$210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}$

By ÁKOS PINTÉR* (Debrecen) and
BENJAMIN M.M. de WEGER ${ }^{\dagger}$ (Leiden and Rotterdam)

Abstract

It is given all the solutions of the diophantine equations

$$
(y-1) y(y+1)=\binom{n}{4} \quad \text { and } \quad x(x+1)=\binom{n}{4} .
$$

1. Introduction

The title of this paper illustrates the remarkable fact that the number 210 can be represented simultaneously as a product of two consecutive integers, a product of three consecutive integers, a triangular number, and as a binomial coefficient $\binom{n}{4}$ in a nontrivial way ${ }^{1}$. In other words, 210 is a common solution to the system of diophantine equations

$$
\begin{equation*}
x(x+1)=(y-1) y(y+1)=\binom{m}{2}=\binom{n}{4}, \tag{1}
\end{equation*}
$$

where we take $x, y, m, n \in \mathbb{Z}$ without further restrictions, i.e. $\binom{m}{2}=$ $\frac{1}{2} m(m-1)$ and $\binom{n}{4}=\frac{1}{24} n(n-1)(n-2)(n-3)$ are defined for all $m, n \in \mathbb{Z}$.

Mathematics Subject Classification: 11D25, 11G05.
Key words and phrases: combinatorial diophantine equations, Thue equations, elliptic curves.
*The research was supported in part by Grants T16975 and T19479 from the Hungarian National Foundation for Scientific Research.
${ }^{\dagger}$ This author's research was supported by the Netherlands Mathematical Research Foundation SWON with financial aid from the Netherlands Organization for Scientific Research NWO.
${ }^{1}$ We prefer not to notice that 210 also is the product of the four smallest prime numbers.

The solution 210 occurs for $x=-15,14, y=6, m=-20,21, n=-7,10$. There is one other integer that can be represented in the above mentioned four ways: the number 0 occurs for $x=-1,0, y=-1,0,1, m=0,1$, $n=0,1,2,3$.

In fact, the system (1) consists of six different diophantine equations. We will consider these equations in this paper.

The equation

$$
x(x+1)=(y-1) y(y+1)
$$

has been solved for the first time in 1963 by Mordell [M]. It has only the solutions $(x, y)=(-15,6),(-3,2),(-1,-1),(-1,0),(-1,1),(0,-1),(0,0)$, $(0,1),(2,2),(14,6)$.

The equation

$$
x(x+1)=\binom{m}{2}
$$

is essentially a Pell equation, and hence trivial. Its solutions are given by $(x, m)=\left(x_{i}, m_{i}\right)$ for $i=0,1,2, \ldots$, where $x_{i+1}=6 x_{i}-x_{i-1}+2$ and $m_{i+1}=6 m_{i}-m_{i-1}-2$, with four different sets of initial values: $\left(x_{0}, m_{0}, x_{1}, m_{1}\right)=(0,1,2,4),(0,0,2,-3),(-1,1,-3,4),(-1,0,-3,-3)$.

The equation

$$
(y-1) y(y+1)=\binom{m}{2}
$$

has been solved for the first time in 1989 by Tzanakis and de Weger [TW]. It has only the solutions $(y, m)=(-1,0),(-1,1),(0,0),(0,1)$, $(1,0),(1,1),(2,-3),(2,4),(5,-15),(5,16),(6,-20),(6,21),(10,-44)$, $(10,45),(57,-608),(57,609),(637,-22736),(637,22737)$.

The equation

$$
\binom{m}{2}=\binom{n}{4}
$$

has been solved independently by the present two authors, $[P]$ and $[\mathrm{dW}]$. The only solutions are $(m, n)=(-20,-7),(-20,10),(-5,-3),(-5,6)$, $(-1,-1),(-1,4),(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)$, $(2,-1),(2,4),(6,-3),(6,6),(21,-7),(21,10)$.

It is the purpose of this note to solve the remaining two equations. We will prove the following two theorems.

$$
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}
$$

Theorem 1. The equation

$$
\begin{equation*}
(y-1) y(y+1)=\binom{n}{4} \tag{2}
\end{equation*}
$$

has only the solutions $(y, n)=(-1,0),(-1,1),(-1,2),(-1,3),(0,0)$, $(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(6,-7),(6,10),(22,-21)$, $(22,24),(26,-24),(26,27)$.

Theorem 2. The equation

$$
\begin{equation*}
x(x+1)=\binom{n}{4} \tag{3}
\end{equation*}
$$

has only the solutions $(x, n)=(-15,-7),(-15,10),(-1,0),(-1,1)$, $(-1,2),(-1,3),(0,0),(0,1),(0,2),(0,3),(14,-7),(14,10)$.

