Z, so we get (3.1).

Conversely, suppose that (3.1)' holds, then from (2.9) and (2.5) we get

$$(3.3) \quad 2dF(X,Y) = \nabla_X^{\perp} FY - \nabla_Y^{\perp} FX - F[X,Y] \\ = F(\nabla_X QY - \nabla_Y QX - \nabla_X Y - \nabla_Y X) \\ = F(\nabla_X \phi^2 Y - \nabla_Y \phi^2 X) = F((\nabla_X \phi) \phi Y - (\nabla_Y \phi) \phi X) \\ = (-g(\phi X, \phi^2 Y) + g(\phi Y, \phi^2 X))\xi = -2\Omega(X,Y)\xi.$$

Liu Ximin

In the sequel we prove that $\xi = H_D$. Let $E_1, \ldots, E_p, JE_1, \ldots, JE_p$ be an orthonormal basis for D, then

$$-h(E_i, E_i) = F(Jh(E_i, E_i)) = F(J(\bar{\nabla}_{E_i} E_i)) = F(Q\bar{\nabla}_{E_i} JE_i)$$
$$= F(Q\bar{\nabla}_{E_i} \phi E_i) = F(Q(\nabla_{E_i} \phi) E_i) = F(Q(\nabla_{E_i} \phi) E_i) = -\xi.$$

Similarly we have $h(JE_i, JE_i) = \xi$, so $\xi = H_D$ is the *D*-mean curvature vector of *M*, and *M* is a contact anti-holomorphic submanifold.

On the other hand

$$(3.4) \quad [\phi,\phi](X,Y) = [\phi X,\phi Y] + \phi^2[X,Y] - \phi[\phi X,Y] - \phi[X,\phi Y]$$
$$= (\nabla_{\phi X}\phi)Y - (\nabla_{\phi Y}\phi)X + \phi(\nabla_Y\phi)X - \phi(\nabla_X\phi)Y$$
$$= g(\phi^2 X,\phi Y)J\xi - g(\phi^2 Y,\phi X)J\xi = -2\Omega(X,Y)J\xi$$
$$= -2\Omega(X,Y)JH_D.$$

Combining with (3.3), (3.4) and $\xi = H_D$ we have $N^{(1)} = 0$, M is normal, and this completes the Proof of Theorem 3.1.

By direct computation we have

(3.5)
$$(\nabla_X \Omega)(Y, Z) = g(Y, (\nabla_X \phi)Z).$$

From (3.1) and (3.5) we obtain the

Theorem 3.2. Let M be an anti-holomorphic submanifold of an l.c.K. manifold \overline{M} . If M is orthonormal to the Lee vector field B_0 , then M is a Sasakian anti-holomorphic submanifold if and only if for any $X, Y, Z \in TM$

$$(3.6) \quad (\nabla_X \Omega)(Y, Z) = g(\phi X, \phi Y)g(H_D, FZ) - g(\phi X, \phi Z)g(H_D, FY)$$

Remark. From Theorem 3.1 and Theorem 3.2 we know that the results in $\S4$ of [7] still hold without the assumption that the normal connection is flat.

Theorem 3.3. Let M be a Sasakian anti-holomorphic submanifold of an l.c.K. manifold, and $\xi \in D^{\perp}$. If M is orthonormal to the Lee vector field B_0 , then

$$(3.7) P\nabla_X \xi = g(F\xi, H_D)\phi X.$$

150

In particular, if $F\xi$ is parallel with respect to the normal connection, then

(3.8)
$$\nabla_X \xi = g(F\xi, H_D) \phi X.$$

PROOF. From (3.1) we have

(3.9)
$$0 = \phi \nabla_X \xi + (\nabla_X \phi) \xi = \phi \nabla_X \xi + g(F\xi, H_D) P X.$$

Operating (3.9) by ϕ and combining with (2.5), we get (3.7).

Using (2.9) again, we have

$$\nabla_X \xi = P \nabla_X \xi + Q \nabla_X \xi = g(F\xi, H_D) \phi X - J \nabla_X^{\perp} F\xi,$$

and this implies (3.8).

References

- A. BEJANCU, Geometry of CR-submanifolds, Reidel Publishing Company, Dordrecht, 1986.
- [2] S. DRAGOMIR, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, *Geom. Dedi.* 28 (1988), 181–197.
- [3] K. MATSUMOTO, On CR-submanifolds of locally conformal Kaehler manifolds, J. Korean Math. Soc. 21 (1984), 49–61.
- [4] K. MATSUMOTO, On CR-submanifolds of locally conformal Kaehler manifolds II, Tensor, N.S. 45 (1987), 144–150.
- [5] L. ORNEA, Cauchy-Riemann manifolds of locally conformal Kaehler manifolds, Demonstratio Mathemat. 19 (1986), 863–869.
- [6] I. VAISMAN, Locally conformal Kaehler manifolds with parallel Lee form, Rend. Math. 12 (1979), 263–284.
- [7] F. VERROCA, On Sasakian anti-holomorphic Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, *Publ. Math. Debrecen* 43 (1993), 303–313.
- [8] K. YANO and M. KON, Structures on manifolds, World Sci. Publishing Co., 1984.

LIU XIMIN DEPARTMENT OF MATHEMATICS NANKAI UNIVERSITY TIANJIN 300071 P.R. CHINA

(Received July 12, 1996)