Base three just touching covering systems

By GARY E. MICHALEK (Philadelphia)

Abstract

Let $\mathcal{A}=\left\{0, a_{1}, a_{2}\right\}$ where $a_{1} \equiv 1(\bmod 3)$ and $a_{2} \equiv 2(\bmod 3)$. Let $\mathcal{B}=\mathcal{A}-\mathcal{A}= \pm\left\{0, a_{1}, a_{2}, a_{2}-a_{1}\right\}$. We say \mathcal{A} is a Just Touching Covering System (JTCS) if every integer is expressible in the form $c_{n} 3^{n}+c_{n-1} 3^{n-1}+\cdots+c_{1} 3+c_{0}$ where the c_{i} are in \mathcal{B} and n is a nonnegative integer. We prove \mathcal{A} is a JTCS iff a_{1} and a_{2} are relatively prime.

1. Introduction

The material of this introduction and the conjecture we prove comes from KÁtai's paper [1]. Consider a triple of numbers $\mathcal{A}=\left\{0, a_{1}, a_{2}\right\}$ where $a_{1} \equiv 1(\bmod 3)$ and $a_{2} \equiv 2(\bmod 3)$. We define a function $F_{\mathcal{A}}$ on the integers by the formula $F_{\mathcal{A}}(x)=(x-a) / 3$ where a is in \mathcal{A} and x and a are congruent modulo 3 . Let m be the larger of the absolute values of a_{1} and a_{2}. Define $I_{\mathcal{A}}$ to be the "interval" $[-m / 2, m / 2] \cap Z$. We have the following fact from [1]:

Fact 1: For any integer x there is a positive integer n such that $F_{\mathcal{A}}^{n}(x)$ is in $I_{\mathcal{A}}$. If x is in $I_{\mathcal{A}}$, then so is $F_{\mathcal{A}}(x)$.

This fact is established in a straightforward fashion by considering the inequalities involved. We picture a directed graph on the integers where x is connected to $F_{\mathcal{A}}(x)$ by an arrow. The above fact says that there is a path from any integer x into the interval $I_{\mathcal{A}}$. For numbers in $I_{\mathcal{A}}$, repeated application of $F_{\mathcal{A}}$ eventually leads either to 0 or to a periodic number. A periodic number is a number fixed by some $F_{\mathcal{A}}^{n}$. See Figure 1.

Figure 1. The directed graph defined by the function $F_{\mathcal{A}}$ where $\mathcal{A}=\{0,10,29\}$ and $I_{\mathcal{A}}=[-14,14] \cap Z$

We will also need the following fact from [1]:
Fact 2: For the special case of $\mathcal{A}=\{0, a,-a\}$ where 3 does not divide a, all the elements of $I_{\mathcal{A}}$ are periodic. The directed graph described above, restricted to $I_{\mathcal{A}}$, consists of a collection of loops (one of which contains only the element zero).

In this special case $F_{\mathcal{A}}$ and $I_{\mathcal{A}}$ will be denoted by F_{a} and I_{a}. We have an inverse for F_{a} on the interval I_{a} which we will denote by T_{a}. The function T_{a} consists of tripling (modulo a, so that the image is in I_{a}). It is easily shown that the length of a loop is a factor of the smallest positive integer n where $3^{n} \equiv 1(\bmod a)$. Fact 2 is illustrated in Figure 2.

If the triple $\mathcal{A}=\left\{0, a_{1}, a_{2}\right\}$ has no periodic numbers (i.e. all numbers connect to 0), we say \mathcal{A} is a number system. This is equivalent to having every integer x expressible as $c_{n} 3^{n}+c_{n-1} 3^{n-1}+\ldots+c_{1} 3+c_{0}$ where the c_{i} are in \mathcal{A} and n is a nonnegative integer. This is easily seen by analyzing the path from x to $0: F_{\mathcal{A}}^{i}(x) \equiv c_{i}(\bmod 3)$.

A necessary, but not sufficient, condition for \mathcal{A} to be a number system is that a_{1} and a_{2} be relatively prime: if k divides a_{1} and a_{2} then k must divide any x expressible as $c_{n} 3^{n}+c_{n-1} 3^{n-1}+\ldots+c_{1} 3+c_{0}$ where the c_{i} are in \mathcal{A}.

Figure 2. $\mathcal{A}=\{0,-20,20\}$ yields this graph on the integers of $I_{\mathcal{A}}=[-10,10]$. Since 3^{4} is congruent to $1(\bmod 20)$, the length of the loops are factors of 4 .

To examine how sufficient the "relatively prime" condition is, we make the following definition. Consider the set $\mathcal{B}=\mathcal{A}-\mathcal{A}$. This consists of $0, a_{1}, a_{2}, a_{3}=a_{2}-a_{1}$ and their opposites. We say \mathcal{A} is a Just Touching Covering System (JTCS) if every integer is expressible as $c_{n} 3^{n}+c_{n-1} 3^{n-1}+$ $\ldots+c_{1} 3+c_{0}$ where the c_{i} are in \mathcal{B} and n is some nonnegative integer. (The origin of the terminology is found in [1]. There \mathcal{A} is termed a JTCS if $\lambda(H+n \cap H+m)=0$ for all distinct integers n and m, where λ is the Lebesgue measure and H is the set of real numbers expressible in the form $\sum_{i=1}^{\infty} c_{i} 3^{-i}$ with c_{i} in \mathcal{A}. The equivalence with the definition used in this paper is established in [2] and [3].) Another way of expressing this is by looking at a directed graph where the connections are created not by a single $F_{\mathcal{A}}$ as above, but by three functions: $F_{a_{1}}, F_{a_{2}}$ and $F_{a_{3}}$. If x is any integer, $F_{a_{i}}(x)$ is the sole integral element of $\left\{x / 3,\left(x-a_{i}\right) / 3,\left(x+a_{i}\right) / 3\right\}$. The integer x will be expressible in the polynomial form above if and only if application of the three $F_{a_{i}}$ in some combination eventually leads to 0 . We will prove the following theorem, conjectured by KÁtai in [1]:

Theorem 1. $\mathcal{A}=\left\{0, a_{1}, a_{2}\right\}$ is a JTCS iff a_{1} and a_{2} are relatively prime.

Of course the "only if" is obvious, as it is for number systems. Before proving the theorem we make a slight change in the notation. In the sequel, we will assume a_{1} and a_{2} are relatively prime.

2. Notation and outline of proof

Recall that $\mathcal{B}=\left\{0, a_{1}, a_{2}, a_{3},-a_{1},-a_{2},-a_{3}\right\}$ where $a_{3}=a_{2}-a_{1}$, $\left(a_{1}, a_{2}\right)=1, a_{1} \equiv 1(\bmod 3)$ and $a_{2} \equiv 2(\bmod 3)$. We will be more concerned with the size of these numbers than with their class modulo 3 . Notice that the sum of any two elements of \mathcal{B} which are congruent modulo 3 is again an element of \mathcal{B}. Also notice that the difference of any two nonzero elements of opposite modularity is also an element of \mathcal{B} (with the exception of differences of the form $x-(-x))$. Using these two facts we prove

Lemma 1. If $b_{1}<b_{2}<b_{3}$ are the positive elements of \mathcal{B}, then $b_{3}=$ $b_{1}+b_{2}$ and $b_{1} \equiv b_{2}(\bmod 3)$.

Proof. If b_{1} and b_{2} are not congruent modulo 3 , then $b_{2}-b_{1}$ is in \mathcal{B} by the above remarks. This is a positive integer smaller than b_{2} and different from b_{1}. (Recall we are assuming throughout that a_{1} and a_{2} are relatively prime, so that $b_{2} \neq 2 b_{1}$.) This contradicts the definition of b_{2}. Therefore we may assume b_{1} and b_{2} are congruent modulo 3 . By the above remarks, their sum $b_{1}+b_{2}$ must be in \mathcal{B} as well, and therefore must be b_{3}.

In future we describe \mathcal{B} by its triple $\left(b_{1}, b_{2}, b_{3}\right)$. Any such triple $\left(b_{1}, b_{2}, b_{3}\right)$ of pairwise relatively prime positive integers which are not divisible by 3 , with $b_{1}<b_{2}<b_{3}, b_{1} \equiv b_{2}(\bmod 3)$, and $b_{3}=b_{1}+b_{2}$, will be referred to as being in required format. For convenience of notation, we will also say the triple $(1,1,2)$ is in required format even though it does not fit the description just stated.

