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Optimal control of nonlinear evolution equations

By NIKOLAOS S. PAPAGEORGIOU∗,∗∗ (Athens)

Abstract. In this paper we establish the existence of optimal solutions for a large
class of strongly nonlinear evolution equations involving nonmonotone nonlinearities.
An example of a nonlinear parabolic optimal control system illustrates the applicability
of our work.

1. Introduction

The study of optimal control problems of infinite dimensional systems
has attracted the interest of many mathematicians. This is exemplified by
the books of Lions [9] and Ahmed–Teo [3], which summarize most of
the work done in this area. So far, most of the attention was given to
systems governed by linear or semilinear dynamical equations. Selectively
we mention the works of Lions [9], [10], Zolezzi [14] and Ahmed–Teo
[2]. More recently nonlinear optimal control problems were considered by
Ahmed [1], Hou [8] and Cesari [6]. In some respects those nonlinear
works are more general than ours, since they allow the operators to have
polynomial growth (see Ahmed [1], p.192) and all the operators have val-
ues in X∗ (see Ahmed [1], hypotheses (F1), (F2), Hou [8], hypothesis (A3)
and Cesari [6] hypothesis (A2)). However this was achieved on the ex-
pense of introducing monotonicity (see Ahmed [1], hypothesis (A2)) and
some restrictive weak sequential continuity hypotheses (see Ahmed [1],
Lemma 3.3, Hou [8] hypothesis (A2) and Cesari [6], hypothesis (A2)).
Our formulation is in those respects more general and it admits the pres-
ence of nonmonotone nonlinearities which can be useful in many concrete
situations.
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2. Preliminaries

The mathematical setting of our problem is the following. The time
horizon is T = [0, b] and H is a separable Hilbert space. Let X be
a subspace of H carrying the structure of a separable, Hilbert space,
which embeds continuously and densely into H. Identifying H with its
dual (pivot space), we have that X ↪→ H ↪→ X∗, with all embeddings
being continuous and dense. We will also assume that they are com-
pact. To have a concrete example in mind let Z be a bounded domain
in Rn and m ≥ 1 a positive integer. Set X = Hm

0 (Z), H = L2(Z) and
X∗ = Hm

0 (Z)∗ = H−m(Z). Then from the well known Sobolev embedding
theorem we have that Hm

0 (Z) ↪→ L2(Z) ↪→ H−m(Z) with all embeddings
being continuous, dense and compact. Such a triple of spaces is usually
known in the literature a “Gelfand triple”. Other names used are “evo-
lution triple” or “spaces in normal position”. By 〈· , ·〉 we will denote the
duality brackets for the pair (X, X∗) and by (· , ·) the inner product in H.

The two are compatible in the sense that 〈· , ·〉|X×H = (· , ·). Also by ‖ · ‖
(resp. | · |, ‖ · ‖∗) we will denote the norm of X (resp. of H, X∗).

Let W (T ) = {x(·) ∈ L2(X) : ẋ(·) ∈ L2(X∗)}, where the derivative
in this definition should be understood in the sense of vector valued dis-
tributions. Furnished with the inner product (x, y)W (T ) = (x, y)L2(X) +
(ẋ, ẏ)L2(X∗), W (T ) becomes a Hilbert space which is clearly separable
(being a closed subspace of the separable Hilbert space L2(X)×L2(X∗)).
Furthermore it is well known that W (T ) ↪→ C(T,H) = {y : T → H

continuous} continuously; i.e. every element of W (T ) after possible modi-
fication on a Lebesgue null set is equal to a continuous function. Finally,
since by hypothesis X ↪→ H compactly, W (T ) ↪→ L2(H) compactly. For
details we refer to Zeidler [13], chapter 23. The control space will be
modelled by a separable reflexive Banach space Y.

By Pf(c)(Y ) we will denote the family of nonempty, closed, (convex)
subsets of Y. A multifunction G : T → Pf (Y ) is said to be measurable if
GrG = {(t, y) ∈ T × Y : y ∈ G(t)} ∈ B(T × Y ) = B(T ) × B(Y ) with
B(T × Y ) (resp. B(T ), B(Y )) being the Borel σ-field of T × Y (resp. of
T, Y ).

