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The operator of composition in Slobodeckij spaces

By NELSON J. MERENTES (Caracas)

Introduction

The so-called Riesz class Ap = Ap(a, b) was introduced by Riesz in
[5] in the following way:

A function u defined in the not necessarily bounded open interval
(a, b), belongs to the class Ap with 1 < p < ∞ if and only if u is absolutely
continuous in the interval (a, b) and its derivative u′ belongs to the space
Lp(a, b). In the same paper, the following characterization of the class Ap

was proved: A function u defined in the interval (a, b) belongs to the class
Ap if and only if there exists a constant K > 0 such that for any system
{(ai, bi) ⊂ (a, b)} of pairwise disjoint bounded intervals we have

(1)
∑

i

|u(bi)− u(ai)|p
|bi − ai|p−1

≤ K

The sum (1) is called a Riesz sum and the constant can be taken equal
to K = ‖u′‖p

Lp(a,b). For a bounded interval (a, b) the class Ap coincides
with the Sobolev space W 1

p (a, b). In [7] F. Szigeti, using the above sum,
obtained results on the operator of composition in Sobolev spaces of type
W s

p (a, b) where s satisfies an inequality depending on the imbedding theo-
rems involving these spaces. From these results the existence of a solution
of an ordinary differential equation in a given space was also obtained.
The same author generalized these results to higher dimensional cases (see
[8]). First Riesz sums in isotropic spaces W s

p (Ω) were introduced where
Ω is a domain in Rn with smooth boundary, 1 < p < ∞ and s a posi-
tive real number satisfying an inequality depending on certain imbedding
theorems. From the inequality necessary conditions were proved for the
operator of composition to act in the spaces W s

p (a, b) and, as an applica-
tion, an existence theorem for differential equations was also obtained. In
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[6] J. Rivero and F. Szigeti generalized the above results to the case
of the so-called Slobodeckij spaces W~s

p (Ω) where Ω is a domain in Rn

with smooth boundary, 1 < p < ∞ and ~s is a vector in Rn with compo-
nents satisfying certain inequalities depending on imbedding theorems for
such spaces. More precisely, they proved the following Riesz-inequality in
Slobodeckij spaces W~s

p (Ω) :

Theorem. Let ~s = (s1, . . . , sn) ∈ Rn
+, 1 < p < ∞ and let Ω be a

domain in Rn with smooth boundary. Suppose that for all i = 1, 2, . . . n
we have

si


1−

n∑

j=1
j 6=i

1
psj


 ≥ 1

and let u ∈ W~s
p (Ω). Then there exist constants Ki > 0 (i = 1, . . . , n) such

that:
a/ for any system {(aij , bij) ⊂ R}Ii

j=1 of pairwise disjoint bounded
intervals, and

b/ for any system {λij ∈ Rn−1}Ii
j=1 of vectors with the property

Ωλij

i =
{

(λij
1 , λij

2 , . . . , λij
i−1, t, λ

ij
i , . . . , λij

n−1) : t = aij or t = bij

}
⊂ Ω

the estimate

(2)
Ii∑

j=1

=
|ui,λij (bij)− ui,λij (aij)|p

|bij − aij |p−1
≤ Ki

holds where the function ui,λ is defined by

t −→ u(λ1, . . . , λi−1, t, λi, . . . , λn−1) = ui,λ(t)

for all

t ∈ Ωi,λ = {τ : (λ1, . . . , λi−1, τ, λi, . . . λn−1) ∈ Ω}.
The inequality (2) is the Riesz inequality for the Slobodeckij spaces

W~s
p (Ω). Using this inequality the mentioned authors obtained sufficient

conditions for the operator of composition to act in the spaces W~s
p (Ω).

In the present paper we generalize the above results to the case of
Slobodeckij type spaces W~s

~p (Ω) where the vectors ~s and ~p satisfy a cer-
tain vectorial inequality depending on imbedding theorems for the spaces
W~s

~p (Ω).
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In Section 1 some known results /see [1], [2] / on the imbeddings of
spaces W~s

~p (Ω) are recalled. In Section 2 the Riesz inequality for the spaces
W~s

~p (Ω) is established and sufficient conditions are obtained under which
the operator of composition acts in the spaces W~s

~p (Ω). In Section 3 we
deduce from these results the existence theorem for a system of second
order differential equations.

