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210 = 14 × 15 = 5 × 6 × 7 =
(21

2

)
=

(10
4

)

By �AKOS PINT�ER∗ (Debrecen) and
BENJAMIN M.M. de WEGER† (Leiden and Rotterdam)

Abstract. It is given all the solutions of the diophantine equations

(y − 1)y(y + 1) =
�n

4

�
and x(x + 1) =

�n

4

�
.

1. Introduction

The title of this paper illustrates the remarkable fact that the number
210 can be represented simultaneously as a product of two consecutive
integers, a product of three consecutive integers, a triangular number, and
as a binomial coefficient

(
n
4

)
in a nontrivial way1. In other words, 210 is a

common solution to the system of diophantine equations

(1) x(x + 1) = (y − 1)y(y + 1) =
(

m

2

)
=

(
n

4

)
,

where we take x, y, m, n ∈ Z without further restrictions, i.e.
(
m
2

)
=

1
2m(m−1) and

(
n
4

)
= 1

24n(n−1)(n−2)(n−3) are defined for all m,n ∈ Z.
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The solution 210 occurs for x = −15, 14, y = 6, m = −20, 21, n = −7, 10.
There is one other integer that can be represented in the above mentioned
four ways: the number 0 occurs for x = −1, 0, y = −1, 0, 1, m = 0, 1,
n = 0, 1, 2, 3.

In fact, the system (1) consists of six different diophantine equations.
We will consider these equations in this paper.

The equation
x(x + 1) = (y − 1)y(y + 1)

has been solved for the first time in 1963 by Mordell [M]. It has only the
solutions (x, y) = (−15, 6), (−3, 2), (−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0),
(0, 1), (2, 2), (14, 6).

The equation

x(x + 1) =
(

m

2

)

is essentially a Pell equation, and hence trivial. Its solutions are given
by (x,m) = (xi, mi) for i = 0, 1, 2, . . . , where xi+1 = 6xi − xi−1 + 2
and mi+1 = 6mi − mi−1 − 2, with four different sets of initial values:
(x0, m0, x1,m1) = (0, 1, 2, 4), (0, 0, 2,−3), (−1, 1,−3, 4), (−1, 0,−3,−3).

The equation

(y − 1)y(y + 1) =
(

m

2

)

has been solved for the first time in 1989 by Tzanakis and de Weger

[TW]. It has only the solutions (y, m) = (−1, 0), (−1, 1), (0, 0), (0, 1),
(1, 0), (1, 1), (2,−3), (2, 4), (5,−15), (5, 16), (6,−20), (6, 21), (10,−44),
(10, 45), (57,−608), (57, 609), (637,−22736), (637, 22737).

The equation (
m

2

)
=

(
n

4

)

has been solved independently by the present two authors, [P] and [dW].
The only solutions are (m,n) = (−20,−7), (−20, 10), (−5,−3), (−5, 6),
(−1,−1), (−1, 4), (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3),
(2,−1), (2, 4), (6,−3), (6, 6), (21,−7), (21, 10).

It is the purpose of this note to solve the remaining two equations.
We will prove the following two theorems.
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Theorem 1. The equation

(2) (y − 1)y(y + 1) =
(

n

4

)

has only the solutions (y, n) = (−1, 0), (−1, 1), (−1, 2), (−1, 3), (0, 0),
(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (6,−7), (6, 10), (22,−21),
(22, 24), (26,−24), (26, 27).

Theorem 2. The equation

(3) x(x + 1) =
(

n

4

)

has only the solutions (x, n) = (−15,−7), (−15, 10), (−1, 0), (−1, 1),
(−1, 2), (−1, 3), (0, 0), (0, 1), (0, 2), (0, 3), (14,−7), (14, 10).

2. Thue equations for Theorem 1

In equation (2) we put X = 6y and Y = 3
4

(
(2n− 3)2 − 5

)
(notice

that X, Y ∈ Z). Then equation (2) is seen to be equivalent to

(4) Y 2 = X3 − 36X + 9.

This equation defines an elliptic curve, that is of rank 2. We are interested
in its integral points, but only in those with 6 | X.

Let K = Q(θ), where θ is a root of X3 − 36X + 9. Then an integral
basis of K is {1, θ, 1

3θ2}, the class group is C3, a system of fundamental
units is

ε = 1− 4θ − 2
1
3
θ2, η = 1− 4θ + 2

1
3
θ2.