Finally recall that an operator A : X → X∗ is said to be monotone if
〈Ax−Ax′, x−x′〉 ≥ 0 for all x, x′ ∈ X and is said to be hemicontinuous if
λ → 〈A(x+λy), z〉 is continuous on [0, 1] for all x, y, z ∈ X (i.e. is weakly
continuous along rays).
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3. Existence theorem

The Lagrange optimal control problem under consideration is the fol-
lowing:

(∗)





J(x, u) =
∫ b

0

L
(
t, (Mx)(t), u(t)

)
dt → inf = m

s.t. ẋ(t) + A(t, x(t)) + g(t, x(t)) = B(t)u(t) a.e.

x(0) = x0, u(t) ∈ U(t) a.e., u(·) measurable





We will need the following hypotheses on the data of our problem (∗):
H(A): A : T ×X → X∗ is an operator s.t.

(1) for every x ∈ X, t → A(t, x) is measurable,
(2) for every t ∈ T, x → A(t, x) is monotone and hemicontinuous,
(3) 〈A(t, x), x〉 ≥ c1(t)‖x‖2 a.e. with c1(·) ∈ L∞+ , c1(t) ≥ ĉ > 0.

(4) ‖A(t, x)‖∗ ≤ a(t) + b‖x‖ a.e. with a(·) ∈ L2
+, b ≥ 0.

H(g): g : T ×X → H is a map s.t.
(1) for every x ∈ X, t → g(t, x) is measurable,
(2) for every t ∈ T, x → g(t, x) is continuous and sequentially

weakly continuous,
(3) for all x ∈ X, (g(t, x), x) ≥ 0 a.e. .
(4) |g(t, x)| ≤ a1(t) + b1‖x‖ a.e. with a1(·) ∈ L2

+, b1 ≥ 0.

H(B): B ∈ L∞(T,L(Y, H)) (L(Y, H) is the Banach space of bounded
linear operators from Y into H).

H(U): U : T → Pfc(Y ) is a measurable multifunction s.t. U(t) ⊆ W ∈
Pwkc(Y ) a.e. .

H(L): Let E be a separable Banach space with norm ‖ · ‖E and let L :
T × E × Y → R = R ∪ {+∞} be an integrand s.t.
(1) (t, x, u) → (L(t, x, u) is measurable,
(2) (x, u) → L(t, x, u) is lower semicontinuous (l.s.c),
(3) u → L(t, x, u) is convex,
(4) φ(t)− λ(‖x‖E + ‖u‖Y ) ≤ L(t, x, u) a.e. with φ(·) ∈ L1, λ ≥ 0.

H(M): M : L2(X) → L2(E) is an operator s.t. for every sequence {xn}n≥1

weakly convergent in W (T ) to x, then {Mxn}n≥1 has a subse-
quence strongly convergent to Mx in L2(E).
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Note that given an admissible control u(·) (i.e. a measurable map
u : T → Y s.t. u(t) ∈ U(t) a.e.), there exists a trajectory x(·) ∈ W (T )
for system (∗). This is a result of Hirano [7]. Hirano considered a time
independent operator A, however it is easy to check that his work extends
easily to the time dependent case A(t, x) using hypothesis H(A) above.

Now we are ready for our existence result. To avoid trivialities we will
assume that m < ∞; i.e. there exists admissible “state-control” pair (x, u)
s.t. J(x, u) < ∞.

Theorem 3.1. If hypotheses H(A), H(g), H(U), H(L), H(M) hold and
x0 ∈ H, then problem (∗) has a solution; i.e. there exists an admissible
“state-control” pair (x, u) ∈ W (T )× L2(Y ) s.t. J(x, u) = m.

Proof. First we will establish some a priori bounds for the trajecto-
ries of (∗). So let x(·) ∈ W (T ) be such a trajectory. We have:

〈ẋ(t), x(t)〉+ 〈A(t, x(t)), x(t)〉+ (g(t, x(t)), x(t)) = (B(t)u(t), x(t)) a.e.

=⇒ d

dt
|x(t)|2+2ĉ1‖x(t)‖2 ≤ (B(t) u(t), x(t)) a.e.