1. Preliminaries on Slobodeckij spaces

In this section we firstly recall some definitions and results concerning
Slobodeckij spaces W~s

~p (Ω) where ~p = (p1, . . . , pn), ~s = (s1, . . . , sn) and Ω

denotes a cube Ω =
n

Π
j=1

(aj , bj) in Rn. All results are stated without proofs

which can be found in the standard monographs, e.g. in [2].
For ~p = (p1, . . . pn), ~q = (q1, . . . qn), we shall write ~p ≥ ~q and ~p > ~q if

pi ≥ qi and pi > qi (i = 1, 2, . . . n) respectively. In particular, the notation
~1 ≤ ~p ≤ ~∞ (where ~1 = (1, . . . , 1) and ~∞ = (∞, . . . ,∞) ) means that
1 ≤ pi ≤ ∞, for i = 1, 2, . . . n.

For given ~p = (p1, . . . , pn) with ~1 ≤ ~p < ~∞, we denote by L~p(Ω) the
space of all functions u defined and measurable on Ω for which the norm

‖u‖~p,Ω =





∫ bn

an


. . .





∫ b2

a2

(∫ b1

a1

|u(x)|p1dx1

) p2
p1

dx2





p3
p2

. . .




pn
pn−1

dxn





1
pn

is finite. The space L~p(Ω) with ~1 ≤ ~p < ~∞ is a Banach space of functions
with the norm defined above.

We shall use the following notation:
A vector ~α = (α1, . . . , αn) with components αi ∈ N0, i = 1, . . . , n

(where N0 = N ∪ {0} ) is said to be a multiindex of dimension n. The
number

|~α| =
n∑

i=1

αi

is called lenght of the multiindex ~α. For a vector ~s = (s1, . . . , sn) with
~0 < ~s < ~∞, we define the number

|~α : ~s | =
n∑

i=1

αi

si
.
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For a function u the generalized derivatives D~αu are denoted by

D~αu =
∂|~α|u

∂xα1
1 . . . ∂xαn

n
.

Let ~s = (s1, . . . , sn) be a multiindex of dimension n and ~1 ≤ ~p < ~∞.
We shall say that a function u belongs to the Slobodeckij space W~s

~p (Ω)
if u ∈ L~p(Ω) and it has generalized derivatives D~αu belonging to L~p(Ω)
where |~α : ~s | ≤ 1.

The norm in the Slobodeckij space W~s
~p (Ω) is defined by

‖u‖~s,~p = ‖u‖~p,Ω +
∑

|~α:~s |≤1

‖D~αu‖~p,Ω.

The space W~s
~p (Ω) with this norm is a Banach space. For a vector ~s with

non-integer components si (i = 1, 2, . . . , n), the Slobodeckij space W~s
~p (Ω)

is defined by the usual interpolation method (see [3]).
Now we recall imbedding theorems for the Slobodeckij space W~s

~p (Ω).
Let ~p, ~q, ~s ∈ Rn

+ with ~1 < ~p ≤ ~q < ~∞. We define the numbers ρ(~p, ~q,~s)
and ρ(~p,~s) by

ρ(~p, ~q, ~s) = 1−
n∑

i=1

(
1
pi
− 1

qi
)
1
si

and ρ(~p,~s) = 1−
n∑

i=1

1
pi

si

For all j = 1, 2, . . . , n, we also define the numbers ρj(~p,~s) by

ρj(~p,~s) = 1−
n∑

i=1
j 6=i

1
pisi

.

Theorem 1.1. Let ~p, ~q, ~s ∈ Rn
+ and ~λ ∈ Rn

+ be such that ~1 < ~p ≤ ~q <
~∞ and for all j = 1, 2, . . . , n, the inequality

λj ≤ sjρ(~p, ~q,~s)

holds. Then the imbedding

W~s
~p (Ω) ↪→ W

~λ
~q (Ω)

is a linear, continuous operator and there exists a non-negative constant
C > 0 such that ‖u‖~q,~λ ≤ C‖u‖~p,~s for al u ∈ W~s

~p (Ω) (the constant C

depends on ~p, ~q, ~s, ~λ and Ω).
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Theorem 1.2. Let ~p,~s ∈ Rn
+ such that ~1 < ~p < ~∞ and ρ(~p,~s) > 0.

Then the imbedding
W~s

~p (Ω) ↪→ b(Ω)

is a linear, continuous operator and there exists a non-negative constant
C such that

‖u‖b(Ω) ≤ C‖u‖~p,~s for all u ∈ W~s
~p (Ω).

