Sasakian anti-holomorphic submanifolds of locally conformal Kaehler manifolds

By LIU XIMIN (Tianjin)

Abstract

Some necessary and sufficient conditions for an anti-holomorphic submanifold in a locally conformal Kaehler manifold to be a Sasakian submanifold are obtained.

1. Introduction

The differential geometry of the CR submanifolds of a locally conformal Kaehler (l.c.K.) manifold have been studied in the last ten years (cf. [2]-[5]). A. Bejancu introduced the concept of Sasakian anti-holomorphic submanifolds in a Kaehler manifold [1]. The Sasakian anti-holomorphic submanifolds in an l.c.K. manifold are studied by F. Verroca [7], she gives some characterizations for them under the condition that the normal connection is flat. In the present paper we make a further study of the Sasakian anti-holomorphic submanifolds of an l.c.K. manifold, we give some characterizations for them so that the results in $\S 4$ of [7] are still true without supposing that the normal connection is flat.

2. Preliminaries

Let (\bar{M}, g, J) be a Hermitian manifold of complex dimension n with Kaehler 2-form Ω_{0}, i.e. $\Omega_{0}(X, Y)=g(X, J Y), X, Y \in T \bar{M}$. Then \bar{M} is a
locally conformal Kaehler (l.c.K.) manifold if there exists a closed 1-form ω_{0} on \bar{M} such that [6]

$$
\begin{equation*}
d \Omega_{0}=\omega_{0} \wedge \Omega_{0} \tag{2.1}
\end{equation*}
$$

The 1 -form ω_{0} is called the Lee form, then the Lee vector field is the vector field B_{0} such that $g\left(B_{0}, X\right)=\omega_{0}(X)$. If $\bar{\nabla}$ denotes the Riemannian connection of \bar{M}, then one has:

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) Y=\frac{1}{2}\left(\theta_{0}(Y) X-\omega_{0}(Y) J X-\Omega_{0}(X, Y) B_{0}-g(X, Y) A_{0}\right) \tag{2.2}
\end{equation*}
$$

for any $X, Y \in T \bar{M}$, where $\theta_{0}=\omega_{0} \cdot J$ is the anti-Lee 1-form and $A_{0}=$ $-J B_{0}$ is the anti-Lee vector field.

An m-dimensional submanifold M of \bar{M} is called a CR submanifold if the tangent bundle $T M$ is expressed as a direct sum of two distributions D and D^{\perp}, such that D is holomorphic (i.e. $J_{x} D_{x}=D_{x}, x \in M$) and D^{\perp} is totally real (i.e. $J_{x} D_{x}^{\perp} \subset T_{x}^{\perp} M$), in particular, if $J_{x} D_{x}^{\perp}=T_{x}^{\perp} M$, then M is called anti-holomorphic submanifold. Denote by P and Q the projection morphism of $T M$ to D and D^{\perp}, respectively, then, restricted to $M, P+Q=I$.

For $X \in T_{x} M$, denote

$$
\begin{equation*}
J X=\phi X+F X \tag{2.3}
\end{equation*}
$$

where ϕX and $F X$ are, respectively the tangent part and the normal part of $J X$, then we have

$$
\begin{align*}
\phi & =J \cdot P, \quad F=J \cdot Q, \quad F \cdot \phi=0, \quad \phi \cdot Q=0 \tag{2.4}\\
\phi^{2} & =-P=-I+Q . \tag{2.5}
\end{align*}
$$

The Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \text { and } \quad \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.6}
\end{equation*}
$$

respectively, where $X, Y \in T M, N \in T^{\perp} M$. Now ∇, h, A and ∇^{\perp} are the induced connection, the second fundamental form, the Weingarten operator and the normal connection, respectively. Denote by θ, ω and Ω the forms induced on M by θ_{0}, ω_{0} and Ω_{0}, respectively. Then one has

$$
\begin{equation*}
\theta=\omega \cdot \phi+\omega_{0} \cdot F, \quad \Omega(X, Y)=g(X, \phi Y), \quad X, Y \in T M . \tag{2.7}
\end{equation*}
$$

For $X, Y \in T M$, define

$$
\begin{equation*}
d F(X, Y)=\frac{1}{2}\left(\nabla \frac{1}{X} F Y-\nabla_{Y}^{\perp} F X-F[X, Y]\right) . \tag{2.8}
\end{equation*}
$$