The ramifying primes are 3, 11 and 23, and they ramify as follows:

〈3〉 = p3
3, p3 =

〈
−12 +

1
3
θ2

〉
, 〈11〉 = p2

11q11, 〈23〉 = p2
23q23,

where p11, q11, p23, q23 are non-principal prime ideals. Note that

X3 − 36X + 9 = (X − θ)
(
X2 + θX + (θ2 − 36)

)
,

and if a prime ideal p divides both 〈X − θ〉 and
〈
X2 + θX + (θ2 − 36)

〉
,

then it divides
〈
(X + 2θ)(X − θ)− (

X2 + θX + (θ2 − 36)
)〉

=
〈
32 (−4+



178 Ákos Pintér and Benjamin M. M. de Weger

1
3θ2

)〉
= p6

3p
2
11p

2
23. Since 3 | X and ordp3(θ) = 2, we have ordp3(X−θ) = 2,

and ordp3

(
X2 + θX + (θ2 − 36)

)
= 4. Thus from equation (4) we see that

there are a, b ∈ {0, 1} and an integral ideal a such that

〈X − θ〉 = p2
3p

a
11p

b
23a

2.

On taking norms we find Y 2 = 3211a23b(Na)2, so that a = b = 0. Further
it follows that a2 is principal, hence so is a. There exist m,n ∈ {0, 1} such
that

X − θ = ±εmηn
(−12 + 1

3θ2
)2

α2,

where α is a generator of a.
Now we look at embeddings of K into R. We write θ1 = −6.12 . . . ,

θ2 = 0.25 . . . , θ3 = 5.87 . . . , and then find that ε2 and ε3 are negative,
whereas ε1 and all conjugates of η are positive. Comparing norms, us-
ing that N(X − θ) = Y 2 > 0 and Nε = Nη = 1, we see that the
±-sign in (5) is +. Further, if X ≥ 6 then X − θi > 0 for i = 1, 2, 3,
and it follows by studying the signs that m = 0. Notice that the so-
lutions of (4) with X < 6 (and 6 | X) are trivially found to be only
X = −6, 0, leading to Y = ±3 in both cases, and further to (y, n) =
(−1, 0), (−1, 1), (−1, 2), (−1, 3), (0, 0), (0, 1), (0, 2), (0, 3).

2.1. The case n = 0

In (5) we now may put α = A + Bθ + C 1
3θ2, and if n = 0 we then find

X − θ =
(
−12 +

1
3
θ2

)2 (
A + Bθ + C

1
3
θ2

)2

.

Expanding out and comparing coefficients, we obtain

X = 144A2 + 72AB + 6AC + 9B2,(6)

1 = A2 − 6BC,(7)

0 = 4A2 + 2AB − C2.(8)

Equation (7) implies that A is odd, and that A and B are coprime. Thus
A and 2A+B are coprime, and equation (8), written as C2 = 2A(2A+B),
is seen to imply the existence of E, F ∈ Z with

A = E2, B = 2F 2 − 2E2, C = 2EF.
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Substituting these expressions into (7) we have

E4 + 24E3F − 24EF 3 = E(E3 + 24E2F − 24F 3) = 1.

Clearly E = E3 + 24E2F − 24F 3 = ±1, hence this is trivial: the only
solutions are given by (E,F ) = ±(1,−1),±(1, 0),±(1, 1), leading respec-
tively to (A,B, C) = (1, 0,−2), (1, 0, 2), (1,−2, 0), and further to (X, Y ) =
(132,±1515), (36,±213), (156,±1947), and finally to (y, n) = (22,−21),
(22, 24), (6,−7), (6, 10), (26,−24), (26, 27).

2.2. The case n = 1

In (5) we again put α = A + Bθ + C 1
3θ2, and if n = 1 we then find by

1/η = 25− 21
3θ2 that

(
25− 2

1
3
θ2

)
(X − θ) =

(
−12 +

1
3
θ2

)2 (
A + Bθ + C

1
3
θ2

)2

.

Expanding out and comparing coefficients, we obtain

25X − 6 = 144A2 + 72AB + 6AC + 9B2,(9)

1 = A2 − 6BC,(10)

2
3
X = 4A2 + 2AB − C2.(11)

Now 2× (9) + 12× (10)− 75× (11) gives

25C2 + (4A− 24B)C + (−2AB + 6B2) = 0.