Here b(Ω) is the space of all bounded functions defined and continuous on
Ω and ‖ · ‖b(Ω) is given by

‖u‖b(Ω) = sup
x∈Ω

|u(x)|.

Theorem 1.3. (One-dimensional version of the theorem on the trace

in W~s
~p (Ω)). Let ~p,~s ∈ Rn

+ be such that ~1 < ~p < ~∞ and for all j = 1, 2, . . . n
the inequality

sjρj(~p,~s) > 0

holds. Let u ∈ W~s
~p (Ω) and ~β = (β1, . . . , βn−1) ∈ Rn−1. Denote

Ωj,~β = {t ∈ (aj , bj) : (β1, . . . , βj−1, t, βj , . . . , βn−1) ∈ Ω} .

Then the one-dimensional trace

t → u(β1, . . . , βj−1, t, βj , . . . , βn−1) = uj,~β(t) (t ∈ Ωj,~β)

belongs to the Sobolev space W
sj ,ρj(~p,~s)
pj (Ωj,~β). In particular, if for all

j = 1, 2, . . . , n, the inequality

sjρj(~p,~s) ≥ 1

holds then the functions uj,~β belong to Sobolev space W 1
pj

(Ωj,~β).

Theorem 1.4. Let ~s ∈ Rn
+ and ~1 < ~p < ~∞, such that sjρ(~p,~s) > 1

for all j = 1, 2, . . . , n.
Then the imbedding

W~s
~p (Ω) ↪→ b′(Ω)

is a linear, continuous operator and there exists a constant C > 0 such
that ‖u‖b′(Ω) ≤ C‖u‖~p,~s for all u ∈ W~s

~p (Ω) where ‖u‖b′(Ω) = sup
x∈Ω

|u(x)| +
n∑

j=1

sup
x∈Ω

|∂u(x)
∂xj

|.
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2. Inequality of Riesz

In the present section we generalize the result for Slobodeckij spaces
W~s

~p (Ω) where ~s < ~p < ~∞ and siρi(~p,~s) ≥ 1 for all i = 1, 2, . . . , n.

Theorem 2.1. Let ~s = (s1, . . . , sn) ∈ Rn
+, and ~p = (p1, . . . , pn) ∈ Rn

+

be such that ~1 < ~p < ~∞ and siρi(~p,~s) ≥ 1 for all i = 1, 2, . . . , n. If u
belongs to the Slobodeckij spaces W~s

~p (Ω), then there exist constants Ki > 0
with the following properties: For any system {(aij , bij) ⊂ (ai, bi)}j=1

of nonoverlapping bounded intervals, and for any system βij ∈ Rn−1,
j = 1, 2, . . . , n . . . such that the points (βij

1 , . . . , βij
j−1, t, β

ij
j , . . . , βij

n−1)
with t = bij or t = aij belong to Ω, the inequality

(2.2)
∑

j=1

|ui,βij (bij)− ui,βij (aij)|pi

|bij − aij |pi−1
≤ Ki

holds. The constants Ki can be chosen as

Ki = Ci(Ω)‖∂iu‖pi

~p,~s−~ei

where Ci(Ω) only depends on the domain Ω and ~ei = (0, . . . ,
i
1, 0 . . . , 0).

Proof. For all i = 1, 2, . . . , n, we define the vectors ~si, ~pi and the
cube Ωi by:

~si = (s1, . . . , si−1, si+1, . . . , sn), ~pi = (p1, . . . , pi−1, pi+1, . . . , pn)

and Ωi = Πn
j=1
j 6=i

(aj , bj).

Let ~β = (β1, . . . , βn−1) ∈ Rn−1 be such that (β1, . . . , βi−1, t,
βi, . . . , βn−1) ∈ Ω for all t ∈ (ai, bi). Since for all i = 1, 2, . . . , n the
inequality

siρi(~p,~s) ≥ 1

holds, from theorem (1.3) we have that the functions ui,~β belong to the
isotropic Sobolev spaces W 1

pi
(ai, bi). Hence

(2.3) ui,~β(bij)− ui,~β(aij) =

bij∫

aij

(ui,~β(τ))′dτ

Now estimate the norm

‖ui,·(bij)− ui,·(aij)‖~pi,~si,Ωi .
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Since equality (2.3) holds, by Hölder’s inequality the following esti-
mate can be obtained:

‖ui,·(bij)− ui,·(aij)‖~pi,~si,Ωi ≤ |bij − aij |(1−
1

pi
)




bij∫

aij

‖ui,·(τ)′‖pi

~pi,~si,Ωidτ




1
pi

.

