The Pexider equation on n-semigroups and n-groups

By ANTONI CHRONOWSKI (Krakow)

In this paper we describe a certain family of solutions of the Pexider equation
on n-semigroups S( ) and T ] possessing invertible elements. If 7T ] is an n-group
we give a general solution of the Pexider equation. Moreover, the above mentioned
results are used to describe a certain family of solutions of another functional equa-
tion of the form:

R(E(..(F(x,5.), ...), 55), 51) = Fya(x, (515 825 -0 S))-

The Pexider equation on n-semigroups (n-groupoids) is a straight-forward generali-
zation of the Pexider equation on various algebraic structures with binary operations
(cf. A. KRAPEZ and M. A. TAYLOR [5]). Algebraically, the Pexider equation is related
to the notions of homotopy and of isotopy.

We begin with some definitions.

A Pexider equation on binary groupoids S and 7 is a functional equation

(D a(515,) = o3 (51) % (55)

for arbitrary s,, s,€S, where «,, %, ®;: S—T are unknown functions.

A triple of functions (2, o,, %;) being a solution of equation (1) is called a homo-
topy from the groupoid S into the groupoid 7. If o,, a,, «; are bijections, then the
homotopy (2, a,, ;) is called an isotopy from the groupoid S onto the groupoid 7.

Let a,, a,€ T be arbitrary fixed elements of the groupoid 7. Functions L, ()=
=ayt and R, (t)=ta, for t€T we call a left translation and a right translation on
the groupoid T, respectively.

An element 7€ T is called an invertible element in the semigroup T if (T=Tr=T.
The symbol R(7) will denote the set of all invertible elements in the semigroup T.
It is known that if R(7T)##0, then R(T) is a subgroup of the semigroup 7 and the
identity of the subgroup R(T) is an identity of the semigroup 7 and so T'is a monoid

(cf. [6]).

An element rcT is called a right-cancellative element in the semigroup T if
Vi, beT[ht = it = 1 = 1],

Theorem 1. Let S be a groupoid with identity, and let T be a semigroup. If a triple
of functions (o , &y, o) is a solution of equation (1) on S and T such that oy (1) and oy(1)
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are elements from R(T), then there exists a homomorphism ¢: S—~T and there exist
elements a,, a,¢ R(T) such that

(2) al — L¢1¢’ as = ng(o’ aa = L¢|R¢,¢‘

If ¢: S—Tis an arbitrary homomorphism and a,, a,¢ T are arbitrary elements, then
a triple of functions (o, , &y, a3) of form (2) is a solution of equation (1).

Proor. Denote a,:=o,(1) and a,:=u,(1). Let us put ¢@(s):=a;'%(s) for
every s¢S. Notice that oy(s)=0,(1)as(s)=a,0,(s) and oay(s)=0,(s)ay(l)=
=u,(s)a, for s€S. Hence, ay(s5)=a,0,(5)=a,a;*(a,05(s))=a a7 (o (s5)a;)=
=a (a7 % (5))ay=a,p(s)a, for s€S. Thus, a(5)=a,¢(5), %(s)=@(s)a, x(s)=
=a,p(s)a, for s€S. Itis easy to check that ¢ is a homomorphism.

The proof of the second part of this theorem is obvious.

Remark 1. Theorem 1 remains true if instead of the assumption that «,(1)€ R(T),
the element x,(1) is supposed to be a right-cancellative element in the semigroup 7.

Corollary 1. Let S be a groupoid with identity, and let T be a group. A triple of
Sfunctions (ay, a9, ®%3) of form (2) is a general solution of equation (1) if ¢: S—T
is an arbitrary homomorphism and a,, a,¢ T are arbitrary elements.

Corollary 2. Let (x,, %y, ®;) be a homotopy from a groupoid S with identity into
a group T. If a; is a bijection for a certain i€{1, 2, 3}, then (2, oy, %3) is an isotopy
from S onto T.

