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Structure of normal twisted group rings

By VICTOR BOVDI (Debrecen)

Abstract. Let K)G be the twisted group ring of a group G over a commutative
ring K with 1, and let A be a factor set (2-cocycle) of G over K. Suppose f : G — U(K)
is a map from G onto the group of units U(K) of the ring K satisfying f(1) = 1. If
T =37 cq ¥gug € K\G then we denote }7 agf(g)ug ' by 27 and assume that the

map & — xf is an involution of K3G. In this paper we describe those groups G and
commutative rings K for which K\G is f-normal, i.e. zzf = zfx for all z € K, G.

1. Introduction

Let G be a group and K a commutative ring with unity. Suppose that
the elements of the set

A={Xap € UK)|a,be G}
satisfy the condition
(1) >\a,b)\ab,c = )\b,c)\a,bc

for all a,b,c € G. Then A will be called a factor system (2-cocycle) of
the group G over the ring K. The twisted group ring K)G of G over the
commutative ring K is an associative K-algebra with basis {u, | g € G}

Mathematics Subject Classification: Primary 16W25; Secondary 16S35.

Key words and phrases: crossed products, twisted group rings, group rings, ring pro-
perty.

Research supported by the Hungarian National Foundation for Scientific Research
No. T16432.



280 Victor Bovdi

and with multiplication defined distributively by ugup = Ag pugn, where
g,h € G and
Agh €EAN={Xap €U(K) |a,be G}

Note that if Ay, =1 for all g,h € G, then K\G = KG, where KG is the
group ring of the group G over the ring K.

Properties of twisted group algebras and their groups of units were
studided by many authors, see, for instance, the paper by S. V. MIHOVSKI
and J. M. DIMITROVA [1]. Our aim is to describe the structure of f-normal
twisted group rings. This result for group rings was obtained in [2, 3].

We shall refer to two twisted group rings K\G and K,G as being
diagonally equivalent if there exists a map 6 : G — U(K) such that

Xap = 0(a)0(b)a,p(0(ab)) ™"
We say that a factor system A is normalized if it satisfies the condition

Aai=AMp=A11=1

) )

for all a,b € G.

Hence, given K, G there always exists a diagonally equivalent twisted
group ring K,G with factor system A defined by A\, = ,Ul_&,ua,b such
that A is normalized. From now on, all the factor systems considered are
supposed to be normalized.

The map ¢ from the ring K, G onto K,G is called an involution, if it
satisfies the conditions

(i) o(a+b) = dla) + 6); (i) d(ab) = dB)d(a); (i) ¢*(a) = a
for all a,b € K,G.

Let f : G — U(K) be a map from the group G onto the group of units
U(K) of the commutative ring K, satisfying f(1) = 1. For an element
T =3 cq Uy € K\G we define rf = dogea agf(g)uy ' € KxG.

Let x — 2f be an involution of the twisted group ring KyG. The
twisted group ring K)G is called f-normal if

(2) ol = ol

for all z € K,G.

Recall that a p-group is called extraspecial (see [4], Definition I11.13.1)
if its centre, commutator subgroup and Frattini subgroup are equal and
have order p.
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Theorem. Let x — xz/ be an involution of the twisted group ring

K)G. If the ring K)\G is f-normal then the group G and the ring K
satisfy one of the following conditions:

1)
2)

(3)

G is abelian and the factor system is symmetric, i.e. A\qp = Ap,q for
all a,b € G;

G is an abelian group of exponent 2 and the factor system satisfies
Aap = Apa) (L4 F(D)A, ) =0

for all a,b € G;

G = H % (5 is a semidirect product of an abelian group H of exponent
not equal to 2 and Cy = (a | a®> = 1) with h® = h™! for all h € H, the
factor system of H is symmetric, f(a) = —\q,q and

)\a,h = f(h))‘}:i—lAh*l,aa )‘h,a = f(h))‘;;i—lAa,h*l;