2. Thue equations for Theorem 1

In equation (2) we put $X=6 y$ and $Y=\frac{3}{4}\left((2 n-3)^{2}-5\right)$ (notice that $X, Y \in \mathbb{Z}$). Then equation (2) is seen to be equivalent to

$$
\begin{equation*}
Y^{2}=X^{3}-36 X+9 . \tag{4}
\end{equation*}
$$

This equation defines an elliptic curve, that is of rank 2. We are interested in its integral points, but only in those with $6 \mid X$.

Let $\mathbb{K}=\mathbb{Q}(\theta)$, where θ is a root of $X^{3}-36 X+9$. Then an integral basis of \mathbb{K} is $\left\{1, \theta, \frac{1}{3} \theta^{2}\right\}$, the class group is C_{3}, a system of fundamental units is

$$
\epsilon=1-4 \theta-2 \frac{1}{3} \theta^{2}, \quad \eta=1-4 \theta+2 \frac{1}{3} \theta^{2} .
$$

The ramifying primes are 3,11 and 23 , and they ramify as follows:

$$
\langle 3\rangle=\mathfrak{p}_{3}^{3}, \quad \mathfrak{p}_{3}=\left\langle-12+\frac{1}{3} \theta^{2}\right\rangle, \quad\langle 11\rangle=\mathfrak{p}_{11}^{2} \mathfrak{q}_{11}, \quad\langle 23\rangle=\mathfrak{p}_{23}^{2} \mathfrak{q}_{23},
$$

where $\mathfrak{p}_{11}, \mathfrak{q}_{11}, \mathfrak{p}_{23}, \mathfrak{q}_{23}$ are non-principal prime ideals. Note that

$$
X^{3}-36 X+9=(X-\theta)\left(X^{2}+\theta X+\left(\theta^{2}-36\right)\right),
$$

and if a prime ideal \mathfrak{p} divides both $\langle X-\theta\rangle$ and $\left\langle X^{2}+\theta X+\left(\theta^{2}-36\right)\right\rangle$, then it divides $\left\langle(X+2 \theta)(X-\theta)-\left(X^{2}+\theta X+\left(\theta^{2}-36\right)\right)\right\rangle=\left\langle 3^{2}(-4+\right.$
$\left.\left.\frac{1}{3} \theta^{2}\right)\right\rangle=\mathfrak{p}_{3}^{6} \mathfrak{p}_{11}^{2} \mathfrak{p}_{23}^{2}$. Since $3 \mid X$ and $\operatorname{ord}_{\mathfrak{p}_{3}}(\theta)=2$, we have $\operatorname{ord}_{\mathfrak{p}_{3}}(X-\theta)=2$, and $\operatorname{ord}_{\mathfrak{p}_{3}}\left(X^{2}+\theta X+\left(\theta^{2}-36\right)\right)=4$. Thus from equation (4) we see that there are $a, b \in\{0,1\}$ and an integral ideal \mathfrak{a} such that

$$
\langle X-\theta\rangle=\mathfrak{p}_{3}^{2} \mathfrak{p}_{11}^{a} \mathfrak{p}_{23}^{b} \mathfrak{a}^{2} .
$$

On taking norms we find $Y^{2}=3^{2} 11^{a} 23^{b}(N a)^{2}$, so that $a=b=0$. Further it follows that \mathfrak{a}^{2} is principal, hence so is \mathfrak{a}. There exist $m, n \in\{0,1\}$ such that

$$
X-\theta= \pm \epsilon^{m} \eta^{n}\left(-12+\frac{1}{3} \theta^{2}\right)^{2} \alpha^{2},
$$

where α is a generator of \mathfrak{a}.
Now we look at embeddings of \mathbb{K} into \mathbb{R}. We write $\theta_{1}=-6.12 \ldots$, $\theta_{2}=0.25 \ldots, \theta_{3}=5.87 \ldots$, and then find that ϵ_{2} and ϵ_{3} are negative, whereas ϵ_{1} and all conjugates of η are positive. Comparing norms, using that $N(X-\theta)=Y^{2}>0$ and $N \epsilon=N \eta=1$, we see that the \pm-sign in (5) is + . Further, if $X \geq 6$ then $X-\theta_{i}>0$ for $i=1,2,3$, and it follows by studying the signs that $m=0$. Notice that the solutions of (4) with $X<6$ (and $6 \mid X$) are trivially found to be only $X=-6,0$, leading to $Y= \pm 3$ in both cases, and further to $(y, n)=$ $(-1,0),(-1,1),(-1,2),(-1,3),(0,0),(0,1),(0,2),(0,3)$.
2.1. The case $n=0$