Notice that formula (2) does not yield the general solution of equation (1). To
show this, we consider the following

Example. Let {1, s} be a group endowed with the operation:

1]s
L11ts
B S

Let T={1, ¢, 0} be a monoid with the operation:

1(t|0
111]7]0
t1£]110
0jo0f0|0
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Consider all the functions from the set 7°5:
u(l)=1 ()=t a,(1)=0
u(®)=1 a@) =1 aw()=1
a(l)=1 ()=t (1)=0
ag(s) =1t az(s) =t ag(s)=1
B(l)=1 a(l)=1 «(1)=0
23(s) =0 ag(s) =0 ay(s)=0.

The functions «,, o,, %, are the only homomorphisms from § into 7. The triple of
functions (a3, %y. %) satisfies equation (1). It is easy to check that the function o,

cannot be written in form (2) for any homomorphisms o, , «,, and a,.
Consider on groupoids S and 7 the following functional equation

(3) “s(ﬂ(sl) )-(52)) = oty (51) %2 (52)

for arbitrary s,, 5,€S, where y, A: S-S are given bijections and o, oy, 0t3: ST
are unknown functions.
Notice that equation (3) is equivalent to the equation

(4) 23(5158) = (o ") (51) (@02 71) (52)
for arbitrary s,, $,€S.

The following lemma is an immediate consequence of equation (4) and Theo-
rem I.

Lemma 1. Let S be a groupoid with identity, and let T be a semigroup. If a triple
of functions (a,, %y, ) is a solution of equation (3) on S and T such that ay p~(1) and
ag A71(1) are elements from R(T), then there exists a homomorphism ¢: S—~T and
there exist elements ay, a,¢ R(T) such that

(5) Ky = La;‘pﬁh Uz = Ra,‘p’;-! Uy = Ln;-Ra:(p‘

If the function ¢:S--T is an arbitrary homomorphism and a,, a;c 1 are arbitrary
elements, then a triple of functions («,, oy, ®3) of form (5) is a solution of equation (3).

Corollary 3. Let S be a groupoid with identity, and let T be a group. A triple of
functions (o, &y, %3) of form (5) is a general solution of equation (3) if ¢:S—T is an
arbitrary homomorphism and a,, a,€ T are arbitrary elements.

Let X be an arbitrary non-empty set, and let S be an arbitrary groupoid. The
set X* endowed with the composition of functions is a monoid.

Consider the following functional equation
(6) Fi(}:.’,(x! 52); Sl) ¥ F;i(x$ 51 s!)

for arbitrary x€X and s,, 5,€S, where F;: XXS-X for i=1,2,3 are unknown
functions.



124 A. Chronowski

Lemma 2. Let X be an arbitrary non-empty set, and let S be an arbitrary groupoid.
A triple of functions (Fy, Fy, F,) is a solution of equation (6) if and only if there exists
a triple of functions (o, , &y, o) being a solution of equation (1) on the groupoid S and
the monoid XX, and o,(s)(x)=F,(x,s) ( =1, 2, 3) for arbitrary x€X and s€S.

We omit the simple proof of this lemma.

We recall the following known facts.

A function f€X¥ is an invertible element in the monoid X* iff the function f
is a bijection on the set X. A function fe X* is a right-cancellative element in the
monoid X iff the function f maps the set X onto the set X.

Theorem 2. Let X be an arbitrary non-empty set, and let S be an arbitrary grou-
poid with identity. If a triple of functions (F, F,, F3) is a solution of equation (6) on S
and the functions Fy(x, 1) and F,(x, 1) are bijections on the set X, then there exists
a homomorphism and there exist functions f,, [€X* such that

(7 F(x,5)=L;so(s)(x), F(x, )= R,e(s)(x),
Fy(x,s) = Ly, Ry, 0(s)(x)

for arbitrary xcX and scS. If ¢: S—~XX is an arbitrary homomorphism and
f1: 26 XX are arbitrary functions, then a triple of functions (Fy, F,, F;) of form (7)
is a solution of equation (6).