We view this equation as a quadratic equation in C. If it is to have rational
solutions, the discriminant must be a square, D2 say. Hence

D2 = (4A− 24B)2 − 100(−2AB + 6B2) = 8(A−B)(2A + 3B).

If p is a prime dividing both A−B and 2A + 3B, then it divides 5A and
5B, and since A and B are coprime, it must be 5. It follows that we can
write

A−B = eE2, 2A + 3B = fF 2
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for unknown integers E, F , where for (e, f) we have four cases:

(e, f) = (1, 2), (2, 1), (5, 10), (10, 5).

So we get

A =
3
5
eE2 +

1
5
fF 2, B = −2

5
eE2 +

1
5
fF 2,

C = − 6
25

eE2 ± 1
25

√
2efEF +

2
25

fF 2, D = 2
√

2efEF.

Since F is defined up to sign, we can replace the ± sign by a +. Now we
substitute the above expressions into equation (10), and find

−27e2E4 + 12e
√

2efE3F + 90efE2F 2 − 6f
√

2efEF 3 − 7f2F 4 = 125.

On putting U = 5
√

2e/fE, V =
√

2e/fE − F , which are both integers,
we get the Thue equation

U4 − 8U3V − 12U2V 2 + 136UV 3 − 140V 4 =
2500
f2

.

Notice that with f = 1, 2, 5, 10 we have 2500
f2 = 2500, 625, 100, 25. The

following Theorem treats these Thue equations. Its proof is postponed to
a forthcoming section.

Theorem 3. The Thue equations

(12)
f1(U, V ) = U4 − 8U3V − 12U2V 2 + 136UV 3 − 140V 4 = m,

m ∈ {25, 100, 625, 2500}

have only the solutions (U, V ) = ±(3, 1) at m = 25, and (U, V ) =
±(5, 0),±(5, 2) at m = 625.

The solutions (U, V ) = ±(3, 1) lead to (e, f) = (5, 10), and to non-
integral E, F . The solutions (U, V ) = ±(5, 0) lead to (e, f) = (1, 2),
(E, F ) = ±(1, 1), (A,B,C) = (1, 0, 0), (X, Y ) = (6,±3), and finally to
(y, n) = (1, 0), (1, 1), (1, 2), (1, 3). The solutions (U, V ) = ±(5, 2) lead to
(e, f) = (1, 2), (E, F ) = ±(1,−1), and then to non-integral C.

This completes the proof of Theorem 1.
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3. Thue equations for Theorem 2

In equation (3) we put X = 2n − 3 and Y = 8x + 4. Then equation
(3) is seen to be equivalent to

(13) 6Y 2 = X4 − 10X2 + 105.

This equation defines an elliptic curve, that is of rank 2. We are interested
in its integral points.

The right hand side of (13) can be written as

(X2 − 5)2 + 80 =
(
X2 − 5 + 4

√−5
) (

X2 − 5− 4
√−5

)
.

Let K = Q
(√−5

)
. The class group is C2, and we need to know the

behaviour of the primes 2, 3 and 5, which is as follows:

〈2〉 = p2
2, 〈3〉 = p3p3, 〈5〉 = p2

5, p5 =
〈√−5

〉
,

where p2, p3 are non-principal ideals, the bar denotes complex conjugation,
and we have the relations

p2 = p2, p2p3 =
〈
1 +

√−5
〉
, p2

3 =
〈
2−√−5

〉
.

If p is a prime ideal dividing both
〈
X2 − 5 +

√−5
〉

and
〈
X2 − 5− 4

√−5
〉
,

then it divides
〈(

X2 − 5 + 4
√−5

)− (
X2 − 5− 4

√−5
)〉

=
〈
8
√−5

〉
=

p6
2p5. It follows by (13) that there exist a, b, c, d ∈ {0, 1} and an inte-

gral ideal a such that

〈
X2 − 5 + 4

√−5
〉

= pa
2pb

3p3
cpd

5a
2.