We will henceforth denote the three maps $F_{a_{i}}$ with regard to this new notation as the maps $F_{b_{1}}, F_{b_{2}}$, and $F_{b_{3}}$. By repeated application of $F_{b_{i}}$ we get a path from any integer into the interval $I_{b_{i}}=\left[-b_{i} / 2, b_{i} / 2\right] \cap Z$. Recall that, if x is in $I_{b_{i}}, T_{b_{i}}(x)$ is the unique element in $\left\{3 x, 3 x+b_{i}, 3 x-b_{i}\right\}$ which lies in $I_{b_{i}}$. (If $x= \pm b_{i} / 2, x$ is fixed by $T_{b_{i}}$.) Because of the cyclical structure (Fact 2), $T_{b_{i}}(x)$ for x in $I_{b_{i}}$ is equal to $F_{b_{i}}^{n}(x)$ for some n. Of course n depends on x since the cycles that result from the action of $F_{b_{i}}$
might be of different lengths. The important point is that in the directed graph defined by \mathcal{B} there is a path leading from x in $I_{b_{i}}$ to $T_{b_{i}}(x)$.

We have $I_{b_{1}} \subset I_{b_{2}} \subset I_{b_{3}}$. Every integer is of course connected by a path to an element of $I_{b_{3}}$ by repeated application of $F_{b_{3}}$. Notice that for x in $I_{b_{3}}, F_{b_{i}}(x)$ is in $I_{b_{3}}$ for $i=1,2,3$. Therefore in determining if every integer leads to 0 the action of the $F_{b_{i}}$ outside of $I_{b_{3}}$ will never be used. Furthermore it is clear that any integer can eventually be connected to an element of $I_{b_{1}}$ by applying $F_{b_{1}}$ repeatedly, so that for \mathcal{A} to be a JTCS we neeed only find paths to zero from those integers in $I_{b_{1}}$.

Consider a triple $\left(b_{1}, b_{2}, b_{3}\right)$ in required format as defined above. We will refer to the directed graph created by connecting each x in $I_{b_{3}}$ to the integers $F_{b_{1}}(x), F_{b_{2}}(x)$ and $F_{b_{3}}(x)$ as the path system of the triple $\left(b_{1}, b_{2}, b_{3}\right)$. The theorem will be proven using two techniques. We first establish the existence of connections for the path system of a triple $\left(d_{1}, d_{2}, d_{3}\right)$ where the d_{i} are smaller than the b_{i}. This reduction to a simpler system continues until no further reduction is possible. The reduction method is given by Lemma 2 in the next section, and is proven in Sections 4 through 7. The second technique will explicity find the paths leading to 0 in the system that we have reduced to. We first show there is a path connecting any two nonzero elements of $I_{b_{1}}$; this is Lemma 10 in Section 8. Finally, we show in Lemma 18 in Section 9 that there is at least one nonzero element of $I_{b_{1}}$ which connects to 0 . Combined with Lemma 10 this shows all elements of $I_{b_{1}}$ connect to 0 as needed to prove Theorem 1.

3. Reduction to a smaller system

The key lemma for the reduction part of the proof is:
Lemma 2. Consider the path system of a triple (b_{1}, b_{2}, b_{3}) in required format. By composing some of the paths from this path system we are able to derive the path system for a triple of numbers $\left(d_{1}, d_{2}, d_{3}\right)$ in required format, where $d_{1}<b_{1}$ and $d_{3} \geq b_{1}$. This can be accomplished except when $\boldsymbol{r}=b_{1}-d_{1}$ is divisible by three and $3 \boldsymbol{r}<b_{1}$, in which case the connection from x to $F_{d_{3}}(x)$ might not exist for some x in $I_{d_{3}}$.

Notice that, since $d_{3} \geq b_{1}$, the map $F_{b_{1}}$ will connect every element of $I_{b_{3}}$ to an element in $I_{d_{3}}$ of the derived path system. We may then apply the lemma a second time, to the derived system. This reduction may
continue until we reach a system $\left(c_{1}, c_{2}, c_{3}\right)$ for which $c_{1}=1$ (where $F_{c_{1}}$ will obviously connect every element to $I_{c_{1}}=\{0\}$) or until we have a path system where $b_{1}=d_{1}+\boldsymbol{r}$, with \boldsymbol{r} divisible by 3 and $3 \boldsymbol{r}<b_{1}$. We will begin the proof of Lemma 2 in the following section where we explain how to find the numbers $\left(d_{1}, d_{2}, d_{3}\right)$.

4. The derived triple

We begin by describing the triple $\left(d_{1}, d_{2}, d_{3}\right)$ that will be derived from $\left(b_{1}, b_{2}, b_{3}\right)$. Recall a triple of positive integers $\left(d_{1}, d_{2}, d_{3}\right)$ is in required format if $\left(d_{1}, d_{2}, d_{3}\right)=(1,1,2)$ or if $d_{1}<d_{2}<d_{3}$ where $d_{3}=d_{1}+d_{2}$, the d_{i} are pairwise relatively prime and not divisible by 3 , and $d_{1} \equiv d_{2}$ $(\bmod 3)$.

Lemma 3. Given the triple (b_{1}, b_{2}, b_{3}), write $b_{2}=k b_{1}+r$ where r and k are positive integers and r is less than b_{1}. Set $s=b_{1}-r$. For the triple $\left(d_{1}, d_{2}, d_{3}\right)$ that is derived from $\left(b_{1}, b_{2}, b_{3}\right)$ there are two possibilities:

1) If neither r nor s is divisible by 3 then $\left(d_{1}, d_{2}, d_{3}\right)=\left(r, s, b_{1}\right)$ if $r<s$ and $\left(d_{1}, d_{2}, d_{3}\right)=\left(s, r, b_{1}\right)$ if $s<r$. In the case $r=s$, we have $\left(d_{1}, d_{2}, d_{3}\right)=(1,1,2)$.
2) If 3 divides exactly one of $\{r, s\}$ and d_{1} represents the element not divisible by $3,\left(d_{1}, d_{2}, d_{3}\right)=\left(d_{1}, b_{1}, d_{1}+b_{1}\right)$.

In either case the resulting triple is in required format, $d_{1}<b_{1}$, and $d_{3} \geq b_{1}$.

Remark. The bold \boldsymbol{r} in Lemma 2 will in fact turn out to be either r or s.

Proof. First notice that at most one of r and s is divisible by 3 since their sum is b_{1}. Therefore there are only two cases as described. The inequalities are obvious, so we need only to prove that the triple $\left(d_{1}, d_{2}, d_{3}\right)$ is in required format.

There are only two non-obvious things to check in Case 1. First, the numbers r and s are relatively prime. Since $r+s=b_{1}$, if any two share a factor then all three do. But if r and b_{1} share a factor then b_{1} and b_{2} do, which is a contradiction. Second, r and s are congruent modulo 3. If they were not, then b_{1} would be divisible by 3 which is not the case. Notice that, because they are relatively prime, $r=s$ only if $r=s=1$ and $b_{1}=2$.

In Case 2, note first that d_{1} and b_{1} are congruent modulo 3 since $b_{1}-d_{1}$ is the element of $\{r, s\}$ which is divisible by 3 . Therefore, none of the numbers in $\left(d_{1}, d_{2}, d_{3}\right)$ are divisible by 3 . As in Case 1 , we know d_{1} and b_{1} are relatively prime. Therefore d_{1}, d_{2}, and d_{3} are pairwise relatively prime. The other requirements for the format are obvious.

5. Arranging the interval

To prove Theorem 1 it will be useful to display the elements of $I_{b_{3}}$ in a particular array. If x is in $I_{b_{3}}$ then exactly one of $\left\{x+b_{1}, x-b_{2}\right\}$ is also in $I_{b_{3}}$. This is true because $\left[-b_{3} / 2, b_{3} / 2\right]$ and $\left[x-b_{2}, x+b_{1}\right]$ are both intervals of length b_{3} containing x. Therefore one of the endpoints of $\left[x-b_{2}, x+b_{1}\right]$ lies in $\left[-b_{3} / 2, b_{3} / 2\right]$ and, being integral, therefore lies in $I_{b_{3}}$. There is one exception: if b_{3} is even and $x=\left(b_{2}-b_{1}\right) / 2$, then both $x+b_{1}=b_{3} / 2$ and $x-b_{2}=-b_{3} / 2$ are in $I_{b_{3}}$.

The array of the elements of $I_{b_{3}}$ is defined as follows and will be referred to as an array of Type 1 for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. (An example is presented in Figure 3 below.) Begin with the smallest multiple of b_{1} in $I_{b_{3}}$. Repeatedly add b_{1} to this number as long as possible to generate the first column of the array. When you reach an x such that $x+b_{1}$ is not in $I_{b_{3}}$ but $x-b_{2}$ is, use $x-b_{2}$ to head the second column.