Proor. Since the triple of functions (F;, F,, F3) is a solution of equation (6),
so according to Lemma 2, there exists a triple of functions (e, o,, ®3) being a solu-
tion of equation (1) on the groupoid S and the monoid X * such that

(8) F(x,5) = a(9)(x), i=1,2,3

for arbitrary x€X and s€S.

Notice that o;(1)(x)=F;(x, 1) are bijections for i=1,2. Thus in virtue of
Theorem 1, there exist functions f;, f,6 X* and there exists a homomorphism ¢: §—
—X* such that oy=L, ¢, ag=R;,@, a3=L; R, ¢. Hence and by (8) we get the
functions F; (i=1,2,3) in form (7).

The proof of the first part of this theorem is completed. The easy proof of the
second part is omitted. '

Remark 2. Theorem 2 remains true if instead of the assumption that Fy(x, 1)
is a bijection, the function F,(x, 1) is supposed to map the set X onto the set X.

In the sequel we shall be concerned with the Pexider equation on n-semigroups.
Definitions 2—35 and most of the notations are used according to papers [1] and [2].

Let S(o) be a binary semigroup. The symbol s” denotes either the sequence
Su> Smt1s -+3 5, O the element $,08,410...05, for arbitrary ., Sp41s --s HES
if m=n. The meaning of this symbol will uniquely result from the context. If m=>n,
then s}, is an empty symbol. The n-termed sequence s, s, ..., s is denoted by s" and x°
is an empty symbol.

Definition 1. A non-empty set S endowed with an n-ary operation (n=2) is
called an n-groupoid. n-groupoids will be written as S( ) or S| ].
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Definition 2. An n-groupoid S( ) is said to be an n-quasigroup if for an arbitrary
i€{l, ..., n} the equation

% Ste1) = §
has the unique solution for arbitrary sy, ..., 5,€S.

Definition 3. An n-groupoid S( ) is said to be an n-semigroup if for arbitrary
i,je{l, ..., n} the following equality is satisfied

(172, b1, sP3aY) = (o2 (sf ), o
for arbitrary s, ..., S3,—1€S.

An clement e€S is said to be an identity of the m-groupoid S( ) if
(-1, 5, e ")=s for every s€S and for every i€{l, ..., n}.

If there exists an identity of an n-semigroup S( ), then S( ) is called an n-mo-
noid. The identity of a binary monoid will be denoted by 1.

Definition 4. If an n-quasigroup S( ) is an n-semigroup, then S( ) is called an
n-group.

Let S; (i=1, ..., n) be non-empty subsets of an n-groupoid S( ). We define
the following set:

(S3, Sa5 -oes S)i= {(Sg5 Sas +0y S)ES: 5€S for i=1,...,n}.

Definition 5. An element s of an n-groupoid S( ) is called k-invertible if
(8%-1, 5, S"¥)=S. If an element s€S is 1-invertible and n-invertible in an n-grou-
poid S( ), then s is called a bilateral invertible element. If for an arbitrary k€ {1,..., n}
an element s€S is k-invertible in an n-groupoid S( ), then s is called an invertible
element. The set of all invertible elements in an n-groupoid S( ) is denoted by R(S).

Theorem 3. (GLUSKIN [2]) Every bilateral invertible element of an n-semigroup
is an invertible element.

Theorem 4. (GLUSKIN [2]) Ler S( ) be an arbitrary n-semigroup for which R(S)#
#0.

On the set S one can define the binary operation o such that:

1) (sD)=s,0A(8g)042(85)0...0A"(s,)oa for arbitrary s,,Ss, Sz, ..., S€S;
2) S(o)is a binary monoid with the same set R(S) of invertible elements;
3) J is an automorphism of the monoid S(o);

4) acR(S) and Ai(a)=a;

5) A*~*(x)=aoxoa~' for every Xx&€S.

The binary monoid S(o) will be called a monoid associated with the n-semi-
group S( ) and it will be denoted by (S, o, 4, @). A monoid associated with an n-
group is a binary group. A monoid associated with a binary monoid S( - ) is the
same binary monoid S( - ).