Taking norms we have 6Y 2 = 2a3b+c5d(Na)2, hence a = 1, (b, c) = (1, 0)
or (0, 1), d = 0. Notice that ordp2(X

2−1) ≥ 6, and ordp2

(−4 + 4
√−5

)
=

5, so that we find ordp2(a) = 2. Hence if a is principal we may write
a =

〈
2A + 2B

√−5
〉
, and if a is non-principal, then a/p2 is principal, and

we may write a = p2

〈
A + B

√−5
〉
, where in both cases A,B ∈ Z. We

define p = 0 if a is principal, and p = 1 if a is non-principal. Then
a2 = 22−p

〈
A2 − 5B2 + 2AB

√−5
〉
.
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3.1. The case (b, c) = (1, 0)

In the case (b, c) = (1, 0), going from ideals to generators, we thus have

±2p

(
X2 − 5

4
+
√−5

)
=

(
1 +

√−5
) (

A2 − 5B2 + 2AB
√−5

)
.

Comparing real and imaginary parts we get

±2p X2 − 5
4

= A2 − 10AB − 5B2,(14)

±2p = A2 + 2AB − 5B2.(15)

Then 4× (14) + 5× (15) yields

2pX2 = 9A2 − 30AB − 45B2 = (3A− 5B)2 − 70B2.

Thus the next field to study is L = Q
(√

70
)
. Its class group is C2, a

fundamental unit is 251 + 30
√

70, and the primes 2, 3, 5 and 7 behave as
follows:

〈2〉 = p2
2, 〈3〉 = p3q3, 〈5〉 = p2

5, p5 =
〈
25 + 3

√
70

〉
, 〈7〉 = p2

7,

where p2, p3, q3, p7 are non-principal prime ideals. If p is a prime ideal
dividing both
〈
3A− 5B + B

√
70

〉
and

〈
3A− 5B −B

√
70

〉
, then it divides

〈(
3A− 5B + B

√
70

)
+

(
3A− 5B −B

√
70

)〉
= 〈2(3A− 5B)〉 and also

〈(
3A− 5B + B

√
70

)− (
3A− 5B −B

√
70

)〉
=

〈
2B
√

70
〉
.

Since A and B are relatively prime (by (15)) we find that p divides 2, 3, 5
or 7. It follows that there exist a, b, c, d, e ∈ {0, 1} and an integral ideal b

such that 〈
3A− 5B + B

√
70

〉
= pa

2p
b
3q

c
3p

d
5p

e
7b

2.

Taking norms we find that 2pX2 = 2a3b+c5d7e(Nb)2, and thus that a =
p = 0 or 1, b = c = 0 or 1, d = e = 0. Since

〈
3A− 5B + B

√
70

〉
, p3q3 and

b2 are principal ideals, it follows that a = p = 0. Then it also follows that
in (14) and (15) the ± sign is a +, because A2 + 2AB − 5B2 = −1 has no
solutions.
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If b is principal, we may write b =
〈
E + F

√
70

〉
, and if b is non-

principal, then bp2 is principal, and we may write bp2 =
〈
E + F

√
70

〉
,

where in both cases E,F are unknown integers. We let q = 0 if b is
principal, and q = 1 if b is non-principal. Then, going from ideals to
generators, we can write

±2q
(
3A− 5B + B

√
70

)
=

(
251 + 30

√
70

)n

3b
(
E2 + 70F 2 + 2EF

√
70

)
,

where also n can be taken to be in {0, 1}. As A and B are defined up to
sign, we may take the ± sign to be a +.

3.1.1. The case n = 0
In the case n = 0, writing e = 2−q3b (thus e ∈ {1, 3, 1

2 , 3
2}), and comparing

coefficients, we obtain

3A− 5B = e(E2 + 70F 2),

B = 2eEF,

hence
A =

1
3
e(E2 + 10EF + 70F 2).

We substitute these expressions into (15), and thus get

E4 + 32E3F + 180E2F 2 + 2240EF 3

+4900F 4 =
9
e2

.

We prefer to substitute E = U − 2V, F = V , to get somewhat smaller
coefficients. Notice that U, V ∈ Z. This gives the Thue equations

(16) U4 + 24U3V + 12U2V 2 + 1872UV 3 + 900V 4 = m

for m = 9
e2 ∈ {1, 4, 9, 36}. Below we will treat these Thue equations.