Hence

∑

j=1

‖ui,·(bij)− ui,·(aij)‖pi

~pi,~si,Ωi

|bij − aij |pi−1
≤

bi∫

ai

‖(ui,0(τ))′‖pi

~pi,~si,Ωidτ.

For all i = 1, 2, . . . , n the inequality
bi∫

ai

‖(ui,·(τ))′‖pi

~pi,~si,Ωidτ ≤ ‖∂iu‖~p,~s−~ei,Ω

holds, therefore for all i = 1, 2, . . . , n

∑

j=1

‖ui,·(bij)− ui,·(aij)‖pi

~pi,~si,Ωi

|bij − aij |pi−1
≤ ‖∂iu‖pi

~p,~s−~ei,Ω

Now, since for all i = 1, 2, . . . , n the inequality ρ(~pi, ~si) > 0 holds, the
imbedding W~si

~pi (Ωi) ↪→ b(Ωi) is a linear, continuous operator and there
exist non-negative constants Ci such that

|ui,βij (bij)− ui,βij (aij)|pi ≤ Cpi

i ‖ui,·(bij)− u·(aij)‖pi

~pi,~si,Ωi

for all systems {βij ∈ Rn−1}. Hence for all i = 1, 2, . . . , n the following
inequality holds

∑

j=1

|ui,βij (bij)− ui,βij (aij)|pi

|bij − aij |pi−1
≤ Cpi

i

∑

j=1

‖ui,·(bij)− ui,·(aij)‖pi

~pi,~si,Ωi

|bij − aij |pi−1
≤

≤ Cpi

i ‖∂iu‖pi

~p,~s−~ei,Ω

Taking Ki = Cpi

i ‖∂iu‖pi

~p,~s−~ei,Ω
the theorem is proved.

Now we shall prove a general theorem on the composition of functions
belonging to Slobodeckij spaces W~s

~p (Ω). This theorem generalizes an ear-
lier result by J. Rivero and F. Szigeti [6]. The following theorem is a
consequence of Riesz’ classical result [5] and the above theorem.
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Theorem 2.2. Let ~s = (s1, . . . , sn), ~p = (p1, . . . , pn), ~q = (q1, . . . , qn)
and r ∈ R+ be such that ~1 < ~p, ~q < ~∞ and for all i = 1, 2, . . . , n the

following conditions

(2.4) siρi(~ρ,~s) ≥ 1 and

(
1− 1

pi

)(
1− 1

qi

)
= 1− 1

τ

hold. Let u ∈ W~s
~p (Ω) and gi (i = 1, 2, . . . , n) be functions belonging to the

isotropic Sobolev spaces W 1
qi

(c, d) which are monotonic functions. If the
composition u ◦ (g1, . . . , gn) can be formed then it belongs to the isotropic

Sobolev space W 1
r (c, d). Moreover, there exists a nonnegative constant K

such that

‖u ◦ (g1, . . . , gn)‖W 1
r (c,d) ≤ K

(
1 +

n∑

i=1

‖gi‖
(1− 1

pi
)

W 1
qi

(c,d)

)
‖u‖~p,~s.

Proof. Recall that the function u◦ (g1 . . . , gn), belongs to the space
W 1

r (c, d) if and only if the function u◦(g1 . . . , gn) satisfies the inequality of
Riesz. To see this, consider a system {(cj , dj) ⊂ (c, d)} of nonoverlapping
bounded intervals, and for all i = 1, 2, . . . , n and j = 1, 2, . . . , n, let

βij = (g1(dj), . . . , gi−1(dj), gi+1,(cj), . . . gn(cj)) ∈ Rn−1,

bij = gi(dj), aij = gi(cj)

and mi = r(1− 1
qi

). Hence, as the functions gi (i = 1, 2, . . . , n) are mono-
tonic, using equality (2.4) and Hölder’s inequality we have that

∑

j=1

|u ◦ (g1, . . . , gn)(dj)− u ◦ (g1, . . . , gn)(cj)|r
|dj − cj |r−1

≤

≤ nr−1
( n∑

i=1


 ∑

gi(dj)6=gi(cj)

|ui,βij (bij)− ui,βij (aij)|pi

|gi(dj)− gi(cj)|pi−1




r
pi

·

·

∑

j=1

|gi(dj)− gi(cj)|qi

|dj − cj |qi−1




mi
qi )

.