Corollary 4 (GLUSKIN [2]) Let S( ) be an n-monoid. On the set S one can define
the binary operation o such that:
1) (sf)=s,05q0...08, for arbitrary s,, Ss, ..., S,€S;
2) S(o) is a binary monoid.
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For simplicity, the monoid associated with the n-monoid S( ) will be denoted
by S(o) or S.

Definition 6. A Pexider equation on n-groupoids S( ) and 77| ] is the functional
equation

(9) an +1((sl1 TR 3!:)) =~ [al (SI)$ a2(52)& seey !I”(S")]

for arbitrary s,, s, ..., 5,68, where o;: S—7 (for i=1,...,n+1) are unknown
functions.

A sequence of functions (2, ..., ,+;) being a solution of equation (9) is called
a homotopy from an n-groupoid S( ) into an n-groupoid 77 ].

If o, ...,a,,, are bijections, then a homotopy (a, ..., ®,,,) is called an iso-
topy from an n-groupoid S( ) onto an n-groupoid TT ].

If a sequence («, «, ..., ®) is a homotopy (an isotopy) from an n-groupoid S( )
into (onto) an n-groupoid 77 ], then the function « is called a homomorphism (an
isomorphism) from an n-groupoid S( ) into (onto) an n-groupoid 77T ].

Theorem 5. If two n-monoids are isotopic, then they are isomorphic.

Proor. Let (o, s, ...,0,,,) be an isotopy from an n-monoid S( ) onto an
n-monoid T ], and let S(o) and 77| - ] be monoids associated with S( ) and 77 ]
respectively. By the definition of the isotopy we have oc,ﬂ((sl,s,,. 8))=
==[o; (81), 2a(Ss), ..., %,(s,)] for arbitrary s,,s,, ..., 5,6S. In virtue of Corollary 4
we obtain (10) rx”,(sloszo...os,):al(sl)-ag(s,)- oo o0, (s,) for arbitrary sy, s,, ..

.s S,€S. Let us put g;:=o;(1) for i=1,...,n. By (10) we have a,,,(s,05)=
—ctl(s,) (xg(s9) - @3) for arbitrary s,, 5,€S. Put B(s2):=0s(5y) - a3 for every s5,€8S,
and so f=Rna,. Besides, ,.,(5:)=a,-ay(s,)-a? for every s,ES Le. =
3 Lg Ronots. Smce oy and o,,, are bijections and L, Rp=RgzL, so L, and

Ry are bijections. Thus, the function f is a bijection. Whence o,.,(s;08,)=
==0,(5,) - P(5,) for arbitrary s,, s,€S, and so the monoids S(c) and T -] are
isotopic. It is the well known fact that isotopic binary monoids are isomorphic
(cf. [4]). Thus there exists an isomorphism ¢: §—7 of the monoids S(c) and 77 - ].
It is easy to see that ¢ is also an isomorphism of the n-monoids §( )and 77T ].

Remark 3. Let us notice that two isotopic n-groups (n=>2) need not be isomorphic
(a suitable example can be found in Belousov [1]).

It is easy to prove the following two propositions.
Proposition 1. Every n-groupoid isotopic to an n-quasigroup is an n-quasigroup.
Proposition 2. Every n-semigroup isotopic to an n-quasigroup is an n-group.

An n-groupoid isotopic to an n-group need not be an n-group (a suitable example
can be found in the paper [4], p. 101).