From (2.2), we have

$$
\begin{align*}
\nabla \frac{\perp}{X} F Y & =\nabla_{X}^{\perp} J Q Y=\left(\bar{\nabla}_{X} J Q Y\right)^{\perp}=\left(\left(\bar{\nabla}_{X} J\right) Q Y+J \bar{\nabla}_{X} Q Y\right) \tag{2.9}\\
& =F \nabla_{X} Q Y-\frac{1}{2}\left(\omega(Q Y) F X+g(X, Q Y) A_{0}\right) .
\end{align*}
$$

Let $E_{1}, \ldots, E_{p}, J E_{1}, \ldots, J E_{p}$ be an orthonormal basis for D, then the normal vector field

$$
H_{D}=\frac{1}{2 p} \sum_{i=1}^{p}\left(h\left(E_{i}, E_{i}\right)+h\left(J E_{i}, J E_{i}\right)\right)
$$

is well defined and is called the D-mean curvature vector of M.
Definition 2.1. Let M be an anti-holomorphic submanifold of an l.c.K. manifold $\bar{M} ; M$ is called normal if for any $X, Y \in T M$

$$
\begin{equation*}
N^{(1)}(X, Y) \equiv[\phi, \phi](X, Y)-2 J(d F)(X, Y)=0 . \tag{2.10}
\end{equation*}
$$

Here $[\phi, \phi]$ is the Nijenhuis torsion of $\phi . M$ is called contact if $H_{D} \neq 0$ and

$$
\begin{equation*}
(d F)(X, Y)=-\Omega(X, Y) H_{D}, \quad X, Y \in T M \tag{2.11}
\end{equation*}
$$

A normal contact anti-holomorphic submanifold of an l.c.K. manifold is called a Sasakian anti-holomorphic submanifold.

Proposition 2.1. If M is a normal (or contact) anti-holomorphic submanifold of an l.c.K. manifold \bar{M}, then

$$
\begin{equation*}
N^{(2)}(X, Y)=d F(\phi X, Y)-d F(\phi Y, X)=0 . \tag{2.12}
\end{equation*}
$$

Proof. If M is a contact anti-holomorphic submanifold of \bar{M}, then from (2.11) we obtain (2.12) immediately. Now suppose that M is a normal anti-holomorphic submanifold for $\xi \in D^{\perp}$; from (2.10) we obtain

$$
\begin{equation*}
\left(\phi^{2}[X, \xi]-\phi[\phi X, \xi]\right)-J\left(\nabla \frac{\perp}{X} F \xi-\nabla \frac{\perp}{\xi} F X-F[X, \xi]\right)=0, \tag{2.13}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\nabla \stackrel{\perp}{X} F \xi-\nabla \stackrel{\perp}{\xi} F X-F[X, \xi]=0 \tag{2.14}
\end{equation*}
$$

Replacing X by ϕX in (2.14) we have

$$
\begin{equation*}
\nabla_{\phi X}^{\perp} F \xi=F[\phi X, \xi] . \tag{2.15}
\end{equation*}
$$

Substituting (2.9) into (2.15), we get

$$
\begin{equation*}
0=\nabla_{\phi X}^{\perp} F \xi-F \nabla_{\phi X} \xi+F \nabla_{\xi} \phi X=F \nabla_{\xi} \phi X \tag{2.16}
\end{equation*}
$$

On the other hand, from (2.4) and (2.5) we can derive

$$
\begin{align*}
0= & N^{(1)}(X, \phi Y)=[\phi, \phi](X, \phi Y)-2 J d F(X, \phi Y) \tag{2.17}\\
= & {[\phi X, Q Y]-[\phi X, Y]-\phi[\phi X, \phi Y]+\phi[X, P Y] } \\
& -[X, \phi Y]+J \nabla \frac{\perp}{\phi Y} F X .
\end{align*}
$$

Projecting to D^{\perp} we obtain

$$
\begin{equation*}
J \nabla_{\phi Y}^{\perp} F X-Q[\phi X, Y]+Q[\phi X, Q Y]-Q[X, \phi Y]=0 . \tag{2.18}
\end{equation*}
$$

Operating (2.18) by J we have

$$
\begin{equation*}
-\nabla_{\phi Y}^{\perp} F X+F[\phi Y, X]+F[\phi X, Q Y]-F[\phi X, Y]=0 . \tag{2.19}
\end{equation*}
$$

From (2.15) we get

$$
\begin{equation*}
F[\phi X, Q Y]=\nabla_{\phi X}^{\perp} F Y . \tag{2.20}
\end{equation*}
$$

From (2.19) and (2.20) we have

$$
-\nabla_{\phi Y}^{\perp} F X+F[\phi Y, X]+\nabla_{\phi X}^{\perp} F Y-F[\phi X, Y]=0
$$

i.e. $N^{(2)}(X, Y)=d F(\phi X, Y)-d F(\phi Y, X)=0$.