(see hypotheses H(A) (3) and H(g) (3)),

=⇒ d

dt
|x(t)|2+2ĉ1‖x(t)‖2 ≤ ε |B(t) u(t)|2 +

1
ε
|x(t)|2 a.e.

(Cauchy’s inequality with ε > 0).

Let ε =
β2

2ĉ1
, where β > 0 is such that | · | ≤ β‖ · ‖ (such a β > 0 exists

since X ↪→ H continuously). We have
d

dt
|x(t)|2 ≤ β2

2ĉ1
|B(t)u(t)|2 a.e. =⇒ |x(t)|2 ≤ β2

2ĉ1
|W |2 ‖B‖2∞ +

|x0|2 =⇒ |x(t)| ≤ M1 for all t ∈ T and with M1 > 0, independent of x(·).
Also if ε = 1

2 , we have

|x(b)|2 + 2ĉ1

∫ b

0
‖x(t)‖2dt ≤ 1

2 |W |2 ∫ b

0
‖B(t)‖2L(Y,H)dt + 1

2M2
1 b + |x0|2

=⇒ ‖x‖L2(X) ≤ M2 for some M2 > 0, independent of the trajectory x(·).
Finally let η(·) ∈ L2(X) and by ((· , ·))0 denote the duality brackets

for the dual pair (L2(X), L2(X∗)). We have:
〈ẋ(t), η(t)〉+ 〈A(t, x(t)), η(t)〉+(g(t, x(t)), η(t)) = (B(t)u(t), η(t)) a.e.

=⇒ ((ẋ, η))0 ≤
∫ b

0
‖A(t, x(t))‖∗·‖η(t)‖dt +

∫ b

0
|g(t, x(t))|·|η(t)|dt+

+
∫ b

0
|B(t)u(t)|·|η(t)|dt ≤ (‖a‖2 + b‖x‖L2(X))·‖η‖L2(X) + β̂(‖a1‖2+

+b1‖x‖L2(X))·‖η‖L2(X))+ β̂|W |·‖B‖2‖η‖L2(X) with β̂ > 0 depending only
on β > 0 for which | · | ≤ β‖ · ‖.
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Since η ∈ L2(X) was arbitrary, we deduce that ‖ẋ‖L2(X∗) ≤ M3 with
M3 > 0 independent of the trajectory x(·).

From all the above estimates and the definition of the space W (T ),
we deduce that there exists M4 > 0 independent of the trajectory x(·) s.t.

‖x‖W (T ) ≤ M4.

Now, let {(xn, un)}n≥1 ⊆ W (T ) × L2(Y ) be a minimizing sequence
of admissible “state-control” pairs for (∗); i.e. J(xn, un) ↓ m. From the
previous a priori estimation, we know that {xn}n≥1 is bounded in W (T ).
Since the latter is a separable Hilbert space, by passing to a subsequence
if necessary, we may assume that xn

w−→ x in W (T ). But recall (see for ex-
ample Zeidler [13], p.450) that W (T ) ↪→ L2(H) compactly. So xn

s−→ x

in L2(H). Also we may assume that un
w−→ u in L2(Y ) as n →∞.

Let Â(·), G(·) and B̂(·) be the Nemitsky operators corresponding to
A(· , ·), g(· , ·) and B(·) respectively. We have:

((ẋn, xn−x))0 +((Â(xn), xn−x))0 +((G(xn), xn−x))0 = ((B̂un, xn−x))0

From the integration by parts formula for space W (T ) (see Zeidler
[13], proposition 23.23, p.422), we have

((ẋn − ẋ, xn − x))0 =
∫ b

0

〈ẋn(t)− ẋ(t), xn(t)− x(t)〉dt

=
1
2
|xn(b)− x(b)|2

=⇒ ((ẋn, xn − x))0 = ((ẋ, xn − x))0 +
1
2
|xn(b)− x(b)|2

Since W (T ) ↪→ C(T, H) continuously, we have
((ẋ, xn−x))0+ 1

2 |xn(b)−x(b)|2 → 0 as n →∞, =⇒ ((ẋn, xn−x))0 →
0 as n →∞.