Since for all i = 1, 2, . . . , n the inequality

siρ(~p,~s) ≥ 1
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holds, from theorem (2.1) and the criterion of Riesz, it follows that

∑

j=1

|u ◦ (g1, . . . , gn)(dj)− u0(g1, . . . , gn)(cj)|r
|dj − cj |r−1

≤

≤ nr−1

(
n∑

i=1

Kr
i ‖∂iu‖r

~p,~s−~ei,Ω
‖gi‖

r(1− 1
pi

)

Lqi
(c,d)

)
.

Hence u ◦ (g1, . . . , gn) belongs to the space W 1
r (c, d). Moreover, the in-

equality

‖u ◦ (g1, . . . , gn)‖Lr(c,d) ≤ n
r−1

r K(Ω)

(
n∑

i=1

‖∂iu‖r
~p,~s−~ei,Ω

‖g′i‖
r(1− 1

pi
)

Lqi
(c,d)

) 1
r

holds.
From the above inequality, using the Sobolev imbedding theorem

(1.1), the estimate

‖u ◦ (g1, . . . , gn)‖W 1
r(c,d)

≤ K

(
1 +

n∑

i=1

‖g′i‖
(1− 1

pi
)

W 1
qi

(c,d)

)
‖u‖~p,~s

is obtained.

The preceding theorem has a direct generalization:

Theorem 2.3. Let ~s=(s1, . . . , sn), ~p=(p1, . . . , pn), ~q =(q1, . . . , qn),
λ = (λ1, . . . , λn) and r ∈ R+ be such that 1 < ~p ≤ ~q < ~∞ and suppose

that, for all i = 1, 2, . . . , n, the following conditions are satisfied

(2.5) siρ(~p,~s)
(

λi − 1
qi

)
≥ 1− 1

r
and 1 < λi < 1 +

1
qi

.

Let u ∈ W~s
~p (Ω) and the gi (i = 1, 2, . . . , n) be functions belonging to the

isotropic Sobolev spaces Wλi
qi

(c, d) and being monotonic. If the composi-
tion u◦(g1, . . . , gn) can be formed, then it belongs to the isotropic Sobolev

space W 1
r (c, d) and there exists a non-negative constant K such that

‖u ◦ (g1, . . . , gn)‖W 1
r(c,d)

≤ K

(
1 +

n∑

i=1

‖gi‖
(1− 1

p0
i

)

W
λi
qi

(c,d)

)
‖u‖~p,~s

where 0 ≤ 1− 1
p0

i

= (1− 1
r )(λi − 1

qi
)−1 < 1 for all i = 1, 2, . . . , n.
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Proof. Let ~s, ~p, ~q, ~λ and r ∈ R+ be such that conditions (2.5) hold.
For all i = 1, 2, . . . , n we define the numbers q0

i , p0
i and s0

i by

(1− 1
q0
i

) = λi − 1
qi

, (1− 1
p0

i

) = (1− 1
r
)(λi − 1

qi
)−1

and

s0
i = siρ1~p, ~p0, ~s) where ~p0 = (p0

1, . . . , p0
n).

Let ~s, ~p0, ~q0 be defined by ~s0 = (s0
1, . . . , s0

n), ~p0 = (p0
1, . . . , p0

n) and
~q0 = (q0

1 , . . . , q0
n).

Then the following imbeddings hold:

(2.6) W~s
~p (Ω) ↪→ W

~s0

~p0 (Ω), Wλi
qi

(c, d) ↪→ W 1
q0

i
(c, d)

Moreover, ~s0, ~p0, ~q0 and r ∈ R+ satisfy the conditions of theorem (2.2).
Indeed it is obvious that the equality

(
1− 1

p0
i

) (
1− 1

q0
i

)
= 1− 1

r

holds for all i = 1, 2, . . . , n. Now we see that for all i = 1, 2, . . . , n the
inequality

s0
i ρi(~p0, ~s0) ≥ 1

holds, or equivalently

1 +
n∑

j=1

s0
i

p0
js

0
j

≤ s0
i +

1
p0

i

for all i = 1, 2, . . . , n.