In (5) we now may put $\alpha=A+B \theta+C \frac{1}{3} \theta^{2}$, and if $n=0$ we then find

$$
X-\theta=\left(-12+\frac{1}{3} \theta^{2}\right)^{2}\left(A+B \theta+C \frac{1}{3} \theta^{2}\right)^{2} .
$$

Expanding out and comparing coefficients, we obtain

$$
\begin{align*}
X & =144 A^{2}+72 A B+6 A C+9 B^{2}, \tag{6}\\
1 & =A^{2}-6 B C, \tag{7}\\
0 & =4 A^{2}+2 A B-C^{2} . \tag{8}
\end{align*}
$$

Equation (7) implies that A is odd, and that A and B are coprime. Thus A and $2 A+B$ are coprime, and equation (8), written as $C^{2}=2 A(2 A+B)$, is seen to imply the existence of $E, F \in \mathbb{Z}$ with

$$
A=E^{2}, \quad B=2 F^{2}-2 E^{2}, \quad C=2 E F .
$$

$$
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}
$$

Substituting these expressions into (7) we have

$$
E^{4}+24 E^{3} F-24 E F^{3}=E\left(E^{3}+24 E^{2} F-24 F^{3}\right)=1 .
$$

Clearly $E=E^{3}+24 E^{2} F-24 F^{3}= \pm 1$, hence this is trivial: the only solutions are given by $(E, F)= \pm(1,-1), \pm(1,0), \pm(1,1)$, leading respectively to $(A, B, C)=(1,0,-2),(1,0,2),(1,-2,0)$, and further to $(X, Y)=$ $(132, \pm 1515),(36, \pm 213),(156, \pm 1947)$, and finally to $(y, n)=(22,-21)$, $(22,24),(6,-7),(6,10),(26,-24),(26,27)$.
2.2. The case $n=1$

In (5) we again put $\alpha=A+B \theta+C \frac{1}{3} \theta^{2}$, and if $n=1$ we then find by $1 / \eta=25-2 \frac{1}{3} \theta^{2}$ that

$$
\left(25-2 \frac{1}{3} \theta^{2}\right)(X-\theta)=\left(-12+\frac{1}{3} \theta^{2}\right)^{2}\left(A+B \theta+C \frac{1}{3} \theta^{2}\right)^{2} .
$$

Expanding out and comparing coefficients, we obtain

$$
\begin{align*}
25 X-6 & =144 A^{2}+72 A B+6 A C+9 B^{2} \tag{9}\\
1 & =A^{2}-6 B C \tag{10}\\
\frac{2}{3} X & =4 A^{2}+2 A B-C^{2} \tag{11}
\end{align*}
$$

Now $2 \times(9)+12 \times(10)-75 \times(11)$ gives

$$
25 C^{2}+(4 A-24 B) C+\left(-2 A B+6 B^{2}\right)=0
$$

We view this equation as a quadratic equation in C. If it is to have rational solutions, the discriminant must be a square, D^{2} say. Hence

$$
D^{2}=(4 A-24 B)^{2}-100\left(-2 A B+6 B^{2}\right)=8(A-B)(2 A+3 B) .
$$

If p is a prime dividing both $A-B$ and $2 A+3 B$, then it divides $5 A$ and $5 B$, and since A and B are coprime, it must be 5 . It follows that we can write

$$
A-B=e E^{2}, \quad 2 A+3 B=f F^{2}
$$

for unknown integers E, F, where for (e, f) we have four cases:

$$
(e, f)=(1,2),(2,1),(5,10),(10,5) .
$$

So we get

$$
\begin{gathered}
A=\frac{3}{5} e E^{2}+\frac{1}{5} f F^{2}, \quad B=-\frac{2}{5} e E^{2}+\frac{1}{5} f F^{2}, \\
C=-\frac{6}{25} e E^{2} \pm \frac{1}{25} \sqrt{2 e f} E F+\frac{2}{25} f F^{2}, \quad D=2 \sqrt{2 e f} E F .
\end{gathered}
$$

Since F is defined up to sign, we can replace the \pm sign by a + . Now we substitute the above expressions into equation (10), and find

$$
-27 e^{2} E^{4}+12 e \sqrt{2 e f} E^{3} F+90 e f E^{2} F^{2}-6 f \sqrt{2 e f} E F^{3}-7 f^{2} F^{4}=125 .
$$

On putting $U=5 \sqrt{2 e / f} E, V=\sqrt{2 e / f} E-F$, which are both integers, we get the Thue equation

$$
U^{4}-8 U^{3} V-12 U^{2} V^{2}+136 U V^{3}-140 V^{4}=\frac{2500}{f^{2}}
$$

Notice that with $f=1,2,5,10$ we have $\frac{2500}{f^{2}}=2500,625,100,25$. The following Theorem treats these Thue equations. Its proof is postponed to a forthcoming section.