Also note that ((B̂un, xn − x))0 = ((B̂un, xn − x))L2(H) → 0 (here
((· , ·))L2(H) denotes the inner product in the Hilbert space L2(H)). Hence
we have lim ((Â(xn)+G(xn), xn−x))0 = 0. Invoking proposition 2, p.603
of Hirano [7], we get

Â(xn) + G(xn) w−→ Â(x) + G(x) as n →∞ in L2(X∗).

Note that since xn
w−→ x in W (T ) =⇒ ẋn

w−→ ẋ in L2(X∗). So if

η(·) ∈ L2(X), we have:

((ẋn, η))0 + ((Â(xn), η))0 + ((G(xn), η))0 = ((B̂un, η))0
−→ ((ẋ, η))0 + ((Â(x), η))0 + ((G(x), η))0 = ((B̂(u), η))0
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Since η ∈ L2(X) is arbitrary, we deduce that
ẋ + Â(x) + G(x) = B̂(u) in L2(X∗)

=⇒ ẋ(t) + A(t, x(t)) + g(t, x(t)) = B(t)u(t) a.e. x(0) = x0

Furthermore since un
w−→ u in L2(Y ) from theorem 3.1 of [12] we have

u(t) ∈ U(t) a.e.. So (x, u) is an admissible “state-control” pair for (∗).
Next from hypothesis H(M) and by passing to a subsequence if nec-

essary, we have
M(xn) s−→ M(x) in L2(E) =⇒ M(xn)(t) s−→ M(x)(t) a.e. in E.
Because of hypothesis H(L), we can apply theorem 2.1 of Balder [5],

to get

J(x, u) =
∫ b

0

L(t, (Mx)(t), u(t))dt ≤ limJ(xn, un) = m

But since (x, u) ∈ W (T )×L2(Y ) is an admissible “state-control” pair,
we must have J(x, u) = m =⇒ (x, u) is the desired solution of (∗).

Remark. An interesting byproduct of the above proof is that the set
of admissible “state-control” pairs is weakly compact in W (T )× L2(Y ).

4. An example

In this section we illustrate the applicability of theorem 3.1, with an
example of an optimal control problem of a nonlinear parabolic distributed
parameter system.

So let Z be a bounded domain in Rn with smooth boundary Γ = ∂Z.
The optimal control system under consideration is the following:

(∗∗)





J(x, u) =
∫ b

0

∫

Z

L(t, z, η(x(t, z)), u(t, z)) dz dt → inf = m

s.t.
∂x(t, z)

∂t
+

∑

|α|≤m

(−1)|α|DαAα(t, z, θ(x(t, z)))

+ g(t, z, η(x(t, z))) = c(t)u(t, z) on T × Z

Dγx(t, z)|T×Γ = 0, |γ| ≤ m− 1, x(0, z) = x0(z),

|u(t, z)| ≤ r(t, z) a.e.





Here α = (α1, . . . , αn) is an n-tuple of nonnegative integers (multi-
index), |α| = α1 + . . . + αn (the “length” of the multi-index), Dα =

Dα1
1 . . . Dαn

n , where Di =
∂

∂zi
, η(x) = {Dβx : |β| ≤ m − 1} and θ(x) =

{Dαx : |α| ≤ m}.
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We will need the following hypotheses on the data of (∗∗):

H(A)1: Aα : T × Z ×Rnm → R (nm =
(n + m)!

n!m!
) is a function s.t.

(1) (t, z) → Aα(t, z, θ) is measurable,
(2) θ → Aα(t, z, θ) is continuous,
(3) |Aα(t, z, θ)| ≤ a(t, z) + b(z)|θ| a.e. with a(· , ·) ∈ L2(T × Z),

b(·) ∈ L∞(Z),
(4)

∑
|α|≤m

(Aα(t, z, θ)−Aα(t, z, θ′))(θα − θ′α) ≥ 0

(5)
∑

|α|≤m

Aα(t, z, θ)θα ≥ c1(z)
∑

|β|=m

|θβ | with c1(·) ∈ L∞(Z),

c1(z) ≥ ĉ > 0.

H(g)1: g : T ×Z ×Rnm−1 → R (nm−1 =
(n! + m− 1)!
n!(m− 1)!

) is a function s.t.