G is a hamiltonian 2-group and the factor system satisfies
4.i) for all noncommuting a,b € G

)\a,b = f(a))‘;tllfl)\b,a—l = f(b))‘l;;fl)‘b—l,a;

4.ii) Agp = An,g for any h € Cg({g)) and f(c) = A, for every c
of order 2;

G =T1'Y C4 is a central product of a hamiltonian 2-group I' and a
cyclic group Cy = (d | d* = 1) with T’ = (d?). The factor system
satisfies (5) and

)\b,a>\ba,d + f(d))‘;’(li—l)\a,b)\ab,dfl = 07

where a,b € T, a* = b* =1 and [a,b] # 1;
G is either E x W or (E'Y Cy) x W, where E is an extraspecial
2-group, E'Y Cy is the central product of E and Cy = (c | ¢* = 1)
with E' = (c?) and exp(W)|2. The factor system satisfies:
6.1) If a € G has order 4 then A\, j, = Ao for all h € Cg({a));
6.i1) if (a,b) is a quaternion subgroup of order 8 of G then the

properties (5) and (6) are satisfied for every d € Cg({a,b))
of order 4, and f(v) = A, for all v € C({a,b)) of order 2;
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6.iii) if (a,b | a* = b*> = 1) is the dihedral subgroup of order 8,
then f(b) = —\p, and the properties (4) and (6) are satisfied
for every d € Cg({(a,b)) of order 4.
Moreover, the conditions 1)-5) are also sufficient for K G to be f-
normal. The condition 6) is sufficient if K is an integral domain of char-
acteristic 2.

2. Lemmas

Let C4, Qs and Dg be a cyclic group of order 4, a quaternion group of
order 8 and a dihedral group of order 8, respectively. Asusual, z¥ = y~lay,
exp(G) and Ci({a,b)) denote the exponent of G and the centralizer of the
subgroup (a,b) in G.

It is easy to see that A\; ;-1 = Aj-1 , and u;l = A;;,lug—l hold for
all g € G.

Lemma 1. The map x — x/ is an involution of the ring K)G if and
only if
Flgh)Ag = flg)f ()
for all g,h € G.

PROOF. Let the map z — z/ be an involution of the ring K)\G. If
g,h € G, then (ugup)f = u£u£ Thus

)\gﬁf(gh)u;hl = ()\g,hugh)f = (uguh)f = f(g)f(h)u;lug_l
= f(9)f (M) (N, pugn) ™

and f(gh)\2 , = f(g)f(h) for all g,h € G. O

g

Clearly, if K\G is a group ring, then the map  — 7 is an involution
of the group ring K G if and only if f is a homomorphism from G to U(K).

Lemma 2. If the ring K)\G is f-normal then the group G satisfies one
of the conditions 1)-6) of Theorem 1.

PROOF. Let K)\G be an f-normal twisted group ring. If a,b € G and
T =u, +up € K\G, then 27 = f(a)ug! + f(b)u, " and by (2)

F@A, foiAa=1 ptia=16 + F(D)A) -1 Ap-1,aUp14

(7)
= f(a))‘;(ll—l)\b,a—luba—l + f(b))‘l;;—l)‘a,b—luab—l .
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Now put y = u,(u1 +up). Then y¥ = (ug + f(b)u, ') f(a)uz ! and by (2)
(8)  Aapttab + F(O)N, -1 Xab-1Uap—1 = Mo ativa + F(D)A, po1 Mo alUp-14-

We shall treat two cases.
I. Let [a,b] # 1 for a,b € G and a? # 1, b> # 1. Then by (8) b* = b1
and by (7) a® = b2. The factor system satisfies

{ Xy = F(@A, o Xpa—r = F(O)A, 51 Ao a5
>‘b,a = f(a)A;(lrl)‘afl,b = f(b)Abj;—l)‘a,bfl'

1. Let [a,b] # 1 for a,b € G and a® = 1, b*> # 1. Then by (8) we have
b = b~! and by (7), f(a) = —X4.a- The factor system satisfies

{ Naw = FON Ayt
)\b,a = f(b))\b_,l];fl )\a,b—l .