3.1.2. The case n = 1
In the case n = 1, again writing e = 2−q3b (thus e ∈ {1, 3, 1

2 , 3
2}), and

comparing coefficients, we find

3A− 5B = e(251E2 + 4200EF + 17570F 2),

B = e(30E2 + 502EF + 2100F 2),
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hence
A =

1
3
e(401E2 + 6710EF + 28070F 2).

We substitute these expressions into (15), and thus get

192481E4 + 6441632E3F + 80841780E2F 2 + 450914240EF 3

+943156900F 4 =
9
e2

.

We prefer to substitute E = 3U − 31V, F = − 5
14U + 26

7 V , to get much
smaller coefficients. Notice that U, V ∈ Z. This gives in fact the Thue
equations (16), but this time with m = 1764

e2 ∈ {196, 784, 1764, 7056}.
In a forthcoming section we will prove the following result.

Theorem 4. The Thue equations

(17)
f2(U, V ) = U4 + 24U3V + 12U2V 2 + 1872UV 3 + 900V 4 = m,

m ∈ {1, 4, 9, 36, 196, 784, 1764, 7056}

have only the solutions (U, V ) = ±(1, 0) at m = 1.

The solutions (U, V ) = ±(1, 0) lead to m = 1, n = 0, e = 3,
(E, F ) = ±(1, 0), (A,B) = (1, 0), (X,Y ) = (±3,±4), and finally to
(x, n) = (−1, 0), (−1, 3), (0, 0), (0, 3).

3.2. The case (b, c) = (0, 1)

In the case (b, c) = (0, 1), going from ideals to generators, we have

±2p

(
X2 − 5

4
+
√−5

)
=

(
1−√−5

) (
A2 − 5B2 + 2AB

√−5
)
.

Comparing real and imaginary parts we get

±2p X2 − 5
4

= A2 + 10AB − 5B2,(18)

∓2p = A2 − 2AB − 5B2.(19)

Then 4× (18)− 5× (19) yields

∓2pX2 = A2 − 50AB − 5B2 = (A− 25B)2 − 630B2.
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Again we work in L = Q
(√

70
)
. If p is a prime ideal dividing both〈

A− 25B + 3B
√

70
〉

and
〈
A− 25B − 3B

√
70

〉
, then as above we see that

p divides 2, 3, 5 or 7. It follows that there exist a, b, c, d, e ∈ {0, 1} and an
integral ideal b such that

〈
A− 25B + 3B

√
70

〉
= pa

2p
b
3q

c
3p

d
5p

e
7b

2.

Taking norms we find that 2pX2 = 2a3b+c5d7e(Nb)2, and thus that a =
p = 0 or 1, b = c = 0 or 1, d = e = 0. Since

〈
3A− 5B + B

√
70

〉
, p3q3

and b2 are principal ideals, it follows that a = p = 0. Then it also follows
that in (18) and (19) the ± and ∓ signs respectively are − and +, because
A2 − 2AB − 5B2 = −1 has no solutions.

If b is principal, we may write b =
〈
E + F

√
70

〉
, and if b is non-

principal, then bp2 is principal, and we may write bp2 =
〈
E + F

√
70

〉
,

where in both cases E,F are unknown integers. We let q = 0 if b is
principal, and q = 1 if b is non-principal. Then, going from ideals to
generators, we can write

±2q
(
A− 25B + 3B

√
70

)

=
(
251 + 30

√
70

)n

3b
(
E2 + 70F 2 + 2EF

√
70

)
,

where also n can be taken to be in {0, 1}. As A and B are defined up to
sign, we may take the ± sign to be a +.

3.2.1. The case n = 0
In the case n = 0, writing e = 2−q3b (thus e ∈ {1, 3, 1

2 , 3
2}), and comparing

coefficients, we obtain

A− 25B = e(E2 + 70F 2), 3B = 2eEF,

hence

eA =
1
3
e(3E2 + 50EF + 210F 2), B =

2
3
eEF.

We substitute these expressions into (19), and thus get

E4 + 32E3F +
1180

3
E2F 2 + 2240EF 3 + 4900F 4 =

1
e2

.
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We prefer to substitute E = 1
3U − 19

3 V, F = V , to get somewhat smaller
coefficients. Notice that U, V ∈ Z. This gives the Thue equations

(20) U4 + 20U3V + 234U2V 2 + 2492UV 3 − 2423V 4 = m

for m = 81
e2 ∈ {9, 36, 81, 324}. Below we will treat these Thue equations.