-60	-47	-54	-61	-48	-55	-62	-49	-56	-63	-50
-40	-27	-34	-41	-28	-35	-42	-29	-36	-43	-30
-20	$\mathbf{- 7}$	-14	-21	$\mathbf{- 8}$	-15	-22	$\mathbf{- 9}$	-16	-23	$\mathbf{- 1 0}$
$\mathbf{0}$	13	$\mathbf{6}$	$\mathbf{- 1}$	12	$\mathbf{5}$	$\mathbf{- 2}$	11	$\mathbf{4}$	$\mathbf{- 3}$	$\mathbf{1 0}$
20	33	26	19	32	25	18	31	24	17	30
40	53	46	39	52	45	38	51	44	37	50
60			59			58			57	

-57	-44	-51	-58	-45	-52	-59	-46	-53	-60
-37	-24	-31	-38	-25	-32	-39	-26	-33	-40
-17	$\mathbf{- 4}$	-11	-18	$\mathbf{- 5}$	-12	-19	$\mathbf{- 6}$	-13	-20
$\mathbf{3}$	16	$\mathbf{9}$	$\mathbf{2}$	15	$\mathbf{8}$	$\mathbf{1}$	14	$\mathbf{7}$	$\mathbf{0}$
23	36	29	22	35	28	21	34	27	20
43	56	49	42	55	48	41	54	47	40
63			62			61			60

Figure 3. The Type 1 array for $\left(b_{1}, b_{2}, b_{3}\right)=(20,107,127)$.
Elements of $I_{b_{1}}=[-10,10] \cap Z$ are in bold.

Begin adding b_{1} again to form the second column. Continue the process to generate the remaining columns. In the case where b_{3} is even, the number $-b_{3} / 2$ will not appear in the array as it has been described. (When you reach $x=b_{3} / 2$ you subtract b_{2} to get $\left(b_{1}-b_{2}\right) / 2$ at the top of the next column.) In this situation, we will insert $-b_{3} / 2$ above the element $\left(b_{1}-b_{2}\right) / 2$. This does not disrupt the pattern since $\left(b_{1}-b_{2}\right) / 2=-b_{3} / 2+b_{1}$.

With this description, all the numbers in $I_{b_{3}}$ are included in the array exactly once: If x is in the array, then $x+m b_{1}-n b_{2}=x$ implies $m b_{1}=n b_{2}$. Then b_{1} divides n and b_{2} divides m so that $m+n$ is at least b_{3}. Therefore the first b_{3} elements entered into the array are all different. If we include $-b_{3} / 2$ as noted above in the case where b_{3} is even, we see that the array will list each element of $I_{b_{3}}$ once. Notice that each column of the array contains a single element of $I_{b_{1}}$, unless b_{1} is even, in which case one column will contain both $-b_{1} / 2$ and $b_{1} / 2$. Therefore there are b_{1} columns in the array.

If one continues the pattern after numbers begin to repeat, the first repeated numbers are the numbers in the first column of the array (the multiples of b_{1} in $I_{b_{3}}$). This is clear since if x is in the first column of the array, then the numbers in column $b_{1}+1$ are of the form $x-b_{1} b_{2}+n b_{1}$ for some positive integer n. These are of course themselves multiples of b_{1}. Thus the array can extended indefinitely to the left or right by continuing the construction. With this in mind we state a clear but oft-used lemma:

Lemma 4. If x and y are in $I_{b_{3}}$ and $y=x-j b_{2}+n b_{1}$ for nonnegative integers j and n, then y is j columns to the right of x in the Type 1 array for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. (If $j>b_{1}$ we assume the array has been extended as described in the preceding paragraph.)

Proof. The proof is obvious. For a given j, there are only certain values of n which give elements of $I_{b_{3}}$. The numbers obtained by using such n are precisely the elements which are j columns to the right of x.

We need to see how elements of $I_{b_{1}}$ in adjacent columns are related. Let r, s and k be as defined above in Lemma 3.

Lemma 5. Let x be an element of $I_{b_{1}}$ in the Type 1 array for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. The element of $I_{b_{1}}$ which lies in the column to the right
of x is either $x-r$ or $x+s$. (If there are two elements of $I_{b_{1}}$ in the column to the right of x, they are $x-r$ and $x+s$.)

Proof. Since $r+s=b_{1}$, one of $\{x-r, x+s\}$ is in $I_{b_{1}}$ (by an argument similar to the first paragraph of this section). Moreover, $x-r=x-b_{2}+k b_{1}$ and $x+s=x-b_{2}+(k+1) b_{1}$ are in the column to the right of x (if they are in $I_{b_{3}}$) by Lemma 4. If there are two $I_{b_{1}}$ elements to the right of x, since $x+s$ and $x-r$ cannot be $-b_{1} / 2$ and $b_{1} / 2$ respectively (since s and r are positive), the two elements must be $x-r=-b_{1} / 2$ and $x+s=b_{1} / 2$.

Remark. It follows from Lemma 5 and its proof that if you take the $I_{b_{1}}$ elements from the Type 1 array generated by the triple $\left(b_{1}, b_{2}, b_{3}\right)$ and form the Type 1 array corresponding to the triples $\left(r, s, b_{1}\right)$ or $\left(s, r, b_{1}\right)$, elements in adjacent columns in the original array become consecutive elements in the derived array. It may be necessary to reverse the order in which the numbers are written depending on the relative sizes of r and s. See Figure 4.

-7	-6	-5	-4	-10	-9	-8	-7
0	1	2	3	-3	-2	-1	0
7	8	9	10	4	5	6	7

Figure 4. If we take the elements of $I_{b_{1}}$ from Figure 3 in the order in which they occur, we obtain the array for the triple $\left(d_{1}, d_{2}, d_{3}\right)=(7,13,20)$.

We also display the elements of $I_{b_{3}}$ in an array of Type 2, described as follows. Again begin with the smallest multiple of b_{1} in $I_{b_{3}}$. To generate the first column we subtract b_{2} as many times as possible. (Of course that is either once or not at all, since $2 b_{2}>b_{3}$.) We then start the next column by adding b_{1} to the bottom of the first column. Continue by subtracting b_{2} if possible, and beginning the next column by adding b_{1}. Notice each column has only one or two elements. As in the array of Type 1, all elements of $I_{b_{3}}$ are eventually included, provided we insert $b_{3} / 2$ above the element $\left(b_{1}-b_{2}\right) / 2$ in case b_{3} is even. It is clear each column contains exactly one element of $I_{b_{2}}$ (except possibly when b_{2} is even, a single column contains both $\pm b_{2} / 2$). We have the following analog of Lemma 5 :

Lemma 6. Let x be an element of $I_{b_{2}}$ in the Type 2 array for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. Then the element of $I_{b_{2}}$ in the column to the right of x is either $x+b_{1}$ or $x+b_{1}-b_{2}$. (If there are two elements of $I_{b_{2}}$ in the column to the right of x, one of them is either $x+b_{1}$ or $x+b_{1}-b_{2}$.)

Proof. The element of $I_{b_{2}}$ in the column to the right of x is in the form $x+b_{1}-t b_{2}$ for some nonnegative integer t. Clearly $t<2$ since $x+\left(b_{1}-b_{2}\right)-b_{2}<x-b_{2} \leq-b_{2} / 2$.

6. Establishing links

Recall the assertion of Lemma 2. Using the paths that exist from x to $F_{b_{1}}(x), F_{b_{2}}(x)$, and $F_{b_{3}}(x)$ for any x in $I_{b_{3}}$, we must find paths from x to $F_{d_{1}}(x), F_{d_{2}}(x)$, and $F_{d_{3}}(x)$ for any x in $I_{d_{3}}$. Where convenient, we will also use the fact that if x is in $I_{b_{i}}$, then x is connected by a path to $T_{b_{i}}(x)$ (defined in Section 2). This is true because $T_{b_{i}}(x)$ is $F_{b_{1}}^{n}(x)$ for some positive integer n.

Lemma 7. Assume there are paths from any x in $I_{b_{3}}$ to the elements $F_{b_{i}}(x)$ for $i=1,2,3$. Arrange the numbers in $I_{b_{3}}$ in the array of Type 1 (Type 2) for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. Let x be any number in the array which is not divisible by 3. Then there are paths from x to the elements of $I_{b_{1}}$ $\left(I_{b_{2}}\right)$ lying in the adjacent columns.

In the case where x is in the far left or right column of the array, one of the adjacent columns will be the column at the opposite end of the array, since the array may be continued ad infinitum after the pattern begins to repeat.