Let G be a nonabelian group and let W = {g € G | g> # 1}.

First we consider the case when the elements of W commute. Then
(w | w € W) is an abelian subgroup and if b € W and a € G \ (W)
then a?=1 and (ab)? = 1. Therefore, b* = b~! for all b € W. Let
c € Ca((W))\ (W). Then ¢ =1, (cb)®> =1 and cb ¢ (W). But (cb)? =
c?b?> = 1 and b? = 1, which is impossible. Therefore, C((W)) = (W) and
H = (W) is a subgroup of index 2. This implies that G = H X (a) and
h® = h~! for all h € H.

Now suppose that in W there exist elements a, b such that [a, b] # 1.
Since a? # 1 and b* # 1, by (I) we have a®> = b? and b* = b=1. Then
b? = ab?a=! = b2 and the elements a,b are of order 4. Clearly, the
subgroup (a,b) is a quaternion group of order 8. Let ¢ € Cg((a,b)). If
c? # 1 and (ac)? # 1 then (I) implies that (ac)’ = (ac)™! and ¢ = 1,
which is impossible. Therefore, if ¢ € Cg((a,b)) then either ¢ = 1 or
2 = a?.

Let @ = (a,b) be a quaternion subgroup of order 8 of G. Then we
will prove that G = Q- Cg(Q). Suppose g € G\ C(Q). Pick the elements
a,b € Q of order 4 such that ¢ = a=! and b9 = b=1. Then (ab)? = ab
and d = gab € Cg(Q). It follows that ¢ = d(ab)™! and G = Q - Ca(Q).
Similary as in [3] we obtain that G satisfies the conditions 4) or 5) of the
Theorem. O

9)



284 Victor Bovdi
3. Proof of Theorem

Necessity. Let K\G be f-normal. Then by Lemma 2 G satisfies one
of the conditions 1)-5) of the Theorem.

First, suppose that G is abelian of exponent greater than 2 and a,b €
G. If b* # 1 then by (8) we have Ay p = Apg-

Let a, b be elements of order two and assume that there exists ¢ with
c? = a. Then by (1) we have

(10) )\CQ,b)\c,c = )\c,cb)\c,b and )\b,CQ /\c,c = )\bc,c)\b,c-

Since ¢ # 1, we have A¢chb = Apee and Aep = Ap . Then (10) implies
)\02’17 = /\b702 and /\a,b = /\b,a‘

Let a? = b = 1 such that neither a nor b is the square of any element
of G. Then there exists ¢ such that (ca)? # 1. Thus,

(11) Aca,b)\qa = )\c,ab>\a,by Ab,ac)\a,c = )\ba7c)\b,a-

Since Apae = Aae,p and Aeq = Mg, from (11) we have A\, p = Ay o for all
a,b € G. Therefore, if G is abelian and G? # 1 then the factor system is
symmetric and K)G is commutative.

Now, let exp(G) = 2. Then by (8) Aap + f(B)A, 4 Aas = Moo +
f(b)/\bjbl)\b’a for all a,b € G. Therefore, (Agp — Ap,a)(1 + f(b))\;g) =0.

Next, let G = H x (5 be a semidirect product of an abelian group
H with exp(H) # 2 and Cy = (a | a®> = 1), and with h®* = h™! for
all h € H. Clearly, KyH is f-normal and the factor system of H is
symmetric. Put x = up + u, for h € H. Since K)G is f-normal, we have
Si(z) = 22y —2fz =0 and

f(a)AcztllAh,auha + f(h)/\]:}l—l)\a,h—luah_l

(12)
_f(h))\glhfl)\h—l,auh—la - f(a))‘(;jz)‘a,huah =0.