(1) (t, z) → g(t, z, η) is measurable,
(2) η → g(t, z, η) is continuous,
(3)

∑
|β|≤m−1

g(t, z, η)ηβ ≥ 0

(4) |g(t, z, η)| ≤ a1(t, z) + b1(z)|η| a.e. with a1(· , ·) ∈ L2(T × Z),
b1(·) ∈ L∞(Z).

H(c): c(·) ∈ L∞(T )

H(r): r(· , ·) ∈ L∞(T × Z).

H(L)1: L : T × Z ×Rnm−1 ×R → R = R ∪ {+∞} is an integrand s.t.
(1) (t, z, η, u) → L(t, z, η, u) is measurable,
(2) (η, u) → L(t, z, η, u) is lower semicontinuous (l.s.c.),
(3) u → L(t, z, η, u) is convex,
(4) φ(t, z)− λ(z)(‖η‖+ |u|) ≤ L(t, z, η, u) a.e. with

φ(· , ·) ∈ L1(T × Z), λ(·) ∈ L∞+ (Z).

Here X = Hm
0 (Z),H = L2(Z) and X∗ = H−m(Z). From the Sobolev

embedding theorem, we know that (X, H, X∗) is a Gelfand triple with all
embeddings compact. Also let Y = L2(Z).

Considered the time varying Dirichlet form a(t, x, y) corresponding to
the elliptic partial differential operator of our system; i.e.

a(t, x, y) =
∫

Z

∑

|α|≤m

Aα(t, z, η(x(z)))Dαy(z)dz, x, y ∈ Hm
0 (Z)



48 Nikolaos S. Papageorgiou

Clearly from Fubini’s theorem, we see that t → a(t, x, y) is measur-
able. Also using Cauchy’s inequality, we get

|a(t, x, y)| ≤
∑

|α|≤m

‖Âα(t)x‖2·‖Dαy‖2 ≤ (â(t) + b̂‖x‖Hm
0 (Z))·‖y‖Hm

0 (Z)

with Âα(t)(·) being the Nemitsky (superposition) operator corresponding
to the function Aα(t, · , ·) and â(t) = ‖a(t, ·)‖2, b̂ = ‖b(·)‖∞.

So there exists a generally nonlinear operator Â : T × Hm
0 (Z) →

H−m(Z) s.t.
〈Â(t, x), y〉 = a(t, x, y)

Hence from the measurability of a(· , x, y), we deduce that t → Â(t, x)
is weakly measurable and since H−m(Z) is a separable Hilbert space from
the Pettis measurability theorem, we deduce that t → Â(t, x) is measurable
map.

Also using hypothesis H(A)1 (4), we can easily check that for every
t ∈ T, Â(t, ·) is monotone. Furthermore from hypothesis H(A)1 (5), we
get that

〈Â(t, x), x〉 ≥ ĉ‖x‖2Hm
0 (Z)

with ĉ ≤ c(z). Finally let xn
s−→ x in Hm

0 (Z). Then since by Krasnoselski’s
theorem Âα(t)(·) is continuous, we have

Âα(t)(xn) s−→ Âα(t)(x) in L2(Z) as n →∞.

But from Cauchy’s inequality, we have

‖Â(t, xn)− Â(t, x)‖∗ ≤
∑

|α|≤m

‖Âα(t)(xn)− Âα(t)(x)‖2 → 0 as n →∞

=⇒ x → Â(t, x) is continuous, in particular then hemicontinuous.
So we see that Â(t, x) mapping T × X into X∗ satisfies hypothesis

H(A).
Next let ĝ : T × Hm

0 (Z) → L2(Z) be the Nemitsky operator corre-
sponding to the function g(t, z, η). From Krasnoselski’s theorem we have
that ĝ(t, ·) is continuous while since Hm

0 (Z) ↪→ Hm−1
0 (Z) compactly

(Sobolev’s embedding theorem; see example Zeidler [13]), we get that ĝ(t, ·)
is also sequentially weakly continuous. Furthermore for fixed x ∈ Hm

0 (Z),
we have for every h ∈ L2(Z) :