Theorem 3. The Thue equations

$$
\begin{gather*}
f_{1}(U, V)=U^{4}-8 U^{3} V-12 U^{2} V^{2}+136 U V^{3}-140 V^{4}=m, \tag{12}\\
m \in\{25,100,625,2500\}
\end{gather*}
$$

have only the solutions $(U, V)= \pm(3,1)$ at $m=25$, and $(U, V)=$ $\pm(5,0), \pm(5,2)$ at $m=625$.

The solutions $(U, V)= \pm(3,1)$ lead to $(e, f)=(5,10)$, and to nonintegral E, F. The solutions $(U, V)= \pm(5,0)$ lead to $(e, f)=(1,2)$, $(E, F)= \pm(1,1),(A, B, C)=(1,0,0),(X, Y)=(6, \pm 3)$, and finally to $(y, n)=(1,0),(1,1),(1,2),(1,3)$. The solutions $(U, V)= \pm(5,2)$ lead to $(e, f)=(1,2),(E, F)= \pm(1,-1)$, and then to non-integral C.

This completes the proof of Theorem 1.

$$
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}
$$

3. Thue equations for Theorem 2

In equation (3) we put $X=2 n-3$ and $Y=8 x+4$. Then equation (3) is seen to be equivalent to

$$
\begin{equation*}
6 Y^{2}=X^{4}-10 X^{2}+105 \tag{13}
\end{equation*}
$$

This equation defines an elliptic curve, that is of rank 2. We are interested in its integral points.

The right hand side of (13) can be written as

$$
\left(X^{2}-5\right)^{2}+80=\left(X^{2}-5+4 \sqrt{-5}\right)\left(X^{2}-5-4 \sqrt{-5}\right) .
$$

Let $\mathbb{K}=\mathbb{Q}(\sqrt{-5})$. The class group is C_{2}, and we need to know the behaviour of the primes 2,3 and 5 , which is as follows:

$$
\langle 2\rangle=\mathfrak{p}_{2}^{2}, \quad\langle 3\rangle=\mathfrak{p}_{3} \overline{\mathfrak{p}}_{3}, \quad\langle 5\rangle=\mathfrak{p}_{5}^{2}, \quad \mathfrak{p}_{5}=\langle\sqrt{-5}\rangle,
$$

where $\mathfrak{p}_{2}, \mathfrak{p}_{3}$ are non-principal ideals, the bar denotes complex conjugation, and we have the relations

$$
\overline{\mathfrak{p}}_{2}=\mathfrak{p}_{2}, \quad \mathfrak{p}_{2} \mathfrak{p}_{3}=\langle 1+\sqrt{-5}\rangle, \quad \mathfrak{p}_{3}^{2}=\langle 2-\sqrt{-5}\rangle .
$$

If \mathfrak{p} is a prime ideal dividing both $\left\langle X^{2}-5+\sqrt{-5}\right\rangle$ and $\left\langle X^{2}-5-4 \sqrt{-5}\right\rangle$, then it divides $\left\langle\left(X^{2}-5+4 \sqrt{-5}\right)-\left(X^{2}-5-4 \sqrt{-5}\right)\right\rangle=\langle 8 \sqrt{-5}\rangle=$ $\mathfrak{p}_{2}^{6} \mathfrak{p}_{5}$. It follows by (13) that there exist $a, b, c, d \in\{0,1\}$ and an integral ideal \mathfrak{a} such that

$$
\left\langle X^{2}-5+4 \sqrt{-5}\right\rangle=\mathfrak{p}_{2}^{a} \mathfrak{p}_{3}^{b} \overline{\mathfrak{p}}_{3}^{c} \mathfrak{p}_{5}^{d} \mathfrak{a}^{2}
$$