We will prove ugup = u}zua for every h € H.
First, let h? # 1. Because h® = h™!, by (12) we have

(13) uduy, + u}{ua =0
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” { F@)Ag 2 + FAE A1 0 = 0;
F@A M e + LA S gyt = 0.

Now, let h? = 1. Then there exists b € H with b? # 1 and (hb)? # 1.
Put = u, + upup. Because (hb)* = (hb)~! and Sy(z) = zaf —2fz =0
we have

(15) u{:uhub + (uhub)fua =0.
Since [up,up] = 1, by (15) and (13) we have uf(upup) = ulupu, =
—u{:uauh and uf (upup) = —(upup) v, = —u{:uzua. Therefore, u,u;, =

u{bua for all h € H and this implies
{ Mo = FOA S At
)\h,a = f(h))‘lzjl—l)\a,h—l)

and, by (14), f(a) = —Xa.q-

Let G be a hamiltonian 2-group. It is well known (see [5], The-
orem 12.5.4) that G = Qg x W, where Qs is a quaternion group and
exp(W)|2. If a,b € G are noncommuting elements of order 4, then a® =
a~! and by (8) we have 4.i) of the theorem. If ¢,d € G are involutions,
then ¢ and d commute with all a € G of order 4. Then H = (a,d,c) is
abelian of exponent greater than 2 and Ky H is f-normal. By the condi-
tion 1) of the theorem, the factor system of H is symmetric, and u, and
up commute with w,.

Now prove f(c) = A¢ for all involutions ¢ € G. Choose the elements
a, b of order 4 such that b* = b~!. Put & = u.ug + up. Since Aa,e = Acya
and A\p. = Acp by (2), for  we obtain

St(@) = (F(D)uauy + f(a)f()AZcupug
— FO)uy 'ua — f(a) f(e)AG cug up)ue =0
and f(b))\l:;_l)\a7b—l = f(c)f(a))\;g)\gtll_l)\a—ljb. From this property and
(9) we deduce f(c) = Acc.
Now, suppose that either G = Ex W or G = (E'Y C4) x W, where

E is an extraspecial 2-group, exp(W)|2 and E'Y Cj is the central product
of E and Cy = (c) with E’ = (c?).
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Let a be an element of order 4 and h € Cg({a)). Then by the condi-
tion 1) of the theorem A\, 5, = Ap 4.

Let {(a,b | a,b € G) be the quaternion subgroup of order 8. Then by 4)
we obtain (5).

Now, let G = (a,b) Y {d | d* = 1) be a subgroup of G and d? = a>.
Then a® = a~!, and (a,d) and (b,d) are abelian subgroups of exponent
not equal to 2 and by the condition 1) of the theorem, A\, 4 = Ag,, and
Ab,d = Adp. Put @ = up + uqug. Since K G is f-normal, we obtain

f(b)A;,},lxa,b_luab_lud + f(d) f(a)A;jl,lA;;,IAbﬂ_luba_lud_l
= f@) (@A, a1 Ay o1 X1 pa—1pta-1 + F(D)A yo1 Ap-1 allp-14Ua

and by (5)

—1
Ab,aAab=1,aUab—1d + f(A)Ay g-1Aa,bAba—1,d—1 Upa—1a-1
—1
= f(d)Ag g-1M,aXa-1b,d-1Ua-1pa-1 + Aa,pAp=10,dUp—1ad-

Since d? € G’ and a® = b2, we have a=1bd~! = abd, ab='d = ba='d~!
and

XoaMba,d + [ (DAG -1 XapAab,a—1 = 0

Therefore, we proved 6.1).

If (a,b | a* = b? = 1) is the dihedral subgroup of order 8 of G, then
by 3) of the theorem we have (4) and f(b) = =Xy .