We clearly have

si


1−

n∑

j=1

1
pjsj




(
λi − 1

qi

)
≥ 1

r
and

(
1− 1

p0
i

)(
1− 1

q0
i

)
= 1− 1

r

for all i = 1, 2, . . . , n. So

si(1−
n∑

j=1

1
pjsj

) ≥ 1− 1
p0

i

for all i = 1, 2, . . . , n.
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Hence, for all i = 1, 2, . . . , n,

s0
i +

1
p0

i

=


1−

n∑

j=1

(
1
pj
− 1

p0
j

)
1
sj


 si +

1
p0

i

=

= si


1−

n∑

j=1

1
pjsj

+
n∑

j=1

1
p0

jsj


 +

1
p0

i

≥

≥ 1− 1
p0

i

+ si

n∑

j=1

1
p0

jsj
+

1
p0

i

= 1 +
n∑

j=1

si

p0
js

0
j

= 1 +
n∑

j=1

s0
i

p0
js

0
j

.

Therefore theorem (2.2) and the imbedding (2.6) imply that there
exists K > 0 such that

‖u ◦ (g1, . . . , gn)‖W 1
r(c,d)

≤ K

(
1 +

n∑

i=1

‖gi‖
(1− 1

p0
i

)

W
λi
qi

(c,d)

)
‖u‖~p,~s

where (1− 1
p0

i

) = (1− 1
r )(λi − 1

qi
)−1 for all i = 1, 2, . . . , n.

Corollary 2.3. Let ~s = (s1, . . . , s2n, s2n+1), ~p = (p1, . . . , p2n, p2n+1),
~q = (q1, . . . , q2n+1) ~λ = (λ1, . . . , λ2n, λ2n+1) and r ∈ R+ such that

p2n+1 = r, λ2n+1 = 1 +
1

q2n+1
and s2n+1 ≤ si

(
λi − 1

qi

)

for all i = 1, 2, . . . , 2n.

Suppose that

si


1−

2n∑

j=1

1
pjsj




(
λi − 1

qi

)
≥ 1 for all i = 1, 2, . . . , 2n

and

s2n+1


1−

2n∑

j=1

1
pjsj


 ≥ 1.

If u ∈ W~s
~p (Ω) and the gi (i = 1, 2, . . . , 2n) are monotonic functions

belonging to the isotropic Sobolev spaces Wλi
qi

(c, d), then the function

u ◦ (gi, . . . , g2n, I) belongs to W 1
r (c, d) and there exists K > 0 and 0 <
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αi < 1 such that

‖u ◦ (g1, . . . , g2n, I, ‖W 1
r (c,d) ≤ K

(
1 +

2n∑

i=1

‖gi‖αi

W
αi

W
αi
qi

(c,d)

)
‖u‖~p,~s.

3. Applications to differential equations

In this section, using the above corollary, the Rellich-Kondrashov the-
orem and Schauder’s fixed-point theorem, we deduce an existence theorem
for a system of second order differential equations. First we recall some
notations and preliminary results.

For each ρ=1, 2, . . . , n, consider the vectors ~sρ =(sρ
1, . . . , sρ

2n, sρ
2n+1),

~pρ = (pρ
1, . . . , pρ

2n, pρ
2n+1), ~qρ = (qρ

1 , . . . , qρ
2n, qρ

2n+1), ~λρ = (λρ
1, . . . , λρ

2n,
λρ

2n+1), and a number r ∈ R+ such that
a/ r = pρ

2n+1, λρ
2n+1 = 1 + 1

qρ
2n+1

(ρ = 1, 2, . . . , n)

b/ sρ
2n+1 ≤ sρ

i

(
λρ

i − 1
qρ
i

)
(ρ = 1, 2, . . . , n, i = 1, 2, . . . , 2n)

c/ sρ
j

(
1−

2n∑
i=1

1
pρ

i s
ρ
i

) (
λρ

j − 1
qρ

j

)
≥ 1 (ρ = 1, 2, . . . , n, j = 1, 2, . . . , 2n)

d/ sρ
2n+1

(
1−

2n∑
i=1

1
pρ

i s
ρ
i

)
≥ 1 (ρ = 1, 2, . . . , n)

e/ 1
r ≤ 1

qρ
i
− λρ

i + 2 (ρ = 1, 2, . . . , n, i = 1, 2, . . . , n).