Proof. The proof uses the fact that you can home in on the $I_{b_{1}}$ or $I_{b_{2}}$ elements. We show the details for Type 1. Assume $x \equiv b_{3}(\bmod 3)$, the other case being similar. First use the path from x to $F_{b_{3}}(x)=\left(x-b_{3}\right) / 3$. Then connect to $F_{b_{1}}^{j}\left(F_{b_{3}}(x)\right)$ where j is chosen so that the result is in $I_{b_{1}}$. Finally connect to $y=T_{b_{1}}^{j+1}\left(F_{b_{1}}^{j}\left(F_{b_{3}}(x)\right)\right)$ which is in $I_{b_{1}}$. Since $F_{b_{1}}$ consists of dividing by 3 (after possibly adding or subtracting b_{1}) and $T_{b_{1}}$ consists of tripling (followed possibly by adding or subtracting b_{1}) we see that y is of the form $x-b_{3}+t^{\prime} b_{1}$. We may rewrite this in the form $x-b_{2}+t b_{1}$ which by Lemma 4 is in the column to the right of x. If we substitute $F_{b_{2}}$
for $F_{b_{3}}$ in the initial step and continue as before, we connect to an element of the form $x+b_{2}-t b_{1}$ which must lie in the column to the left of x. This works because b_{2} and b_{3} are opposites modulo 3 .

In the case where b_{1} is even and a column contains two elements of $I_{b_{1}}$, namely $b_{1} / 2$ and $-b_{1} / 2$, we may link to both of these elements. In fact there is a path from $b_{1} / 2$ to $-b_{1} / 2$ given by the following: $b_{1} / 2$ connects to $F_{b_{2}}\left(b_{1} / 2\right)=\left(b_{1} / 2+b_{2}\right) / 3$. This uses the fact that $b_{1} / 2$ is opposite to b_{1} (and b_{2}) modulo 3. This connects to $T_{b_{3}}\left(\left(b_{1} / 2+b_{2}\right) / 3\right)=b_{1} / 2+b_{2}+t b_{3}$ where t is the unique number in $\{-1,0,1\}$ that gives an element in $I_{b_{3}}$. It is clear that $t=-1$, and we have connected to $-b_{1} / 2$. There is a path back via the same maps.

For the paths to $I_{b_{2}}$ elements in the Type 2 array, we use similar arguments. The connections are given by the paths from x to $T_{b_{2}}^{j+1}\left(F_{b_{2}}^{j}\left(F_{b_{3}}(x)\right)\right)$ and $T_{b_{2}}^{j+1}\left(F_{b_{2}}^{j}\left(F_{b_{1}}(x)\right)\right)$. Here j is chosen so that $F_{b_{2}}^{j}$ brings us into $I_{b_{2}}$. In the case where b_{2} is even we get from $b_{2} / 2$ to $-b_{2} / 2$ (and back) via the maps $F_{b_{1}}$, followed by $T_{b_{3}}$.

The proofs that follow are simplified by the following:
Lemma 8. Assume there are paths from any x in $I_{b_{3}}$ to the elements $F_{b_{i}}(x)$ for $i=1,2,3$. Consider the function F_{d} where d is some integer not divisible by 3 . If we have paths from any $x \equiv b_{1}(\bmod 3)$ to $F_{d}(x)$, then we have paths from any x to $F_{d}(x)$.

Proof. If $x \equiv 0(\bmod 3)$, then $F_{d}(x)=x / 3=F_{b_{1}}(x)$. If $x \equiv-b_{1}$ $(\bmod 3)$, then by assumption there is a path from $-x$ to $F_{d}(-x)$. Since F_{d} is an odd function, $F_{d}(-x)=-F_{d}(x)$. The path from $-x$ to $-F_{d}(x)$ implies a path from x to $F_{d}(x)$ since the $F_{b_{i}}$ are odd functions.

As an application of the connections described in Lemma 7, we have:
Lemma 9. Assume there are paths from any x in $I_{b_{3}}$ to the elements $F_{b_{i}}(x)$ for $i=1,2$, 3. If x is in $I_{b_{2}}$, there is a path from x to $F_{2 b_{1}}(x)$.

Proof. By Lemma 8, we need only find paths from x to $F_{2 b_{1}}(x)$ for $x \equiv b_{1}(\bmod 3)$. Assume we have arrayed the elements of $I_{b_{3}}$ in the Type 2 array. By Lemma 7, x connects to the $I_{b_{2}}$ element in the column to its right. By Lemma 6, this element is either $x+b_{1}$ or $x+b_{1}-b_{2}$. In the first case we use the path from $x+b_{1}$ to $F_{b_{1}}\left(x+b_{1}\right)=\left(x+b_{1}+b_{1}\right) / 3=F_{2 b_{1}}(x)$.

In the latter case, we connect to $F_{b_{3}}\left(x+b_{1}-b_{2}\right)=\left(x+b_{1}-b_{2}+b_{3}\right) / 3=$ $\left(x+2 b_{1}\right) / 3=F_{2 b_{1}}(x)$.

7. The proof of Lemma 2

We divide the proof into two cases, depending on the form of the triple $\left(d_{1}, d_{2}, d_{3}\right)$. Notation is as in the statement of Lemma 3. We are assuming that for any x in $I_{b_{3}}$, we have paths from x to $F_{b_{i}}(x)$ for $i=1,2,3$. Also assume the elements of $I_{b_{3}}$ have been arranged in the Type 1 array for the triple (b_{1}, b_{2}, b_{3}).

Case 1. Here r and s are not divisible by $3, d_{1}$ is the smaller of r and s, d_{2} is the larger, and d_{3} is b_{1}. This will also include the case where $r=s=1$ and $b_{1}=2$, i.e. $\left(d_{1}, d_{2}, d_{3}\right)=(1,1,2)$. An example is found in Figure 3 above where $\left(b_{1}, b_{2}, b_{3}\right)=(20,107,127)$ and $\left(d_{1}, d_{2}, d_{3}\right)=(7,13,20)$.

Proof of Lemma 2 in Case 1. Let x be any element in $I_{d_{3}}=I_{b_{1}}$. We must show there is a path from x to the images of x under the maps $F_{d_{i}}$ for $i=1,2,3$. As noted in Lemma 8 above we only need to find such paths in the case where $x \equiv b_{1}(\bmod 3)$. Since $F_{d_{3}}=F_{b_{1}}$, we only need to show that there are paths from x to $F_{r}(x)=(x+r) / 3$ and $F_{s}(x)=(x+s) / 3$. (Here we use the fact that r and s are congruent to $-b_{1}$ modulo 3.)

By Lemma 6 we know there is a path from x to the elements in $I_{b_{1}}$ which lie in the columns adjacent to x. By Lemma 5, the element of $I_{b_{1}}$ to the right of x is either $x-r$ or $x+s$. Since we have paths from $x-r$ to $F_{b_{1}}(x-r)=\left(x-r+b_{1}\right) / 3=(x+s) / 3$, and from $x+s$ to $F_{b_{1}}(x+s)=(x+s) / 3$, in either case we have a path from x to $F_{s}(x)$. It also follows from Lemma 5 that the element of $I_{b_{1}}$ to the left of x is either $x+r$ or $x-s$. Since we have paths from $x+r$ to $F_{b_{1}}(x+r)=(x+r) / 3$ and from $x-s$ to $F_{b_{1}}(x-s)=\left(x-s+b_{1}\right) / 3=(x+r) / 3$, we have a path from x to $F_{r}(x)$.

Case 2. Here d_{1} is the one of r and s which is not divisible by three, $d_{2}=b_{1}$, and $d_{3}=d_{1}+b_{1}$. An example is presented in Figure 5 .