Theorem 6. Let S( ) and T[ ] be n-semigroups for which R(S)#0 and R(T)#0.
Let (S, o, 4, a) and (T, -, u, b) be monoids associated with S( ) and T| ], respectively.
If a sequence of functions (o, ..., %,.,) is a solution of equation (9) on the n-semi-
groups S( ) and T[], and /(1) (fori=1,...,n—1), a,(a" ') are elements from
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R(T), then there exists a homomorphism ¢:S—T of monoids (s, o, 2, a) and
(T, -, u, b), and there exist elements a,, ...,a,€ R(T) such that

o = L, o,

oy = p“"LaT;‘_!.Rax;qo}."“ for k=2, ...,a-],
11 e :
oL i = pl“”Lagl_n.Ra:qa,R,,z."“‘,

Ups1 = Lm Ra’,'-bq"

If o: S=T is an arbitrary homomorphism of monoids (S, o, A, a) and
(T, -, u,b) and ay, ...,a, €¢R(T) while a,,a, are arbitrary elements from T,
then a sequence of functions of form (11) is a solution of equation (9) on n-semigroups
A( )and T| ].

PROOF. If n=2 then this theorem is an immediate consequence of Theorem 1.
Suppose that n=3. It follows from the assumptions of this theorem that
O 42(( 81 S35 o0 s S2))=[0t; (51), g (Sg)s ..., 2x(5,)] for arbitrary s;,85,...,5€S. In
virtue of Theorem 4 we have a,.,(s;04(sp)0...0A"~1(5,)0a)=04(5;)- uoty(sy)- .

e, (s,)-b. Put a;:=p—ta(1) (for i=l,...,n—1) and g, :=p"" 1c:c,,(a“‘)
Whence az,,H(slo)(s,))-—al(sl) (ya,(s,) % b) for arbitrary s,,s,ES Putting
Bai=Rp.pux; we have o,.(504(s))= a,(s,) Bs(sy) for arbitrary s, s,€S.
Since cxl(l) =a, and B, (1)=Ps(1)=poy(1)-a} - b=d} - b are elements from R(T),
then according to Lemma 1 there exists a homomorphism ¢@:S—T of monoids
(S,0,%,a) and (T, -, u,b) such that ay=L, @, Po=Rp. @A Ups1 =Ly R,
Hence, R,:_bmt,:Rd;,bqo)., and so oy=p"'R, @A Thus, &,=L, ¢, ta=pn ‘R,‘(p).

“n+1=L.,R4'.a€0'

Let us assume that 3=k=pn—1. Putting s;=1,...,85_.=1, §:,=1,.

' Se—1=1,5,=a"' we have a,.;(A*-%(5;_;)ol*"1(5))= (a“ -8, ut- “ak l(.rr,‘_l))
(,u* ‘(i) - af 41 - b) forarbitrary s, _,, 5,€S. Letus put fi_y:=Lx- a,u ~Bge 1o i o=
""Ra:n sy and so o,y (A5 2(s_)0 A1 (5)) =Pi—1(Sk—1) - Bi(sy) for arbit-
rary Sy-;, €S. Let us notice that B,_, 23 *(1)=p,_,(1)=a}"2. pu*2a,_,(1)=
=af~' and B A7 K(1)=B()=p* o (1) -a},,-b=a}-b are elements from R(T).
It follows from Lemma 1 that there exists a homomorphism y: S--7 of monoids
(S,0,4,a) and (T, -,u,b) such that p,_,=Lg-1y2*"3 Bp=Rp yp2*7,
%1 =Lge-1Rgn pip. Thus, we obtain Ly-1Rp W =L, Ry ¢, whence Ly-1y=
=Ryx-19, and so v,lz:L};‘.xRa;-lqo. Since Ra:“-bp'k_lal=Ra;-b¢j't_l’ then o, =
=p - R YA 1= ' R, L1 Ry-1 @ =p*~* Lol 1 Rppd*~* for k=3, ..., n—1.
Let us notice that the function «, can also be written in the above form.