Taking norms we have $6 Y^{2}=2^{a} 3^{b+c} 5^{d}(N a)^{2}$, hence $a=1,(b, c)=(1,0)$ or $(0,1), d=0$. Notice that $\operatorname{ord}_{\mathfrak{p}_{2}}\left(X^{2}-1\right) \geq 6$, and $\operatorname{ord}_{\mathfrak{p}_{2}}(-4+4 \sqrt{-5})=$ 5 , so that we find $\operatorname{ord}_{\mathfrak{p}_{2}}(\mathfrak{a})=2$. Hence if \mathfrak{a} is principal we may write $\mathfrak{a}=\langle 2 A+2 B \sqrt{-5}\rangle$, and if \mathfrak{a} is non-principal, then $\mathfrak{a} / \mathfrak{p}_{2}$ is principal, and we may write $\mathfrak{a}=\mathfrak{p}_{2}\langle A+B \sqrt{-5}\rangle$, where in both cases $A, B \in \mathbb{Z}$. We define $p=0$ if \mathfrak{a} is principal, and $p=1$ if \mathfrak{a} is non-principal. Then $\mathfrak{a}^{2}=2^{2-p}\left\langle A^{2}-5 B^{2}+2 A B \sqrt{-5}\right\rangle$.
3.1. The case $(b, c)=(1,0)$

In the case $(b, c)=(1,0)$, going from ideals to generators, we thus have

$$
\pm 2^{p}\left(\frac{X^{2}-5}{4}+\sqrt{-5}\right)=(1+\sqrt{-5})\left(A^{2}-5 B^{2}+2 A B \sqrt{-5}\right)
$$

Comparing real and imaginary parts we get

$$
\begin{align*}
\pm 2^{p} \frac{X^{2}-5}{4} & =A^{2}-10 A B-5 B^{2} \tag{14}\\
\pm 2^{p} & =A^{2}+2 A B-5 B^{2} \tag{15}
\end{align*}
$$

Then $4 \times(14)+5 \times(15)$ yields

$$
2^{p} X^{2}=9 A^{2}-30 A B-45 B^{2}=(3 A-5 B)^{2}-70 B^{2}
$$

Thus the next field to study is $\mathbb{L}=\mathbb{Q}(\sqrt{70})$. Its class group is C_{2}, a fundamental unit is $251+30 \sqrt{70}$, and the primes $2,3,5$ and 7 behave as follows:

$$
\langle 2\rangle=\mathfrak{p}_{2}^{2}, \quad\langle 3\rangle=\mathfrak{p}_{3} \mathfrak{q}_{3}, \quad\langle 5\rangle=\mathfrak{p}_{5}^{2}, \quad \mathfrak{p}_{5}=\langle 25+3 \sqrt{70}\rangle, \quad\langle 7\rangle=\mathfrak{p}_{7}^{2}
$$

where $\mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{q}_{3}, \mathfrak{p}_{7}$ are non-principal prime ideals. If \mathfrak{p} is a prime ideal dividing both
$\langle 3 A-5 B+B \sqrt{70}\rangle$ and $\langle 3 A-5 B-B \sqrt{70}\rangle$, then it divides
$\langle(3 A-5 B+B \sqrt{70})+(3 A-5 B-B \sqrt{70})\rangle=\langle 2(3 A-5 B)\rangle$ and also
$\langle(3 A-5 B+B \sqrt{70})-(3 A-5 B-B \sqrt{70})\rangle=\langle 2 B \sqrt{70}\rangle$.
Since A and B are relatively prime (by (15)) we find that \mathfrak{p} divides $2,3,5$ or 7 . It follows that there exist $a, b, c, d, e \in\{0,1\}$ and an integral ideal \mathfrak{b} such that

$$
\langle 3 A-5 B+B \sqrt{70}\rangle=\mathfrak{p}_{2}^{a} \mathfrak{p}_{3}^{b} \mathfrak{q}_{3}^{c} \mathfrak{p}_{5}^{d} \mathfrak{p}_{7}^{e} \mathfrak{b}^{2}
$$

Taking norms we find that $2^{p} X^{2}=2^{a} 3^{b+c} 5^{d} 7^{e}(N \mathfrak{b})^{2}$, and thus that $a=$ $p=0$ or $1, b=c=0$ or $1, d=e=0$. Since $\langle 3 A-5 B+B \sqrt{70}\rangle, \mathfrak{p}_{3} \mathfrak{q}_{3}$ and \mathfrak{b}^{2} are principal ideals, it follows that $a=p=0$. Then it also follows that in (14) and (15) the $\pm \operatorname{sign}$ is a + , because $A^{2}+2 A B-5 B^{2}=-1$ has no solutions.

$$
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}
$$

If \mathfrak{b} is principal, we may write $\mathfrak{b}=\langle E+F \sqrt{70}\rangle$, and if \mathfrak{b} is nonprincipal, then $\mathfrak{b p}_{2}$ is principal, and we may write $\mathfrak{b p}_{2}=\langle E+F \sqrt{70}\rangle$, where in both cases E, F are unknown integers. We let $q=0$ if \mathfrak{b} is principal, and $q=1$ if \mathfrak{b} is non-principal. Then, going from ideals to generators, we can write
$\pm 2^{q}(3 A-5 B+B \sqrt{70})=(251+30 \sqrt{70})^{n} 3^{b}\left(E^{2}+70 F^{2}+2 E F \sqrt{70}\right)$,
where also n can be taken to be in $\{0,1\}$. As A and B are defined up to sign, we may take the \pm sign to be a + .
3.1.1. The case $n=0$