Proof of Lemma 2 in Case 2. Let x be in $I_{d_{3}}$. We need to show x is connected by paths to $F_{d_{1}}(x), F_{d_{2}}(x)$, and $F_{d_{3}}(x)$. Obviously there is a path from x to $F_{d_{2}}(x)=F_{b_{1}}(x)$. The case where x is in $I_{b_{1}}$ will handled in Part 1 below. In Part 2 we deal with those x in $I_{d_{3}}$ which are

-44	-29	-36	-43	-28	-35	-42	-27	-34	-41	-26	-33
-22	$\mathbf{- 7}$	-14	-21	$\mathbf{- 6}$	-13	-20	$\mathbf{- 5}$	-12	-19	$\mathbf{- 9}$	$\mathbf{- 1 1}$
$\mathbf{0}$	15	$\mathbf{8}$	$\mathbf{1}$	16	$\mathbf{9}$	$\mathbf{2}$	17	$\mathbf{1 0}$	$\mathbf{3}$	18	$\mathbf{1 1}$
22	37	30	23	38	31	24	39	32	25	40	33
44			45			46			47		

-40	-47	-32	-39	-46	-31	-38	-45	-30	-37	-44
-18	-25	$\mathbf{- 1 0}$	-17	-24	$\mathbf{- 9}$	-16	-23	$-\mathbf{8}$	-15	-22
$\mathbf{4}$	$\mathbf{- 3}$	12	$\mathbf{5}$	$\mathbf{- 2}$	13	$\mathbf{6}$	$\mathbf{- 1}$	14	$\mathbf{7}$	$\mathbf{0}$
26	19	34	27	20	35	28	21	36	39	22
	41			42			43			44

Figure 5. The Type 1 array of the triple $(22,73,95)$ with $I_{b_{1}}$ elements in bold. Here $\left(d_{1}, d_{2}, d_{3}\right)=(7,22,29)$ which is the array pictured in the third table.

$-\mathbf{1 4}$	-8	-9	-10	-11	$\mathbf{- 1 2}$	$\mathbf{- 1 3}$	$\mathbf{- 1 4}$
-7	-1	-2	-3	-4	-5	-6	-7
0	6	5	4	3	2	1	0
7	$\mathbf{1 3}$	$\mathbf{1 2}$	11	10	9	8	7
$\mathbf{1 4}$							$\mathbf{1 4}$

In the derived array, the elements which are not in $I_{b_{1}}$ (from Part 2 in Case 2 in the proof of Lemma 2) are in bold.
not in $I_{b_{1}}$. As noted in Lemma 8, we only need to establish the existence of such paths for $x \equiv b_{1}(\bmod 3)$. For such $x, F_{d_{1}}(x)=\left(x-d_{1}\right) / 3$ and $F_{d_{3}}(x)=\left(x+d_{3}\right) / 3=\left(x+d_{1}+b_{1}\right) / 3$.

Part 1: x is in $I_{b_{1}}$. For x in $I_{b_{1}}$ we know we have a path to the elements of $I_{b_{1}}$ in the adjacent columns. As in Case 1 the possible values of these elements are $x-s$ or $x+r$ on the left and $x+s$ or $x-r$ on the right. Whether r or s is d_{1}, we see that x connects to $x-d_{1}$ or $x-d_{1}+b_{1}$ on one side, and to $x+d_{1}$ or $x+d_{1}-b_{1}$ on the other side. We can then find paths to the images of these elements under $F_{b_{1}}$ or $F_{2 b_{1}}$ (by Lemma 9 , since the elements are in $I_{b_{1}}$ and hence in $I_{b_{2}}$.) The appropriate images are displayed in the table below. Using one side we have a path from x to
$F_{d_{1}}(x)$ and using the other side a path from x to $F_{d_{3}}(x)$.

One Side	Other Side
$F_{b_{1}}\left(x-d_{1}\right)=\left(x-d_{1}\right) / 3$	$F_{b_{1}}\left(x+d_{1}\right)=\left(x+d_{1}+b_{1}\right) / 3$
$F_{b_{1}}\left(x-d_{1}+b_{1}\right)$	$F_{2 b_{1}}\left(x+d_{1}-b_{1}\right)$
$=\left(x-d_{1}+b_{1}-b_{1}\right) / 3=\left(x-d_{1}\right) / 3$	$=\left(x+d_{1}-b_{1}+2 b_{1}\right) / 3$
	$=\left(x+d_{1}+b_{1}\right) / 3$

Part 2: x is in $I_{d_{3}}$ but not in $I_{b_{1}}$. Since $2 b_{1}>d_{3}$, two elements of $I_{d_{3}}$ cannot differ by $2 b_{1}$. Therefore the $I_{b_{1}}$ element in the same column as x is either $x+b_{1}$ or $x-b_{1}$.

First assume $x+b_{1}$ is in $I_{b_{1}}$. The $I_{b_{1}}$ elements in the adjacent columns are either $\left(x+b_{1}\right)-s$ or $\left(x+b_{1}\right)+r$ on the left side, and $\left(x+b_{1}\right)+s$ or $\left(x+b_{1}\right)-r$ on the right side. Whether r or s is d_{1}, we have paths from x to $x+d_{1}$ or $x+d_{3}$ on one side, and to $x+b_{1}-d_{1}$ or $x+2 b_{1}-d_{1}$ on the other side. The table displays the connections from there. We have paths from x to $F_{d_{3}}(x)$ using one column and to $F_{d_{1}}(x)$ using the other column:

One Side	Other Side
$F_{b_{1}}\left(x+d_{1}\right)=\left(x+d_{1}+b_{1}\right) / 3$	$F_{b_{1}}\left(x+b_{1}-d_{1}\right)=\left(x+b_{1}-d_{1}-b_{1}\right) / 3$
$=\left(x+d_{3}\right) / 3$	$=\left(x-d_{1}\right) / 3$
$F_{b_{1}}\left(x+d_{3}\right)=\left(x+d_{3}\right) / 3$	$F_{2 b_{1}}\left(x+2 b_{1}-d_{1}\right)$
	$=\left(x+2 b_{1}-d_{1}-2 b_{1}\right) / 3=\left(x-d_{1}\right) / 3$

Next assume $x-b_{1}$ is in $I_{b_{1}}$. Then the $I_{b_{1}}$ elements in the adjacent columns are either $\left(x-b_{1}\right)-s$ or $\left(x-b_{1}\right)+r$ on the left side and $\left(x-b_{1}\right)+s$ or $\left(x-b_{1}\right)-r$ on the right side. Whether r or s is d_{1}, we have paths from x to $x-d_{3}$ or $x-d_{1}$ on one side, and to $x-b_{1}+d_{1}$ or $x-2 b_{1}+d_{1}$ on the other side. The table displays the connections from there:

One Side	Other Side
$F_{b_{1}}\left(x-d_{3}\right)=\left(x-d_{3}+b_{1}\right) / 3$	$F_{2 b_{1}}\left(x-b_{1}+d_{1}\right)$
$=\left(x-d_{1}\right) / 3$	$=\left(x-b_{1}+d_{1}+2 b_{1}\right) / 3$
	$=\left(x+b_{1}+d_{1}\right) / 3$
$F_{b_{1}}\left(x-d_{1}\right)=\left(x-d_{1}\right) / 3$	$X-2 b_{1}+d_{1}:$ Special Case

We have paths from x to $F_{d_{1}}(x)$ using one column and to $F_{d_{3}}(x)$ using the other column, assuming that there are no elements of $I_{b_{1}}$ of the form $x-2 b_{1}+d_{1}$.

A difficulty arises if we have $x-2 b_{1}+d_{1}$ in $I_{b_{1}}$ where x is in $I_{d_{3}}$. This is a problem since $x-2 b_{1}+d_{1} \equiv 0(\bmod 3)$ and little can be done with it. In fact the existence of such an element forces the reduction process to terminate. The resulting situation is handled in Sections 8 and 9. If $x-2 b_{1}+d_{1}$ is in $I_{b_{1}}$, then $x \geq-b_{1} / 2+2 b_{1}-d_{1}=3 b_{1} / 2-d_{1}$. Since x is in $I_{d_{3}}$, we known that $x \leq\left(b_{1}+d_{1}\right) / 2$. Therefore this problem can only arise if $3 b_{1} / 2-d_{1} \leq\left(b_{1}+d_{1}\right) / 2$. That is, $2 b_{1} \leq 3 d_{1}$ or, writing $d_{1}=b_{1}-\boldsymbol{r}$, $b_{1} \geq 3 \boldsymbol{r}$. As remarked earlier this \boldsymbol{r} is either r or s as used above, and is the one of r or s which is congruent to 0 modulo 3 . Since 3 does not divide b_{1}, we in fact have $b_{1}>3 r$. This is the situation referred to in the statement of Lemma 2, which is now proven.

In the remaining sections of the paper we will assume that the reductions have been applied so that we are now in the special situation just described, where $b_{1}=d_{1}+\boldsymbol{r}, 3$ divides \boldsymbol{r} and $3 \boldsymbol{r}<b_{1}$ (or equivalently $2 \boldsymbol{r}<d_{1}$). We will no longer emphasize this \boldsymbol{r} since the old r and s will no longer be used.