To determine the function o, put s;=1,. »=1 and consider the following
equation &, ,s(4"~*(s,_1)02" " (s,)0a)=(a}~ #""%t.. 1(52-1)) - (0", (s,) - b)  for
arbitrary s,_,, 5,£S. Set B, ;i=Lgp-:p"*a, , and f, =Ryu"'a,. Whence,
C(,+1(}«'_2(5’,_1)0R“A”_I(S,))=ﬂ,_l(5,,_l)-ﬂn(sn) fO]’ arbitrary Sp—1s S,,GS- NOUCC
that B, 2*"()=p,_(D=a"* - p"?a, ,(1)=a}"' and B, (R, ") ()=
=B ""Rx(1)=B, A "(@aV=p,(aV)=u"""'a,(a"?)-b=a,-b. According to Lem-
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ma | there exists a homomorphism y: -7 of monoids (S, o, 4,a) and (7, -,u,b)
such that ﬂ,,_;:La.l--:x)."‘z, Ba=R, s xR A"1, oy 1 =Lgp-1Rg, - Hence,

Lp-1Ry y2=LyRy.,¢, and  so ;{:L;;‘_:Ra;.-lqo. Thus, 1 Ryp" o, =
=-R,n_be,A""-_~ nn,,L;,;’..Ra:_;tpRn)."‘l, and so a,,:g“"L:.;-lR“:sz,}.”“.
Finally, we obtain the formulas of form (11).

We shall prove the second part of this theorem. Let us notice that
y+1((515 Sas Sgs -2 5 5,)) = Oy 1(8104(89)0A2(55)0...04"~1(s,)0a) =
= LalRa:_b(p(sloi(s,)o).ﬂ(ss)o...o)."“(s,,)oa) =
= dy+ @(51) - PA(Sy) - PA*(S3) - ... (P?-"_l(sn) p(a)-a3-b =
= (a1 9(sy)) - (9A(52) - @) - (@) - 92%(s5) - @3) - ... - (@3~ ") 7"
< QA" (s,) - p(a)- d - b) = oy (5y) - uota(89) - pPatg(s3) « ... - "1, (5,) - b =
— [&1(.5'1), a2(52)! as(ss)a seey an(su)]

for arbitrary s,, ..., 5,€8.
The proof of this theorem is completed.

Corollary 5. Let S( ) be an n-semigroup such that R(S)#0, and let (S, o, A, a)
be a monoid associated with S( ). Let T[ | be an n-group, and let (T, -, u,b) be a
group associated with T[ ]. A sequence of functions (%, ..., 0,4,) of form (11)is a
general solution of equation (9) if ¢:S8—T is an arbitrary homomorphism from
the monoid (S, o, 2, a) into the group (T, -.pu,b) and a,, ...,a,cT are arbitrary
elements.

Corollary 6. Let S( ) be an n-semigroup such that R(S)#9, and let T[ ] be an
n-group. Let (03, ..., %,.,) be a homotopy from the n-semigroup S( ) into the n-group
T[ ). If «; is a bijection for a certain ic{l,...,n+1)}, then (..., 0,4, is an
isotopy. Furthermore, the monoid (S, o, A, a) is isomorphic to the group (T, -, u, b).

Let X be an arbitrary non-empty set, and let S( ) be an arbitrary n-groupoid
(n=3).
Let us consider the following functional equation

(12) FI(I:E(- (En(x' Su)s )1 sﬂ)) sl) = EI+1(x’ (81, Sas veey sll))

for arbitrary x€X and sy, S, ..., 5,65, where F;: XXS—-X (for i=1,...,n+1)
are unknown functions. Equation (12) is an analogue for n-groupoids of the functional
equation considered by Grzaslewicz (cf. [3]).

We introduce an n-ary operation [ ] on X* by defining

Uisfas s Bli=1iSe - 1o

for arbitrary functions f;, fa, ..., /€ X

The expression on the right-side of the above equality is the n-fold composition
of functions.

Then X*[ ]is an n-monoid.

Theorem 7. Let X be an arbitrary non-empty set, and let S( ) be an arbitrary
n-groupoid. A sequence of functions (Fy, ..., F,.,) is a solution of equation (12) on the
n-groupoid S( ) if and only if there exists a sequence of functions (o, ..., %,,) being
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a solution of equation (9) on the n-groupoid S( ) and the n-monoid X*[ ],and F;(x,s)=
=a;(s)(x) for arbitrary xcX, s€S, ic{l,...,n+1}.