In the case $n=0$, writing $e=2^{-q} 3^{b}$ (thus $e \in\left\{1,3, \frac{1}{2}, \frac{3}{2}\right\}$), and comparing coefficients, we obtain

$$
\begin{gathered}
3 A-5 B=e\left(E^{2}+70 F^{2}\right), \\
B=2 e E F,
\end{gathered}
$$

hence

$$
A=\frac{1}{3} e\left(E^{2}+10 E F+70 F^{2}\right) .
$$

We substitute these expressions into (15), and thus get

$$
\begin{gathered}
E^{4}+32 E^{3} F+180 E^{2} F^{2}+2240 E F^{3} \\
+4900 F^{4}=\frac{9}{e^{2}} .
\end{gathered}
$$

We prefer to substitute $E=U-2 V, F=V$, to get somewhat smaller coefficients. Notice that $U, V \in \mathbb{Z}$. This gives the Thue equations

$$
\begin{equation*}
U^{4}+24 U^{3} V+12 U^{2} V^{2}+1872 U V^{3}+900 V^{4}=m \tag{16}
\end{equation*}
$$

for $m=\frac{9}{e^{2}} \in\{1,4,9,36\}$. Below we will treat these Thue equations.
3.1.2. The case $n=1$

In the case $n=1$, again writing $e=2^{-q} 3^{b}$ (thus $e \in\left\{1,3, \frac{1}{2}, \frac{3}{2}\right\}$), and comparing coefficients, we find

$$
\begin{gathered}
3 A-5 B=e\left(251 E^{2}+4200 E F+17570 F^{2}\right), \\
B=e\left(30 E^{2}+502 E F+2100 F^{2}\right)
\end{gathered}
$$

hence

$$
A=\frac{1}{3} e\left(401 E^{2}+6710 E F+28070 F^{2}\right) .
$$

We substitute these expressions into (15), and thus get

$$
\begin{gathered}
192481 E^{4}+6441632 E^{3} F+80841780 E^{2} F^{2}+450914240 E F^{3} \\
+943156900 F^{4}=\frac{9}{e^{2}} .
\end{gathered}
$$

We prefer to substitute $E=3 U-31 V, F=-\frac{5}{14} U+\frac{26}{7} V$, to get much smaller coefficients. Notice that $U, V \in \mathbb{Z}$. This gives in fact the Thue equations (16), but this time with $m=\frac{1764}{e^{2}} \in\{196,784,1764,7056\}$.

In a forthcoming section we will prove the following result.
Theorem 4. The Thue equations

$$
\begin{gather*}
f_{2}(U, V)=U^{4}+24 U^{3} V+12 U^{2} V^{2}+1872 U V^{3}+900 V^{4}=m, \tag{17}\\
m \in\{1,4,9,36,196,784,1764,7056\}
\end{gather*}
$$

have only the solutions $(U, V)= \pm(1,0)$ at $m=1$.
The solutions $(U, V)= \pm(1,0)$ lead to $m=1, n=0, e=3$, $(E, F)= \pm(1,0),(A, B)=(1,0),(X, Y)=(\pm 3, \pm 4)$, and finally to $(x, n)=(-1,0),(-1,3),(0,0),(0,3)$.
3.2. The case $(b, c)=(0,1)$

In the case $(b, c)=(0,1)$, going from ideals to generators, we have

$$
\pm 2^{p}\left(\frac{X^{2}-5}{4}+\sqrt{-5}\right)=(1-\sqrt{-5})\left(A^{2}-5 B^{2}+2 A B \sqrt{-5}\right) .
$$

Comparing real and imaginary parts we get

$$
\begin{align*}
\pm 2^{p} \frac{X^{2}-5}{4} & =A^{2}+10 A B-5 B^{2} \tag{18}\\
\mp 2^{p} & =A^{2}-2 A B-5 B^{2} . \tag{19}
\end{align*}
$$

Then $4 \times(18)-5 \times(19)$ yields

$$
\mp 2^{p} X^{2}=A^{2}-50 A B-5 B^{2}=(A-25 B)^{2}-630 B^{2} .
$$

$$
\begin{equation*}
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4} \tag{185}
\end{equation*}
$$