8. Paths connecting $I_{b_{1}}$ elements

In the situation that remains we assume we have the path system for the triple $\left(b_{1}, b_{2}, b_{3}\right)$ provided by the maps $F_{b_{i}}$ for $i=1,2,3$. Moreover we have shown in the proof of Lemma 2 that for any x in $I_{b_{1}}$ there is a path from x to $F_{d_{1}}(x)$. Here $d_{1}=b_{1}-r$ where 3 divides r and $3 r<b_{1}$. In this section we will show that there is a path from any nonzero element of $I_{b_{1}}$ to any other.

We use only the maps $F_{d_{1}}$ (referred to simply as F) and $T_{b_{1}}$ (referred to as T). (For a result independent of Lemma 2, it is possible to use $F=F_{b_{1}}$ without substantial modifications.) If x is in $I_{b_{1}}$, recall there is a path from x to $T(x)$.

Let x be any element of $I_{b_{1}}$ which is not divisible by 3 . By Lemma 7 , we know that there are paths from x to the elements of $I_{b_{1}}$ in the adjoining columns, as they appear in the Type 1 array for the triple $\left(b_{1}, b_{2}, b_{3}\right)$. As noted in the Remark of Section 5, if we write the elements of $I_{b_{1}}$ in their
own Type 1 array, given by the triple $\left(r, d_{1}, b_{1}\right)$, we see that x connects to the elements adjacent to it (one step above or below it). If x is at the bottom of a column, x will connect to the number at the top of the column on the right. If x is at the top of a column, x will connect to the number at the bottom of the column on the left. In this section we will work only with the Type 1 array for the triple $\left(r, d_{1}, b_{1}\right)$. An example is presented in Figure 6 at the end of this section.

What makes this case work is fact that any two elements in a column are congruent modulo 3 since they differ by a multiple of r. Assuming the array begins as usual with the column of multiples of r, elements of the second column will be congruent to $-d_{1}$ modulo 3 , elements of the third column will be congruent to $-2 d_{1} \equiv d_{1}(\bmod 3)$, elements of the fourth column are 0 modulo 3 and so on. In particular, we see that all the elements in columns 2 and 3 are connected to each other and connect to the bottom of column 1 and the top of column 4 . We have a similar result for the elements of columns 5 and 6 , columns 8 and 9 , etc. These pairs of columns, consisting of numbers not divisible by 3 which are joined together by paths, will be called blocks. Columns 2 and 3 will be referred to as block 1, and so on to the right. Within a block, elements in the left column are congruent to $-d_{1}$ modulo 3 and elements in the right column are congruent to d_{1} modulo 3 . Since there are r columns in the array, there are $r / 3$ blocks.

The main result of this section is the following:
Lemma 10. There is a path from any nonzero element of $I_{b_{1}}$ to any other.

It will suffice to show that there is a path from an element of any one block to an element of any other block. This will demonstrate that all numbers not divisible by three will be connected by paths. That will imply that any two numbers will be connected (since if 3 divides x, there is a path from x to $F(x)=x / 3$ and a path back from $x / 3$ to $T(x / 3)=x)$. We begin our proof with a computational lemma.

Lemma 11. 1) If z is at the top of a column in the array, $T(z)=$ $3 z+b_{1}$. If z is at the bottom of a column then $T(z)=3 z-b_{1}$.
2) If 3 divides some number a, then $F(x+a)=F(x)+a / 3$.

Proof. 1) Recall $T(z)$ is the single element of $\left\{3 z, 3 z-b_{1}, 3 z+b_{1}\right\}$ which is in $I_{b_{1}}$. (If b_{1} is even, recall that T fixes both $b_{1} / 2$ and $-b_{1} / 2$.) If
z is at the top of the column, $z-r$ is not in $I_{b_{1}}$ and so $z<-b_{1} / 2+r$. Then $3 z<-3 b_{1} / 2+3 r<-b_{1} / 2$, since $3 r<b_{1}$. Therefore $T(z)=3 z+b_{1}$. The proof is similar for z at the bottom of a column. Part 2 is obvious.

Let M be the positive integer such that 3^{M} divides r and 3^{M+1} does not. A block B is said to be of depth k if there is a pair of numbers (x, y) in B where x is in the left column of B (hence congruent to $-d_{1}$ modulo 3), and y is in the right column (hence congruent to d_{1} modulo 3), such that $F^{i}(x) \equiv-d_{1}(\bmod 3)$ and $F^{i}(y) \equiv d_{1}(\bmod 3)$ for $i=1, \ldots, k$. Saying B is of depth k does not imply it is not of a higher depth as well. F^{0} will denote the identity map. We have the following lemma:

Lemma 12. 1) If x and $x^{\prime}=x+\operatorname{tr}$ are in the same column, $F^{i}\left(x^{\prime}\right)=$ $F^{i}(x)+\operatorname{tr} / 3^{i}$ for $i=0, \ldots, M$. We have $F^{i}\left(x^{\prime}\right) \equiv F^{i}(x)(\bmod 3)$ for $i=0 \ldots, M-1$.
2) If x and $x^{\prime}=x \pm 3^{i} d_{1}+\operatorname{tr}$ are 3^{i} columns apart $(0<i \leq M)$, then $F^{j}\left(x^{\prime}\right)=F^{j}(x) \pm 3^{i-j} d_{1}+t r / 3^{j}$ for $j=0, \ldots, i$. We have $F^{j}\left(x^{\prime}\right) \equiv F^{j}(x)$ $(\bmod 3)$ for $j=0, \ldots, i-1$. (Here t is some integer. If x^{\prime} is outside the array, we extend the array using the repetition of the pattern.)

Proof. We apply Lemma 11 (2) repeatedly to prove both assertions.

An important consequence of Lemma 12 (1) is that it does not matter which pair (x, y) you select from the block B in order to establish that it has depth k, provided k is less than M. Therefore we will always assume (x, y) is a middle pair of B, that is, x is at the bottom of the left column and $y=x-d_{1}$ is at the top of the right column. (In the special case $x=b_{1} / 2$, we will still use $y=x-d_{1}$ though it is the second number in its column.) As a result of the following lemma, we will not need to compute depths of M or more, so that the middle pair will always suffice.

Lemma 13. If B is of depth $M-1$, then B is of depth M.
Proof. Let (x, y) be the middle pair of B. Then $F^{i}(x) \equiv-d_{1}$ $(\bmod 3)$ and $F^{i}(y) \equiv d_{1}(\bmod 3)$ for $i=1, \ldots, M-1$. For any $x^{\prime}=$ $x+t r$ in the same column as x, we have $F^{i}\left(x^{\prime}\right) \equiv F^{i}(x)(\bmod 3)$ for $i=$ $1, \ldots, M-1$ and $F^{M}\left(x^{\prime}\right)=F^{M}(x)+t r / 3^{M}$ by Lemma 12. Now if $F^{M}(x)$ is not congruent to $-d_{1}$ modulo 3 , then $F^{M}\left(x^{\prime}\right)$ will be, for either $t=-1$ or -2 . This is because $r / 3^{M}$ is not divisible by 3 . (Recall x is at the bottom
of the column. Because $2 r<d_{1}$ there are at least three elements in any column.) One proceeds in the same way with y, using the fact that y is at the top of the column, and choosing $t=1$ or 2 if necessary, for $y^{\prime}=y+t r$. (In the exceptional case where y is the second element, t is either 1 or -1). This allows us to find a pair $\left(x^{\prime}, y^{\prime}\right)$ which demonstrates that B has depth M.

Lemma 14. If B is of depth k and not of depth $k+1$ (where $k<M-1$ by Lemma 13), let (x, y) be the middle pair of B. Then $\left(F^{i}(x), F^{i}(y)\right)$ is a middle pair for $i=1, \ldots, k$. The pair $\left(F^{k+1}(x), F^{k+1}(y)\right)$ is congruent modulo 3 to either $\left(0,-d_{1}\right)$ or $\left(d_{1}, 0\right)$.

Proof. We know $\left(F^{i}(x), F^{i}(y)\right)$ is congruent modulo 3 to $\left(-d_{1}, d_{1}\right)$ for $i=1, \ldots, k$. Notice that $F(y)=\left(y-d_{1}\right) / 3=\left(x-2 d_{1}\right) / 3=\left(x+d_{1}\right) / 3-$ $d_{1}=F(x)-d_{1}$. Therefore, $F(x)$ is at the bottom of a column and $F(y)$ at the top of the column to its right. Because $(F(x), F(y))$ is congruent modulo 3 to $\left(-d_{1}, d_{1}\right),(F(x) F(y))$ is a middle pair of some (other) block. We can continue to apply F and see that each $\left(F^{i}(x), F^{i}(y)\right)$ is again a middle pair for $i=1, \ldots, k$. By assumption, $\left(F^{k+1}(x), F^{k+1}(y)\right)$ is not congruent modulo 3 to $\left(-d_{1}, d_{1}\right)$. Since $\left(F^{k}(x), F^{k}(y)\right)$ is a middle pair, $F^{k+1}(y)=F^{k+1}(x)-d_{1}$. Therefore $F^{k+1}(x)$ is at the bottom of a column and $F^{k+1}(y)$ is at the top of the column to its right. This proves the lemma.