3.2.2. The case n = 1

In the case n = 1, again writing e = 2−q3b (thus e ∈ {1, 3, 1
2 , 3

2}), and
comparing coefficients, we find

A− 25B = e(251E2 + 4200EF + 17570F 2),

3B = e(30E2 + 502EF + 2100F 2),

hence

A =
1
3
e(1503E2 + 25150EF + 105210F 2),

B =
1
3
e(30E2 + 502EF + 2100F 2).

We substitute these expressions into (19), and thus get

240481E4 + 8048032E3F +
303005980

3
E2F 2

+563362240EF 3 + 1178356900F 4 =
1
e2

.

We prefer to substitute E = 5
3U − 221

3 V, F = − 1
5U + 44

5 V , to get much
smaller coefficients. Notice that U, V ∈ Z. This gives in fact the Thue
equations (20), but this time with m = 2025

e2 ∈ {225, 900, 2025, 8100}.
In a forthcoming section we will prove the following result.

Theorem 5. The Thue equations

(21)
f3(U, V ) = U4 + 20U3V + 234U2V 2 + 2492UV 3 − 2423V 4 = m,

m ∈ {9, 36, 81, 225, 324, 900, 2025, 8100}
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have only the solutions (U, V ) = ±(3, 0) at m = 81, and (U, V ) = ±(1, 1)
at m = 324, and (U, V ) = ±(17,−1) at m = 8100.

The solutions (U, V ) = ±(3, 0) lead to m = 81, e = 1, n = 0,
(E, F ) = ±(1, 0), (A,B) = (1, 0), (X,Y ) = (±1,±4), and finally to
(x, n) = (−1, 1), (−1, 2), (0, 1), (0, 2). The solutions (U, V ) = ±(1, 1) lead
to m = 324, e = 1

2 , n = 0, (E,F ) = ±(−6, 1), (A,B) = (3,−2), (X,Y ) =
(±17,±116), and finally to (x, n) = (−15,−7), (−15, 10), (14,−7), (14, 10).
The solutions (U, V ) = ±(17,−1) lead to m = 8100, e = 1

2 , n = 1, and
then to non-integral F . This completes the proof of Theorem 2.

4. Solving the Thue equations

In this section we finally prove Theorems 3, 4 and 5, thus completing
also the proofs of Theorems 1 and 2. Using the program package KANT
(PC-DOS version) we obtain the following results:
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Equation Solutions 486PC-CPU-time (sec)

f1(x, y) = 25 (−3,−1), (3, 1) 38

f1(x, y) = 100 – 33

f1(x, y) = 625 (−5,−2), (−5, 0), (5, 0), (5, 2) 71

f1(x, y) = 2500 – 110

f2(x, y) = 1 (−1, 0), (1, 0) 15

f2(x, y) = 4 – 9

f2(x, y) = 9 – 9

f2(x, y) = 36 – 10

f2(x, y) = 196 – 10

f2(x, y) = 784 – 18

f2(x, y) = 1764 – 28

f2(x, y) = 7056 – 23

f3(x, y) = 9 – 15

f3(x, y) = 36 – 10

f3(x, y) = 81 (−3, 0), (3, 0) 23

f3(x, y) = 225 – 29

f3(x, y) = 324 (−1,−1), (1, 1) 45

f3(x, y) = 900 – 36

f3(x, y) = 2025 – 60

f3(x, y) = 8100 (−17, 1), (17,−1) 198
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MATHEMATICAL INSTITUTE
KOSSUTH LAJOS UNIVERSITY
P.O. BOX 12, H–4010 DEBRECEN
HUNGARY

E-mail: apinter@math.klte.hu

BENJAMIN M. M. DE WEGER
MATHEMATICAL INSTITUTE
UNIVERSITY OF LEIDEN
ECONOMETRIC INSTITUTE
ERASMUS UNIVERSITY ROTTERDAM
MAILING ADDRESS:
ECONOMETRIC INSTITUTE
ERASMUS UNIVERSITY ROTTERDAM
P.O. BOX 1738, 3000 DR ROTTERDAM
THE NETHERLANDS

E-mail: deweger@few.eur.nl

(Received October 7, 1996)