Let L =DgY Cy = (a,b|a*=b%>=1)Y (c). Then any z € K)L
can be written as * = xg + x1u., where zg,x7 € K)Dg. Since K),G is
f-normal, KL is f-normal, too, and (z{z1 —z12{)u, = (zox! — 2fzo)uf.
By the f-normality of K\Dg (x¢ + x1)(zo + z1)f = (z0 + 1) (20 + 21)
and we have

(x(};azl — xlx{;)uc — (xox{ — x{xo)ug = (xgazl — xlx{;)(uc — uf)

If xgq:l — xlx{; can be written as a sum of elements of form u{:ub — ubug

then

(achl — xlxg:)(uc — uf) = (Ab,aMba,c + f(C)AC_’ifl)‘a,b)\ab,cfl)ubac
_()‘a,b)\ab,c + f(C)A;i—l)‘b,a)‘ba,cfl)uabc =0

and we have (6).
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Sufficiency. We wish to prove that Sy(z) = za/ — 27z is equal to 0
forallz € KG. Let . =3 5 agus € K\G. It is easy to see that Sy(x)
is a sum of elements of the form

S¢(g,h) = agah(f(h))\,jl—lAg,h*lughfl + f(g))‘;’;—l)\hy*luhg*l
- f(h)A;}l—l)‘hfl,guhflg - f(g))‘;j]—l)‘gfl,hugflh)'

First, let G be abelian of exponent greater than 2, and assume that the
factor system of GG is symmetric. Then K, G is commutative, and therefore,
f-normal.

Next, suppose that G is of exponent 2 and the factor system satisfies
(Ag.h = Ang)(1+ f(R)A,},) = 0 for all g, h € G.
This implies (Ag.n — Ap.n)(f(9)Ag5 — f(R)A,},) = 0 for all g, h € G. Then

Sf (ga h) = agah(f(h))‘g}LAg,hugh + f(g))‘;!l])‘h,guhg - f(h))‘};z)‘fuguhg
—F(9) A5 s Ag.ntign) = agan(F(R)AL L — F(9)Ag5) (Agh — Ang)ugn =0

and Sf(x) = 0, thus, K\G is f-normal.

Now, let G = H x (5, where H is an abelian group of exponent not
equal to 2 and Cy = (a) with h® = h=! for all h € H. Using the properties
of the factor system we obtain

f(a)ugluh = _f(h)ufjluaa f(a’)uhugl = —f(h)uaugl,

uly = —ylu,,  yul /

(16)

= —UqY
forany h € H and y € K H. If v = x1 + zou, € K)\G where z1,15 €
KyH, then 2 = 2 + f(a)u; ‘2] and

vl =zl + fla)zu ‘el + zougr! + f(a)zaad.
Because in K H the factor system is symmetric and K H is commutative,
by (16) we have

zzf = xlx{ + (xow1 — T122)Uq + f(a)xgzvg = xlx{ + f(a)xgxg.

Similarly, 2z = 2f21 + f(a)zzs and we conclude that S¢(z) = 0 and

K,G is f-normal.
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Next, let G be a hamiltonian 2-group. Then G = Qg x W, where Qg =
(a,b) is a quaternion group and exp(W)|2. Suppose that the conditions
4.i)-4.ii) of the theorem are satisfied. If H = (a?, W) then any element
r € K)G can be written as

T = Tg+ T1Uq + TaUp + T3Ugph,

where z; € KxH, (i =0,...,3). Since (a) x H and (b) x H are abelian
groups of exponent 4, by the condition 1) of the theorem the elements x,
1, Ta, T3 commute with u,, up and ugp. Since Ky H is f-normal, we have

! I

f _ . o f : ; ;
LT — X T = T — T Using these properties we obtain

St(x) = (w128 — 2] 29) No.atiba — Aaplias)
+ (517135:J; - x{l'S)()\ab,aub - )\a,abub3)
+ ($290;ch - $£$3)()\ab,bua3 — Ab,ablUa)-

!