If B is as described in Lemma 14 , with $\left(F^{k+1}(x), F^{k+1}(y)\right)$ congruent modulo 3 to $\left(0,-d_{1}\right)$ we will say B is of maximal depth k rightwards. If $\left(F^{k+1}(x), F^{k+1}(y)\right)$ is congruent modulo 3 to ($d_{1}, 0$) we will say B is of maximal depth k leftwards. By Lemma 13, we presume $k<M-1$. We give the obvious interpretation to "maximal depth 0 (rightwards or leftwards)". Every block has "depth 0" and "maximal depth 0" means "not depth 1".

The following lemma establishes the depth pattern of the various blocks.

Lemma 15. 1) If B is of depth $k(k<M)$ then so are the blocks 3^{k+1} columns from B.
2) Two blocks of depth $k(k<M)$ are a multiple of 3^{k+1} columns apart.
3) The blocks of depth $M-1$ are all 3^{M} columns apart.
4) Assume $k<M-1$. If B is of maximal depth k leftwards (rightwards), then the block 3^{k+1} columns to the left (right) of B is of depth $k+1$.

Proof. 1) Let (x, y) be the middle pair for B, a block of depth k. Let B^{\prime} be a block 3^{k+1} columns away from B. Let $\left(x^{\prime}, y^{\prime}\right)$ be the middle pair of B^{\prime} with $x^{\prime}=x \pm 3^{k+1} d_{1}+t r$ and $y^{\prime}=y \pm 3^{k+1} d_{1}+t r$. By Lemma 12, $F^{j}\left(x^{\prime}\right) \equiv F^{j}(x)(\bmod 3)$ and $F^{j}\left(y^{\prime}\right) \equiv F^{j}(y)(\bmod 3)$ for $j=1, \ldots, k$. This shows that B^{\prime} has depth k.
2) Let B and B^{\prime} be blocks n columns apart, of depth k with middle pairs (x, y) and $\left(x^{\prime}=x+a, y^{\prime}=y+a\right)$, where $a= \pm n d_{1}+t r$. We know $F^{j}\left(x^{\prime}\right) \equiv F^{j}(x) \equiv-d_{1}(\bmod 3)$ and $F^{j}\left(y^{\prime}\right) \equiv F^{j}(y) \equiv d_{1}(\bmod 3)$ for $j=0, \ldots, k$. Repeatedly apply this argument starting with $j=0$: Since $F^{j}\left(x^{\prime}\right)=F^{j}(x)+a / 3^{j}$, and $F^{j}\left(x^{\prime}\right) \equiv F^{j}(x)(\bmod 3)$, we have that 3 divides $a / 3^{j}$. Then by Lemma $11(2)$ we have $F^{j+1}\left(x^{\prime}\right)=F^{j+1}(x)+$ $a / 3^{j+1}$. In the final step, $j=k$ and we get have $F^{k+1}\left(x^{\prime}\right)=F^{k+1}(x)+$ $a / 3^{k+1}$. Since 3^{k+1} divides a and $r, 3^{k+1}$ must divide n.
3) Follows from 1) and 2).
4) We demonstrate the "leftwards" case. Let (x, y) be the middle pair of B. Let B^{\prime} be the block which is 3^{k+1} columns to the left of B. Consider $\left(x^{\prime}, y^{\prime}\right)$, the middle pair of B^{\prime} with $x^{\prime}=x+3^{k+1} d_{1}+t r$ and $y^{\prime}=y+3^{k+1} d_{1}+$ $t r$. By 1) B^{\prime} is of depth k. By the "leftwards" part of the assumption we know that $F^{k+1}(x) \equiv d_{1}(\bmod 3)$ and $F^{k+1}(y) \equiv 0(\bmod 3)$. Then by Lemma 12, $F^{k+1}\left(x^{\prime}\right)=F^{k+1}(x)+d_{1}+t r / 3^{k+1}$ and $F^{k+1}\left(y^{\prime}\right)=F^{k+1}(y)+$ $d_{1}+t r / 3^{k+1}$. Because 3^{k+2} divides r, we see that $F^{k+1}\left(x^{\prime}\right) \equiv 2 d_{1} \equiv-d_{1}$ $(\bmod 3)$ and $F^{k+1}\left(y^{\prime}\right) \equiv d_{1}$ modulo 3 . In other words B^{\prime} has depth $k+1$.

We now see how the depth determines the path connections.
Lemma 16. 1) Let x in $I_{b_{1}}$ be such $F^{i}(x) \equiv-d_{1}(\bmod 3)$ for $i=$ $0, \ldots, k$. Then there is a path from x to an element 3^{k} columns to the left of x.
2) Let y in $I_{b_{1}}$ be such $F^{i}(y) \equiv d_{1}(\bmod 3)$ for $i=0, \ldots, k$. Then there is a path from y to an element 3^{k} columns to the right of y.
3) If B is of depth k with $k \leq M$, there are paths from B to the blocks 3^{k} columns away on either side of B.

Proof. 1) Assume x is in the left column of a block B, where $F^{i}(x) \equiv$ $-d_{1}(\bmod 3)$ for $i=1, \ldots, k$. The proof is by induction on k. If $k=1$,
we know $F(x) \equiv-d_{1}(\bmod 3)$ and is therefore in the left column of its block. There is then a path from $F(x)$ to the element at the bottom of the column to its left (a column of numbers divisible by 3). Write this element as $F(x)+d_{1}-j r=\left(x+d_{1}\right) / 3+d_{1}-j r$. By Lemma 11, $T\left(F(x)+d_{1}-j r\right)=\left(x+d_{1}\right)+3 d_{1}-3 j r-b_{1}=x+3 d_{1}-(3 j+1) r$. We therefore have a path from x to the block three columns to the left.

Now assume the inductive hypothesis. Let x be such that $F^{i}(x) \equiv-d_{1}$ $(\bmod 3)$ for $i=1, \ldots, k$, with $k>1$. We know that $F(x)$ connects to $F(x)+3^{k-1} d_{1}-j r$ for some j by the inductive hypothesis. This is congruent modulo 3 to $F(x)$, i.e. to $-d_{1}$ modulo 3 . We may thus assume it is at the bottom of its column. Then x connects to $T\left(F(x)+3^{k-1} d_{1}-j r\right)=$ $\left(x+d_{1}\right)+3^{k} d_{1}-3 j r-b_{1}=x+3^{k} d_{1}-(3 j+1) r$ as needed.
2) The proof is similar to 1) but uses tops of columns instead of bottoms.
3) This follows by applying 1) and 2) to a pair (x, y) that establishes the depth of B.

Lemma 17. 1) Let $k<M-1$. If B is of maximal depth k leftwards (rightwards) then there is a path from B to the block 3^{k+1} columns to the left (right) of B. That block has depth $k+1$. There is also a path back.
2) If B is of depth $M-1$, there are paths to the blocks 3^{M} columns on either side of B (and paths back).

Proof. 1) We prove the case of the "leftward" connection. The proof is by induction. Assume $k=0$. If (x, y) denotes the middle pair for B of maximal depth 0 leftwards, then $F(x)$ is congruent to d_{1} modulo 3 by definition. We connect $F(x)$ to the element at the bottom of the column to its left (a column of elements congruent to $-d_{1}$ modulo 3 in the same block as $F(x))$. Write this element as $F(x)+d_{1}-j r=\left(x+d_{1}\right) / 3+d_{1}-j r$. Then by Lemma 11, $T\left(F(x)+d_{1}-j r\right)=\left(x+d_{1}\right)+3 d_{1}-3 j r-b_{1}=$ $x+3 d_{1}-(3 j+1) r$. We can therefore find a path from x to the block 3 columns away to the left of x.