Lemma 2.1. [7]. Let M be a $C R$ submanifold of the l.c.K. manifold \bar{M}. Then we have

$$
\begin{aligned}
2 g\left(\left(\nabla_{X} \phi\right) Y, Z\right)= & 3(d \Omega)(X, \phi Y, \phi Z)-3(d \Omega)(X, Y, Z)+g([\phi, \phi](Y, Z), \phi X) \\
& +2 g((d F)(\phi Y, Z), F X)+2 g((d F)(\phi Y, X), F Z) \\
& -2 g((d F)(\phi Z, X), F Y)-2 g((d F)(\phi Z, Y), F X) .
\end{aligned}
$$

Proposition 2.2. If M is a contact anti-holomorphic submanifold of an l.c.K. manifold \bar{M}, and M is orthogonal to the Lee vector field B_{0}, then

$$
\begin{gather*}
2 g\left(\left(\nabla_{X} \phi\right) Y, Z\right)=g\left(N^{(1)}(Y, Z), \phi X\right)+2 g\left(N^{(2)}(Y, Z), F X\right) \tag{2.21}\\
+2 g(d F(\phi Y, X), F Z)-2 g(d F(\phi Z, X), F Y) .
\end{gather*}
$$

Proof. Since M is orthogonal to the Lee vector field B_{0} for $X, Y, Z \in$ $T M$, from Lemma 2.1, (2.10) and (2.12) we can obtain (2.21).

3. Sasakian anti-holomorphic submanifolds

Theorem 3.1. Let M be an anti-holomorphic submanifold of an l.c.K. manifold, and M orthonormal to the Lee vector field B_{0}. If M is a Sasakian anti-holomorphic submanifold, then

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, \phi Y) J H_{D}+g\left(F Y, H_{D}\right) P X \tag{3.1}
\end{equation*}
$$

Conversely, if there exists $\xi \in T^{\perp} M$ such that

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, \phi Y) J \xi+g(F Y, \xi) P X \tag{3.1}
\end{equation*}
$$

then M is a Sasakian anti-holomorphic submanifold and $\xi=H_{D}$.
Proof. Suppose M is a Sasakian anti-holomorphic submanifold. By Proposition 2.1 and Proposition 2.2 we have

$$
\begin{gather*}
g\left(\left(\nabla_{X} \phi\right) Y, Z\right)=g(d F(\phi Y, X), F Z)-g(d F(\phi Z, X), F Y) \tag{3.2}\\
=g(\phi Y, \phi X) g\left(-H_{D}, F Z\right)+g(\phi Z, \phi X) g\left(H_{D}, F Y\right) \\
=g(\phi Y, \phi X) g\left(J H_{D}, Z\right)+g\left(H_{D}, F Y\right) g(P X, Z)
\end{gather*}
$$

for any Z, so we get (3.1).
Conversely, suppose that (3.1)' holds, then from (2.9) and (2.5) we get

$$
\begin{align*}
2 d F & (X, Y)=\nabla_{X}^{\perp} F Y-\nabla_{Y}^{\perp} F X-F[X, Y] \tag{3.3}\\
& =F\left(\nabla_{X} Q Y-\nabla_{Y} Q X-\nabla_{X} Y-\nabla_{Y} X\right) \\
& =F\left(\nabla_{X} \phi^{2} Y-\nabla_{Y} \phi^{2} X\right)=F\left(\left(\nabla_{X} \phi\right) \phi Y-\left(\nabla_{Y} \phi\right) \phi X\right) \\
& =\left(-g\left(\phi X, \phi^{2} Y\right)+g\left(\phi Y, \phi^{2} X\right)\right) \xi=-2 \Omega(X, Y) \xi .
\end{align*}
$$

In the sequel we prove that $\xi=H_{D}$. Let $E_{1}, \ldots, E_{p}, J E_{1}, \ldots, J E_{p}$ be an orthonormal basis for D, then

$$
\begin{aligned}
& -h\left(E_{i}, E_{i}\right)=F\left(J h\left(E_{i}, E_{i}\right)\right)=F\left(J\left(\bar{\nabla}_{E_{i}} E_{i}\right)\right)=F\left(Q \bar{\nabla}_{E_{i}} J E_{i}\right) \\
& \quad=F\left(Q \bar{\nabla}_{E_{i}} \phi E_{i}\right)=F\left(Q\left(\nabla_{E_{i}} \phi\right) E_{i}\right)=F\left(Q\left(\nabla_{E_{i}} \phi\right) E_{i}\right)=-\xi .
\end{aligned}
$$

Similarly we have $h\left(J E_{i}, J E_{i}\right)=\xi$, so $\xi=H_{D}$ is the D-mean curvature vector of M, and M is a contact anti-holomorphic submanifold.