Clearly, the element xlxj — x; x; can be written as a sum of elements

of form
St(e,d) = %,d(f(d)ucu,;l — f(c)u; tug),

where ¢,d € H. Since H is an elementary 2-subgroup, by the condition
4.ii) f(d) = Ag.a, f(c) = A¢,c, and we obtain

Sf (Ca d) = ’Yc,d(f(d))‘(;é)‘c,ducd - f(C)Ac_,i)\gducd) =0.

Therefore, S¢(z) = 0 and K)G is f-normal.

Next, let G = H x W, where H is an extraspecial 2-group and
exp(W)|2. Since G is a locally finite group, it suffices to establish the
f-normality of all finite subgroups H of G. Let G be a finite group and
G = H x W, where H is a finite extraspecial 2-group and exp(W)[2. We
know (see [4], Theorem II1.13.8) that H is a central product of n copies of
dihedral groups of order 8 or a central product of a quaternion group of or-
der 8 and n—1 copies of dihedral groups of order 8. We can write H,, = H.
Then G = H,, x W and by induction on n we prove the f-normality of
K\G.

If n = 1 then either H1 == Qg or Hl = Dg or Hl == Qg Y 04. In the
first and second cases the f-normality K\G is implied by the conditions
3) or 4) of the theorem.
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Let G = Qs Y C4. Then any element x € K,G can be written as
T = Tg + T1Ue, where z; € K \Qsg, ¢ € C4 and ¢? € Qg. From the f-

normality of K)(@Qs we obtain xgxl - xlxg = :r{a:o - xoa:{ and S¢(z) =

(a:g:cl - a:la:g)(uc —ul). The element xgazl - a;lxg can be written as a
sum of elements of form a(ufuy — upuf), where a € K, a,b € Qg. We will
prove Sy (a,b) = (ulup — upul)(ue —ufl) = 0 for all a,b € Qs.

If a,b € Qg does not generate Qg then u,u, = upu, and Sy(a,b) = 0.
Let (a,b) = Qs. Then by (5)

Sf(a7 b) = <)\b aUUba — )\a buab)(uc - u({)
<)\b aAbac + f( ) c,c™ 1)\a bAab c—l)ubac
+ ()\a,b)\ab,c + f(c) ¢,c— 1)\b a)\ba c—l)uabc

and from (6) S¢(a,b) =0.

It is easy to see Dg Y Dg =2 Qs Y Qs, and H,, (n > 1) can be written
as Qs Y H,_;.

Let Qs = (a,b) and L =W x H,,_;. Then any element x € K)\G can

be written as

T =20+ T1Uq + T2Up + T3UgUp,

where z; € K)\L. By 6.i) the x; commute with u, and u,. Since (a,b) is
a quaternion group of order 8, by the condition 6.ii) of the theorem we
have u,up = ubfua = ubug. Hence,

Sy(x) = (wow] —a] wo)uf +(wowd —wf o )uf +(wow] —xh wo)uj u

—i—(:cl:pg—xga:l)ua—{—(xlxg—x{azg)uaug—l—(xlﬂsg—x{xg)ubf(a)
(17) + .TQJIO—$0$2)Ub+(582${—$£$1)Uan+(132$£—332$3) I £

(
+(a:3$0 — :zoxg)uaub + (33333{ — xgxl)uauab
(

+(z325 —x3x2)uaf( ).

Since by induction KL is f-normal, (z; + x;)(x; + z;)/ =

(x; + iL‘j)f(iL'i + ;) implies xle — :rlij = xj:nl —z;x; and xle — :Bsz =
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x{xj - x]xf Therefore, by (17)

Sp(@) = (zox] — aiwo)(uf — ua) + (2o} — 2h0)(uf — wp)

+ (xo.%‘g — :cho)(u{; — Ug)Up + (9:1:05 — x{xg)ua(u{: — up)

+ (zah — a3 ua(uy — ul) fa) + (woah — wfas)(ud — u,) f(D).