Again we work in $\mathbb{L}=\mathbb{Q}(\sqrt{70})$. If \mathfrak{p} is a prime ideal dividing both $\langle A-25 B+3 B \sqrt{70}\rangle$ and $\langle A-25 B-3 B \sqrt{70}\rangle$, then as above we see that \mathfrak{p} divides $2,3,5$ or 7 . It follows that there exist $a, b, c, d, e \in\{0,1\}$ and an integral ideal \mathfrak{b} such that

$$
\langle A-25 B+3 B \sqrt{70}\rangle=\mathfrak{p}_{2}^{a} \mathfrak{p}_{3}^{b} \mathfrak{q}_{3}^{c} \mathfrak{p}_{5}^{d} \mathfrak{p}_{7}^{e} \mathfrak{b}^{2} .
$$

Taking norms we find that $2^{p} X^{2}=2^{a} 3^{b+c} 5^{d} 7^{e}(N \mathfrak{b})^{2}$, and thus that $a=$ $p=0$ or $1, b=c=0$ or $1, d=e=0$. Since $\langle 3 A-5 B+B \sqrt{70}\rangle, \mathfrak{p}_{3} \mathfrak{q}_{3}$ and \mathfrak{b}^{2} are principal ideals, it follows that $a=p=0$. Then it also follows that in (18) and (19) the \pm and \mp signs respectively are - and + , because $A^{2}-2 A B-5 B^{2}=-1$ has no solutions.

If \mathfrak{b} is principal, we may write $\mathfrak{b}=\langle E+F \sqrt{70}\rangle$, and if \mathfrak{b} is nonprincipal, then $\mathfrak{b p}_{2}$ is principal, and we may write $\mathfrak{b p}_{2}=\langle E+F \sqrt{70}\rangle$, where in both cases E, F are unknown integers. We let $q=0$ if \mathfrak{b} is principal, and $q=1$ if \mathfrak{b} is non-principal. Then, going from ideals to generators, we can write

$$
\begin{gathered}
\pm 2^{q}(A-25 B+3 B \sqrt{70}) \\
=(251+30 \sqrt{70})^{n} 3^{b}\left(E^{2}+70 F^{2}+2 E F \sqrt{70}\right),
\end{gathered}
$$

where also n can be taken to be in $\{0,1\}$. As A and B are defined up to sign, we may take the \pm sign to be a + .

3.2.1. The case $n=0$

In the case $n=0$, writing $e=2^{-q} 3^{b}$ (thus $e \in\left\{1,3, \frac{1}{2}, \frac{3}{2}\right\}$), and comparing coefficients, we obtain

$$
A-25 B=e\left(E^{2}+70 F^{2}\right), \quad 3 B=2 e E F
$$

hence

$$
e A=\frac{1}{3} e\left(3 E^{2}+50 E F+210 F^{2}\right), \quad B=\frac{2}{3} e E F .
$$

We substitute these expressions into (19), and thus get

$$
E^{4}+32 E^{3} F+\frac{1180}{3} E^{2} F^{2}+2240 E F^{3}+4900 F^{4}=\frac{1}{e^{2}}
$$

We prefer to substitute $E=\frac{1}{3} U-\frac{19}{3} V, F=V$, to get somewhat smaller coefficients. Notice that $U, V \in \mathbb{Z}$. This gives the Thue equations

$$
\begin{equation*}
U^{4}+20 U^{3} V+234 U^{2} V^{2}+2492 U V^{3}-2423 V^{4}=m \tag{20}
\end{equation*}
$$

for $m=\frac{81}{e^{2}} \in\{9,36,81,324\}$. Below we will treat these Thue equations.

3.2.2. The case $n=1$

In the case $n=1$, again writing $e=2^{-q} 3^{b}$ (thus $e \in\left\{1,3, \frac{1}{2}, \frac{3}{2}\right\}$), and comparing coefficients, we find

$$
\begin{gathered}
A-25 B=e\left(251 E^{2}+4200 E F+17570 F^{2}\right), \\
3 B=e\left(30 E^{2}+502 E F+2100 F^{2}\right),
\end{gathered}
$$

hence

$$
\begin{gathered}
A=\frac{1}{3} e\left(1503 E^{2}+25150 E F+105210 F^{2}\right), \\
B=\frac{1}{3} e\left(30 E^{2}+502 E F+2100 F^{2}\right) .
\end{gathered}
$$

We substitute these expressions into (19), and thus get

$$
\begin{gathered}
240481 E^{4}+8048032 E^{3} F+\frac{303005980}{3} E^{2} F^{2} \\
+563362240 E F^{3}+1178356900 F^{4}=\frac{1}{e^{2}} .
\end{gathered}
$$

We prefer to substitute $E=\frac{5}{3} U-\frac{221}{3} V, F=-\frac{1}{5} U+\frac{44}{5} V$, to get much smaller coefficients. Notice that $U, V \in \mathbb{Z}$. This gives in fact the Thue equations (20), but this time with $m=\frac{2025}{e^{2}} \in\{225,900,2025,8100\}$.