Now assume the inductive hypothesis and let B be maximal depth k (leftwards) with $k>0$. Let (x, y) be the middle pair of B. Let B^{\prime} denote the block containing $(F(x), F(y))$ as its middle pair (Lemma 14). Then B^{\prime} is of maximal depth $k-1$ (leftwards). By the inductive hypothesis, $F(x)$ connects to $F(x)+3^{k} d_{1}-j r$ for some j. This is congruent modulo 3 to $F(x)$, i.e. to $-d_{1}$ modulo 3 . We may thus assume it is at the bottom of its
column. Then x connects to $T\left(F(x)+3^{k} d_{1}-j r\right)=\left(x+d_{1}\right)+3^{k+1} d_{1}-$ $3 j r-b_{1}=x+3^{k+1} d_{1}-(3 j+1) r$ as needed. By Lemma 15 , the block 3^{k+1} columns to the left of B has depth $k+1$. By Leamma 16 (3), there is a path back to B.
2) By Lemma 13, B is of depth M. By Lemma 16 (3) there are paths from B to the blocks 3^{M} columns on either sider of B. By Lemma 15 (3), these blocks are of depth $M-1$, and therefore of depth M. Then there are paths back to B.

We are finally ready to prove Lemma 10.
Proof of Lemma 10. By Lemma 17 (1), there is a path from any block of "maximal depth k " to a block of greater depth. There is also a path back. Thus there are paths from all blocks to and from the blocks of depth $M-1$. By Lemma 15 (3) and Lemma 17 (2) the blocks of depth $M-1$ are all connected.

9. Elements of $I_{b_{1}}$ connecting to 0

In this section we will show:
Lemma 18. Given the path system for the triple $\left(b_{1}, b_{2}, b_{3}\right)$, there is at least one nonzero element of $I_{b_{1}}$ connected by a path to 0 .

The proof is divided into three cases depending on how b_{2} is expressed in terms of b_{1}. In this section we assume only that we have the path system on $I_{b_{3}}$ corresponding to the maps $F_{b_{1}}, F_{b_{2}}$, and $F_{b_{3}}$ referred to as F_{1}, F_{2} and F_{3}. Recall also that if x is in $I_{b_{i}}$ there is a path from x to $T_{i}(x)$ where T_{i} is the inverse of F_{i} on $I_{b_{i}}$. By Lemma 9 , if x is in $I_{b_{2}}$ there is a path from x to $F_{2 b_{1}}(x)$.

In each case we will use the simple fact that any multiple of b_{1} is connected by a path to 0 (under the action of F_{1}). Notice r as used in the remainder of the paper is not necessarily the r from the preceding sections. In particular r may be negative in Case 1.

Case 1. $b_{2}=n b_{1}+r$ where r in $I_{b_{1}}$ is not divisible by 3 and n is a positive integer.

Proof of Case 1. If $r \equiv b_{1}(\bmod 3)$, then $F_{2}(r)=\left(r-b_{2}\right) / 3=$ $-n b_{1} / 3$. If $r \equiv-b_{1}(\bmod 3)$, then $F_{3}(r)=\left(r-b_{3}\right) / 3=-(n+1) b_{1} / 3$. In either case, r in $I_{b_{1}}$ is connected by a path to 0 .

A			B				C				
-54	-55	-56	-57	-58	-59	-60	-61	-62	-63	-64	-65
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
54	53	52	51	50	49	48	47	46	45	44	43
	\max	0	R		\max	1	R		\max	0	L

E			F			G			H		
-66	-67	-68	-69	-70	-71	-72	-73	-74	-75	-76	-77
-12	-13	-14	-15	-16	-17	-18	-19	-20	-21	-22	-23
42	41	40	39	38	37	36	35	34	33	32	31
	\max	2	R		\max	0	L			\max	0
R			\max	1	L						

I			J				K				
-78	-79	-80	-81	-28	-29	-30	-31	-32	-33	-34	-35
-24	-25	-26	-27	26	25	24	23	22	21	20	19
30	29	28	27	80	79	78	77	76	75	74	73
	\max	0	L	81	\max	0	R		\max	1	L

M			N			O		P			
-36	-37	-38	-39	-40	-41	-42	-43	-44	-45	-46	-47
18	17	16	15	14	13	12	11	10	9	8	7
72	71	70	69	68	67	66	65	64	63	62	61
	\max	0	R		\max	2	L		\max	0	L

Q						
-48	-49	-50	-51	-52	-53	-54
6	5	4	3	2	1	0
60	59	58	57	56	55	54
	\max	1	L		\max	0
L	L					

Figure 6 . The triple $\left(r, d_{1}, b_{1}\right)=(54,109,163) . M=3$ in this example. "Max 1 R" signifies maximum depth 1 rightwards. By Lemma 13, a block of depth 2 is also of depth 3 . Block E might seem, as marked, of maximum depth 2 rightwards if we use the middle pair $(41,-68)$. If however we use the pair $(-67,-14)$ the depth is 3 . Below the array we show the connections between blocks. The lines represent equivalence, i.e. paths going in both directions. You see the depth 3 connection between blocks E and N.

Case 2. $b_{2}=b_{1}+r$ where r in $I_{b_{1}}$ is divisible by 3 .
Proof of Case 2. Of course r is positive here. Consider the sequence $\left\{c_{k}\right\}$ defined by $c_{1}=b_{1}, c_{k}=3 c_{k-1}-b_{3}$. We have that $c_{k}<c_{k-1}$ iff $c_{k-1}<b_{3} / 2$. Since $b_{1}<b_{3} / 2$ it follows that the sequence is decreasing. Notice also that $F_{3}\left(c_{k}\right)=c_{k-1}$. Therefore there is a path from any element of the sequence to b_{1} and hence to 0 . Let c_{j} be the last positive number in the sequence. If either c_{j} or c_{j+1} is in $I_{b_{1}}$ then we are done. Otherwise consider $c_{j+1}+b_{1}$. Since $F_{2}\left(c_{j+1}+b_{1}\right)=\left(3 c_{j}-b_{3}+b_{1}+b_{2}\right) / 3=c_{j}$, we also have a path from $c_{j+1}+b_{1}$ to zero. Since $c_{j}>b_{1} / 2$ and $c_{j+1}<-b_{1} / 2$ by assumption, we have

$$
b_{1} / 2=-b_{1} / 2+b_{1}>c_{j+1}+b_{1}=3 c_{j}-b_{2}>3 b_{1} / 2-b_{2}=b_{1} / 2-r \geq 0
$$

so that $c_{j+1}+b_{1}$ is in $I_{b_{1}}$ as needed.
Case 3. $b_{2}=n b_{1} \pm r$ where r in $I_{b_{1}}$ is divisible by 3 . Here $n>1$ and r is positive. (Possible values of n are then 4, 7, 10, etc., because b_{1} and b_{2} are congruent modulo 3.)

Proof of Case 3. We use the sequence of elements $\left\{b_{1}-r, b_{1}-3 r\right.$, $\left.\ldots, b_{1}-3^{s} r\right\}$ where s is the unique positive integer such that $b_{1}-3^{s} r$ is in $I_{b_{1}}: b_{1}-3^{s} r$ is in $\left[-b_{1} / 2, b_{1} / 2\right]$ if r is in $\left[b_{1} /\left(2 \cdot 3^{s}\right), b_{1} /\left(2 \cdot 3^{s-1}\right)\right]$. This must hold for some $s \geq 1$ and s is unique since the endpoints of the interval are not integral.

Each element of the sequence is in $\left[-b_{1} / 2, b_{1}-r\right]$. Since $b_{1}<b_{2} / 2$, they are all elements of $I_{b_{2}}$. Then $F_{2 b_{1}}\left(b_{1}-3^{t} r\right)=\left(b_{1}-3^{t} r+2 b_{1}\right) / 3=b_{1}-3^{t-1} r$, so that there is a path from each element to the term preceding it. To finish the proof notice that in the case $b_{2}=n b_{1}+r$, we have $F_{3}\left(b_{1}-r\right)=$ $\left(b_{1}-r+b_{3}\right) / 3=\left(2 b_{1}-r+n b_{1}+r\right) / 3=(2+n) b_{1} / 3$. In case $b_{2}=n b_{1}-r$, we have $F_{2}\left(b_{1}-r\right)=\left(b_{1}-r-b_{2}\right) / 3=\left(b_{1}-r-n b_{1}+r\right) / 3=(1-n) b_{1} / 3$.

With this final case we have completed the proof of Theorem 1.

References

[1] Imre Kátai, Generalized Number Systems and Fractal Geometry, Monograph, Janus Pannonius University, Pécs, Hungary, 1995.
[2] K. H. Indlekofer, I. Kátai and P. Racskó, Some remarks on generalized number systems, Acta Sci. Math. 57 (1993), 543-553.
[3] K. H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, Probability Theory and its Applications, Kluwer, 1992, 319-334.

GARY E. MICHALEK

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
LA SALLE UNIVERSITY
1900 W. OLNEY AVE.
PHILADELPHIA PA 19141-1199
U.S.A.

E-mail: michalek@alpha.lasalle.edu
(Received June 11, 1996)