Clearly, the element xla:j — a:; x; can be written as a sum of elements
of form Sy(c,d) = %,d(ucug - uﬁuc), where ¢,d € L, 7.q € K. We will

prove S¢(c,d,a) = (ucufic - uéuc)(ua —uf) =0 for any ¢,d € L.

We consider the following cases:

Case 1). Let [c,d] = 1. Then L = (¢, d, a) is abelian with exp(L) # 2,
and by 6.i) the factor system is symmetric and S¢(c,d, a) = 0.

Case 2). Let (c,d) = Qs. Then by 6.ii) (5) holds and (ucuzlc -
uguc)(ua - U({) — ()\d,c)\dc,a + f(a)A;’i—l)‘c7d)‘cd,a*1)udca - ()\c7d)\cd,a +
f(a)A;z,l)\d7c)\a—l7dc)ucda. Now by 6.ii) the property (6) is satisfied and
we conclude S¢(c,d,a) = 0.

Case 3). Let (c,d) = Dg and ¢* = d?> = 1. Then by 6.iii) f(d) = —Xg.a
and by (4)

(et — ufue) (o — uf) = (Aa,cttac — Acatica) (ta — uj)
= (Acdreda + F(@A] 1 Adea1 Adye) Ueda
+ (AdeXdea + F@A, 41 Aeda1 Ac,d)Udea-
Now by 6.ii) we have (6) and we conclude S¢(c,d,a) = 0.
Case 4). Let {c,d) = Dg and d* = ¢ = 1. Then by (4)
et — uju, = F@AL g1 Aea1ttae = F(A)AL g1 Aa1 cUed

= )\d,cudc - /\c,ducd-

Similarly to the case 3) we have S¢(c,d,a) = 0.
Case 5). Let (c,d) = Dg and d*> = ¢*> = 1. Then by 6.iii) f(d) =

—Ad.a- In {c,d) we choose a new generator system {a1,b; | af = b =
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1,a}* = a7'} such that ¢ = by and d = aib;, where i = 1 or 3. Then
2

a? = a? and
(el — ufue) (o —uf) = (wate — votiq) (ua — uf)

= A;%{bl (uai Up, — ubluai)(ua - ug)ubl .

As in the Case 3) it is easy to see (ugiup, — Ub, Uqs )(Ua — uf) = 0 and
S¢(e,d,a) =0.

Analogously, the element xla:f — :cic x; can be written as a sum of
elements of form ’yc,d(ucuf; — ufuy), where ¢,d € L. Let us prove that if
¢,d € L, then S¢(c,d,a) = (ucufic —ufug)(ug —uf) = 0.

Let z € L, a € Qg be commuting elements of order 4 with 22 = a2.
First, we will prove that K is of characteristic 2, then (u, +uf)(uq +uf)=0.

Indeed,

(u. + Uﬁ)(ua + uf:) = Az + f(z))\fl_lf(a))\;‘ll_l)\2717a71)uza
(f( ))\;a 1>‘za 1+ f( ) 2,2~ 1Az*1,a)uza3-

First let za be a noncentral element of order 2. Then by 6.iii) f(za) =
Azaza- Since ((Uztg)ug) gz = Uy (Uq(Ugtiys)) we conclude that

)\z,a)\za7a>\za2,a3 = A:/:711/\&71)\a,a*1

and )\ L= )\;3 ag)\mla Clearly, f(2)f(a) = f(za))\ia = /\za,za)‘z,a and

A+ f(2)A_ i fla)A] aa—1Nz=1a-1
Az,a( + (AsaazAa, =) A2 Ay o1 Ae1a1)
(18) = el + Az a2 Xasas Ay g 1A Le Aet 0ot
= Aea(l+ a0z Azagia—1) Ay 1)
= Aol 4+ Maaa—1 Aaa1 A, go1) = 2050 = 0.