On the other hand

$$
\begin{align*}
{[\phi, \phi] } & (X, Y)=[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[\phi X, Y]-\phi[X, \phi Y] \tag{3.4}\\
& =\left(\nabla_{\phi X} \phi\right) Y-\left(\nabla_{\phi Y} \phi\right) X+\phi\left(\nabla_{Y} \phi\right) X-\phi\left(\nabla_{X} \phi\right) Y \\
& =g\left(\phi^{2} X, \phi Y\right) J \xi-g\left(\phi^{2} Y, \phi X\right) J \xi=-2 \Omega(X, Y) J \xi \\
& =-2 \Omega(X, Y) J H_{D} .
\end{align*}
$$

Combining with (3.3), (3.4) and $\xi=H_{D}$ we have $N^{(1)}=0, M$ is normal, and this completes the Proof of Theorem 3.1.

By direct computation we have

$$
\begin{equation*}
\left(\nabla_{X} \Omega\right)(Y, Z)=g\left(Y,\left(\nabla_{X} \phi\right) Z\right) . \tag{3.5}
\end{equation*}
$$

From (3.1) and (3.5) we obtain the
Theorem 3.2. Let M be an anti-holomorphic submanifold of an l.c.K. manifold \bar{M}. If M is orthonormal to the Lee vector field B_{0}, then M is a Sasakian anti-holomorphic submanifold if and only if for any $X, Y, Z \in T M$

$$
\begin{equation*}
\left(\nabla_{X} \Omega\right)(Y, Z)=g(\phi X, \phi Y) g\left(H_{D}, F Z\right)-g(\phi X, \phi Z) g\left(H_{D}, F Y\right) . \tag{3.6}
\end{equation*}
$$

Remark. From Theorem 3.1 and Theorem 3.2 we know that the results in $\S 4$ of [7] still hold without the assumption that the normal connection is flat.

Theorem 3.3. Let M be a Sasakian anti-holomorphic submanifold of an l.c.K. manifold, and $\xi \in D^{\perp}$. If M is orthonormal to the Lee vector field B_{0}, then

$$
\begin{equation*}
P \nabla_{X} \xi=g\left(F \xi, H_{D}\right) \phi X . \tag{3.7}
\end{equation*}
$$

In particular, if $F \xi$ is parallel with respect to the normal connection, then

$$
\begin{equation*}
\nabla_{X} \xi=g\left(F \xi, H_{D}\right) \phi X \tag{3.8}
\end{equation*}
$$

Proof. From (3.1) we have

$$
\begin{equation*}
0=\phi \nabla_{X} \xi+\left(\nabla_{X} \phi\right) \xi=\phi \nabla_{X} \xi+g\left(F \xi, H_{D}\right) P X \tag{3.9}
\end{equation*}
$$

Operating (3.9) by ϕ and combining with (2.5), we get (3.7).
Using (2.9) again, we have

$$
\nabla_{X} \xi=P \nabla_{X} \xi+Q \nabla_{X} \xi=g\left(F \xi, H_{D}\right) \phi X-J \nabla_{X}^{\perp} F \xi,
$$

and this implies (3.8).

References

[1] A. Bejancu, Geometry of CR-submanifolds, Reidel Publishing Company, Dordrecht, 1986.
[2] S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, Geom. Dedi. 28 (1988), 181-197.
[3] K. Matsumoto, On CR-submanifolds of locally conformal Kaehler manifolds, J. Korean Math. Soc. 21 (1984), 49-61.
[4] K. Matsumoto, On CR-submanifolds of locally conformal Kaehler manifolds II, Tensor, N.S. 45 (1987), 144-150.
[5] L. Ornea, Cauchy-Riemann manifolds of locally conformal Kaehler manifolds, Demonstratio Mathemat. 19 (1986), 863-869.
[6] I. Vaisman, Locally conformal Kaehler manifolds with parallel Lee form, Rend. Math. 12 (1979), 263-284.
[7] F. Verroca, On Sasakian anti-holomorphic Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, Publ. Math. Debrecen 43 (1993), 303-313.
[8] K. Yano and M. Kon, Structures on manifolds, World Sci. Publishing Co., 1984.

```
LIU XIMIN
DEPARTMENT OF MATHEMATICS
NANKAI UNIVERSITY
TIANJIN 300071
P.R. CHINA
```