In a forthcoming section we will prove the following result.
Theorem 5. The Thue equations

$$
\begin{gather*}
f_{3}(U, V)=U^{4}+20 U^{3} V+234 U^{2} V^{2}+2492 U V^{3}-2423 V^{4}=m, \\
m \in\{9,36,81,225,324,900,2025,8100\} \tag{21}
\end{gather*}
$$

$$
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4}
$$

have only the solutions $(U, V)= \pm(3,0)$ at $m=81$, and $(U, V)= \pm(1,1)$ at $m=324$, and $(U, V)= \pm(17,-1)$ at $m=8100$.

The solutions $(U, V)= \pm(3,0)$ lead to $m=81, e=1, n=0$, $(E, F)= \pm(1,0),(A, B)=(1,0),(X, Y)=(\pm 1, \pm 4)$, and finally to $(x, n)=(-1,1),(-1,2),(0,1),(0,2)$. The solutions $(U, V)= \pm(1,1)$ lead to $m=324, e=\frac{1}{2}, n=0,(E, F)= \pm(-6,1),(A, B)=(3,-2),(X, Y)=$ $(\pm 17, \pm 116)$, and finally to $(x, n)=(-15,-7),(-15,10),(14,-7),(14,10)$. The solutions $(U, V)= \pm(17,-1)$ lead to $m=8100, e=\frac{1}{2}, n=1$, and then to non-integral F. This completes the proof of Theorem 2.

4. Solving the Thue equations

In this section we finally prove Theorems 3,4 and 5 , thus completing also the proofs of Theorems 1 and 2. Using the program package KANT (PC-DOS version) we obtain the following results:

Equation	Solutions	486PC-CPU-time (sec)
$f_{1}(x, y)=25$	$(-3,-1),(3,1)$	38
$f_{1}(x, y)=100$	-	33
$f_{1}(x, y)=625$	$(-5,-2),(-5,0),(5,0),(5,2)$	71
$f_{1}(x, y)=2500$	-	110
$f_{2}(x, y)=1$	$(-1,0),(1,0)$	15
$f_{2}(x, y)=4$	-	9
$f_{2}(x, y)=9$	-	9
$f_{2}(x, y)=36$	-	10
$f_{2}(x, y)=196$	-	10
$f_{2}(x, y)=784$	-	18
$f_{2}(x, y)=1764$	-	28
$f_{2}(x, y)=7056$	-	23
$f_{3}(x, y)=9$	-	15
$f_{3}(x, y)=36$	-	10
$f_{3}(x, y)=81$	-	23
$f_{3}(x, y)=225$	-	29
$f_{3}(x, y)=324$	$(-1,-1),(1,1)$	45
$f_{3}(x, y)=900$	-	36
$f_{3}(x, y)=2025$	-	60
$f_{3}(x, y)=8100$	$(-17,1),(17,-1)$	198

$$
\begin{equation*}
210=14 \times 15=5 \times 6 \times 7=\binom{21}{2}=\binom{10}{4} \tag{189}
\end{equation*}
$$

References

[M] L. J. Mordell, On the integer solutions of $y(y+1)=x(x+1)(x+2)$, Pacific Journal of Mathematics 13 (1963), 1347-1351.
[P] Á. Pintér, A note on the diophantine equation $\binom{x}{4}=\binom{y}{2}$, Publ. Math. Debrecen 47 (1995), 411-415.
[TW] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
[dW] B. M. M. De Weger, A binomial diophantine equation, Quart. J. Math. Oxford 2nd Ser. 47 (1996), 221-231.

```
ÁKOS PINTÉR
MATHEMATICAL INSTITUTE
KOSSUTH LAJOS UNIVERSITY
P.O. BOX 12, H-4010 DEBRECEN
HUNGARY
E-mail: apinter@math.klte.hu
BENJAMIN M. M. DE WEGER
MATHEMATICAL INSTITUTE
UNIVERSITY OF LEIDEN
ECONOMETRIC INSTITUTE
ERASMUS UNIVERSITY ROTTERDAM
MAILING ADDRESS:
ECONOMETRIC INSTITUTE
ERASMUS UNIVERSITY ROTTERDAM
P.O. BOX 1738, 3000 DR ROTTERDAM
THE NETHERLANDS
E-mail: deweger@few.eur.nl
```

(Received October 7, 1996)