By (1) we have

()‘z,afl)‘zafl,zafl ))‘zfl,a = )‘z,aflzafl )‘afl,zfla)‘zfl,a

= Az,zfl(Aafl,azfl)‘mz*l) = >‘z*1,z>‘aa*1,z*1)‘a7a*1 = >‘z*1,z)‘a,a*1
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and since az~! has order 2, f(az™!) = A\,.-1 4.-1, and we obtain

) F @) @A e + SN A )
S LU R O GNP S S WO (X2 DERRTID Sl P W
(19) = f@ ) a1 Aea 1 F A1z a-1 Aaz—t a1 A1, AL L)
e (a0 R C VTS VR VD VNP e AP W
=2f(@™ )7 A a1 Aa a1 = 0.
Clearly, if [c,d] = 1 then S¢(c,d, a) can be written as

S5(e.d.a) = (ueu; + (uhuc)”) (uq — ui)

a

(20)
= f(d)Aaa—1 Nea—1 (tea—1 — uly 1) (ug — uf).

Similarly, the element xza:j —gtjfc x; can be written as a sum of elements
of form %7d(ucu£ —ufug), where ¢,d € L. Now let us prove Sy(c,d,a) =

(ucuf; —ufug)(ug — uf) = 0, where ¢,d € L.

We consider the following cases:

Case 1). Let [e,d] = 1,c* =d?> = 1and ¢,d ¢ ((G). Then S = (¢, d, a)
is abelian of exponent greater that 2 and by 6.1) the factor system of S is
symmetric. We know that in L every element of order 2 is either central

or coincides with a noncentral element of some dihedral subgroup of order
8. Since ¢,d ¢ ((G), we have f(c) = Acc and f(d) = \g,q and

Syle,d,a) = Aea(f(d)Ag g — F(AGe)tcd(ta — ul) = 0.
Case 2). Let [c,d] =1, c* =d? =1 and ¢,d € ((G). Then ¢ = d = a*
and S¢(c,d,a) = 0.

Case 3). Let [c,d] =1, 2 =d?> =1 and ¢ € ((G), d ¢ ((G). Then
f(d) = X;3, c=a? and

S¢(e,d,a) = —ug(ugz + UZQ)(ua — Ué)
= _ud<)\a,a2ua_1 - f(a) ;j;ﬁlua)(l + f<a2))\;21,a2)'

Since K is an integral domain of characteristic 2 and f2 (az):)\327a2f(a4):
A2 we conclude f(a?) = £A,2 42 and Sf(c,d,a) = 0.

a?,a2’



Structure of normal twisted group rings 293

Case 4). Let [c,d] = 1, d* = 1 and suppose that ¢ has order 4. Then
dc has order 4 and by (20) S¢(c,d,a) = 0.

Case 5). Let [c,d] = 1 with ¢, d of order 4. Then d? = ¢? = a2,
Si(esd,a) = (FAT g1 dea— + FON i Aot a)Uea1 (ug — ),

and by (19) we have S¢(c,d,a) = 0.

Case 6). Let (c,d) be a quaternion group of order 8. Then by 6.ii)
(5) holds and

ucuz; - uzud = (f(d))‘;(li—l)\c,d—l - f(c))‘;cl—l)‘c—l,d)uc—ld
= (/\d,c — )\d,c)uch =0.

Case 7). Let (c,d) be a dihedral group of order 8. If ¢* # 1 then
f(d) = )\d,d and

S¢(e,d,a) = (Ae,atied + f(c))\c_’i,l)\ﬁl,dudc)(ua —ul)

= (Ac,ducd + )\d,cudc)(ua - uf:) = ()\c,d>\cd,a + f(a))\a,aflAd,cAdc)uacd
_()\d,c)\dc,a + f(a)Aa,a—l/\c,d)\cd,a—l)uadc-

By (6) we obtain S¢(c,d,a) = 0.
Case 8). Let (c,d) be a dihedral group of order 8 and ¢? = d? = 1.
Then f(d) = Aa,a, f(¢) = Aee and Sy (c,d,a) = 2ucug(u, —uf) =0. O
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