ProoF. (i) Let us assume that the sequence (F,, Fy, ..., F,4,) is a solution
of equation (12). Then,

B a{(81s Sas vis SV =Foisa (0, (814 5y 00 2)) =
=F1(F2(--- (Fo(x, 54)5 -+-)s S2)s 51) = 0‘1(51)(9-'2(52)(---(au(sn)(x))--') =
e (al(.i'l)ﬁg(.fg)...GC,,(S,,))(X) =[E11(Sl), az(sz)a vy au(sn)](x)

for arbitrary x€X and sy, 5,, ..., 5,€S.

(ii) Let the sequence (o, a, ..., %,,,) be a solution of equation (9) on the
n-groupoid S( ) and the n-monoid X*[ ]. Then, F,(Fy(...(F,(x,s,), -..), S2), 8;)=
={al(Sl)“l(sz)"-“n(su))(x)= [“1(5})s g(Sa)s +-1 s 0!,,(.5’,,)]().‘):(!,,.4.1((51, Sgs eevs 3;))(x)=

F, .1x, (851, 83, ..., 5,)) for arbitrary x€X and s, 5y, ..., 5,€S.

Theorem 8. Let X be an arbitrary non-empty set. Let S( ) be an n-semigroup
such that R(S)#0, and let (S, o, ’,a) be a monoid associated with S( ). If a
sequence of functions (F,, ..., F,;,) is asolution of equation (12) on the n-semi-
group S( ) and the functions F;(x, 1) (for i=1,...,n—1), F,(x,a™Y) are bijections
on the set X, then there exists a homomorphism ¢: S—X* of binary monoids (S, o, A,
a) and X*, and there exist functions f,, ..., f,€ X* such that

F(x,s) = Ly o (s)(x),
F(x,s) = L= Ry~ (s)(x) for k=2,..,n—1,
F,(x,8) = Lp=1 R @R, A" (5) (x),
Foiix,s) = LIIR[;¢(S)(x)’
for arbitrary x€X and s€S.
If ¢: S—~XX is an arbitrary homomorphism of the binary monoids (S, o, 2, @)
and XX, and f,, ...,f,_, are arbitrary bijections on the set X while f,,f,€X* are

arbitrary functions, then a sequence of functions (F,, ..., F,;,) of form (13) is a solu-
tion of equation (12) on the n-semigroup S(

Proor. Let the sequence of functions (£, ..., F,4,) be a solution of equation
(12) satisfying the assumptions of this theorem. It follows from Theorem 7 that there
exists a sequence of functions (2, ..., &,,,) being a solution of equation (9) on the
n-semigroup S( ) and the n-monoid X*[ ], and furthermore F;(x, s)=o(s)(x)
for arbitrary x€X, s€8, i€{l,...,n+1}. The functions f;(x):=e;(1)(x)=F;(x, 1)
(for i=1,...,n—1) and f,(x):=0a,(a ") (x)=F,(x,a™*) for x€X are bijections on
the set X. It folows from Theorem 6 that there exists a homomorphism ¢: S—X%*
of monoids (S, o, 4, @) and XX such that

o =Lyo,
o = L1 Rp@it=' for k=2,..,n-1,
a, = LE.I..Rf:qu,A"‘,
Aps1 = LhRf;(oo
Thus, applying the equalities F;(x, s) =«;(s)(x) we obtain formulas (13).

(13)

(14)

9
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We shall prove the second part of the theorem. It follows from Theorem 6 that
the sequence of functions (%, ..., «,4,;) of form (14) is a solution of equation (9) on
the n-semigroup S( ) and the n-monoid X*[ ]. Notice that for the functions F; of
form (13) we have F;(x,s)=0a;(s)(x) for arbitrary xcX, s€S, i€{l,...,n+1}.
Thus according to Theorem 7, the sequence of functions (Fy, ..., F,,,) of form (13)
is a solution of equation (12) on the n-semigroup S( ).
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