(ĝ(t, x), h)L2(Z) =
∫

Z

g(t, z, η(x(z)))h(z) dz
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Invoking Fubini’s theorem we have that t → (ĝ(t, x), h)L2(Z) is mea-
surable. Since h ∈ L2(Z) was arbitrary, we deduce that t → ĝ(t, x) is
weakly measurable and because L2(Z) is separable, once again from Pet-
tis’ theorem we conclude that t → ĝ(t, x) is measurable. Also from hy-
pothesis H(g)1 (3) we get that (ĝ(t, x), x)L2(Z) ≥ 0, while from H(g)1 (4)
we have that |ĝ(t, x)‖L2(Z) ≤ â1(t) + b̂1‖x‖Hm

0
with â1(t) = ‖a1(t, ·)‖2

b̂1 = ‖b1(·)‖∞. Hence we have checked that ĝ(t, x) going from T ×X into
H satisfies hypothesis H(g).

Let U(t) = {v ∈ Y = L2(Z) : ‖v‖2 ≤ ‖r(t, ·)‖∞} ⊆ W = {v ∈ Y =
L2(Z) : ‖v‖2 ≤ ‖r‖∞}. Clearly U(·) is measurable (since t → ‖r(t, ·)‖∞ is
a measurable function) and W ∈ Pwkc(Y ). So we have satisfied hypothesis
H(U).

Next let E = L2(Z)nm−1 and let L̂ : T ×E×Y → R = R∪{+∞} be
defined by L̂(t, y, u) =

∫
Z

L(t, z, η̂(y(z)), u(z))dz, where η̂(y(z)) =

= (yk(z))nm−1
k=1 . Let Lk : T × Z × Rnm−1 × R → R be Caratheodory

integrands (i.e. measurable in (t, z), continuous n (η, u)) s.t. Lk ↑ L
as k → ∞ and φ(t, z) − λ(z)(‖η‖ + |u|) ≤ Lk(t, z, η, u) ≤ k. Such a
sequence exists by lemma 2, p.535 of Balder [4]. Set L̂k(t, y, u) =∫

Z
Lk(t, z, η̂(y(z)), u(z))dz. Clearly for each k ≥ 1, L̂k(· , · , ·) is a Caratheo-

dory map (i.e. measurable in t, continuous in (y, u)), thus it is jointly mea-
surable. Furthermore from the monotone convergence theorem we have
that L̂k ↑ L̂ as k → ∞, hence L̂ is measurable too. In addition using
Fatou’s lemma we can check that L̂(t, · , ·) is l.s.c. and is also convex in u.
So we have satisfied hypothesis H(L). Let x0 = x0(·) ∈ L2(Z).

Now let M : L2(T, Hm
0 (Z)) → L2(T, L2(Z)nm−1) be defined by

(Mx)(t, ·) = η(x(t, ·))
Since Hk

0 (Z) ↪→ L2(Z) compactly for 1 ≤ k ≤ m, we have that
L2(T,Hk

0 (Z)) ↪→ L2(T, L2(Z)) compactly for 1 ≤ k ≤ m (see Zeidler
[13], p.450) and so we deduce that M(·) satisfies hypothesis H(M).

Therefore system (∗∗) admits the following equivalent abstract form:

(∗∗)′





Ĵ(x, u) =
∫ b

0

L̂(t, (Mx)(t), u(t))dt → inf = m̂

s.t. ẋ(t) + Â(t, x(t)) + ĝ(t, x(t)) = c(t)u(t) a.e.

x(0) = x0

u(t) ∈ U(t) a.e. and u(·) is measurable
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This has the form of problem (∗) and we have checked above that
satisfies all the hypothseses of theorem 3.1. So applying that theorem we
get:

Theorem 4.1. If hypotheses H(A)1, H(g)1, H(c), H(r) and H(L)1
hold and x0(·) ∈ L2(Z), then there exists admissible “state-control” pair

(x, u) ∈ L2(T, Hm
0 (Z)) ∩ C(T, L2(Z)) × L2(T × Z) and

∂x

∂t
∈ L2(T,

H−m(Z)) s.t. J(x, u) = m.

Remark. Also using the compactness theorem of Nagy [11], we can
sat that the set of trajectories of (∗∗) is compact in C(T, L2(Z)).

Acknowledgement. The author wishes to thank a knowledgeable ref-
eree for his (her) constructive criticisms.
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