For each ρ = 1, 2, . . . , n, consider a function uρ ∈ W~sρ

~pρ (Ω) and let
x1, . . . , xn, ẋ1, . . . , ẋn be monotonic functions such ~pρ that for all i =
1, 2, . . . , n we have

xi ∈ W
λρ

i

qρ
i

[0, 1], ẋi ∈ W
λρ

n+i

qρ
n+i

[0, 1].

Suppose in addition that for all t ∈ [0, 1] we have

(x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t), t) ∈ Ω.

Then, by the above corollary, we obtain that for each ρ = 1, 2, . . . , n
the composition uρ(x1(t), . . ., xn(t), ẋ1(t), . . ., ẋn(t), t) belongs to W 1

r [0, 1].
Now consider the following initial value problem:

ẍρ(t) = uρ(x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t), t) for all t ∈ [0, 1] and xρ(0) =
νρ and ẋρ(0) = ηρ for all ρ = 1, 2, . . . , n.
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This system is equivalent to the following system of integrodifferential
equations

(3.2)

xρ(t) = νρ + ηρt + t

∫ 1

t

uρ(x1(τ), . . . , xn(τ), ẋ1(τ), . . . , ẋn(τ), τ)dτ+

+
∫ t

0

τuρ(x1(τ), . . . , xn(τ), ẋ1(τ), . . . , ẋn(τ), τ)dτ (ρ = 1, 2, . . . , n)

Since ẍρ(t) = uρ(x1(t), . . . , xn(t), ẋ(t), . . . , ẋn(t), t) belongs to the
space W 1

r [0, 1], the function xρ belongs to the space W 3
r [0, 1].

For each ρ = 1, 2, . . . , n define the set Dρ and the function Fρ as
follows:

Dρ =
{

(x, . . . , xn) ∈ W
λρ

1
qρ
1

[0, 1]× . . .×W
λρ

n

qρ
n

[0, 1] : x1, . . . , xn, ẋ1, . . . , ẋn

are monotonic and

(x1(t), . . . , xn(t), ẋ, (t), . . . , ẋn(t), t) ∈ Ω (t ∈ [0, 1])
}

.

Fρ(x1, . . . , xn)(t) = νρ + ηρt+

+ t

∫ 1

t

uρ(x1(τ), . . . , xn(τ), ẋ1(τ), . . . , ẋn(τ), τ)dτ+

+
∫ t

0

τuρ(x1(τ), . . . , xn(τ), ẋ1(τ), . . . , ẋn(τ), τ)dτ = xρ(t).

Then for each ρ = 1, 2, . . . , n the function Fρ maps the set Dρ into
the space W 3

r [0, 1], moreover, there exist constants Kρ>0 and 0 < αρ
i < 1

such that

(3.3) ‖Fρ(x1, . . . , xn)‖W 3
r [0,1] ≤ Kρ


1 +

n∑

i=1

‖xi‖αρ
i

W
λ

ρ
i

q
ρ
i

[0,1]


 ‖uρ‖~pρ,~sρ

Since ~qρ, ~λρ and r satisfy condition e/, that is

1
r
≤ 1

qρ
i

− λρ
i + 2 (ρ = 1, 2, . . . , n, i = 1, 2, . . . , n)

the imbedding

W 2
r [0, 1] ↪→ W

λρ
i

qi [0, 1]
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is a linear and continuous operator. Therefore there exist constants Kρ
i

such that

(3.4) ‖xi‖
W

λ
ρ
i

q
ρ
i

[0,1]
≤ Kρ

i ‖xi‖W 3
r [0,1]

By (3.3) and (3.4) we obtain the existence of constants K∗
ρ > 0 and

0 < αρ
i < 1 such that

(3.5) ‖Fρ(x1, . . . , xn)‖W 3
r [0,1] ≤ K∗

ρ

(
1 +

n∑

i=1

‖xi‖αρ
i

W 3
r[0,1]

)
‖uρ‖~pρ,~sρ

For all ε > 0 the following imbeddings are valid

W 3−ε
r [0, 1]

i1
↪→ W 2

r [0, 1] and W 3
r [0, 1]

i2
↪→ W 3−ε

r [0, 1].

Therefore, with the notation used before, for all ρ = 1, 2, . . . , n we
can define a function

Fρ : (W 3−ε
r [0, 1])n −→ W 3−ε

r [0, 1] by

Fρ(x1, . . . , xn)(t) = i2(Fρ(i1(x1(t)), . . . , i1(xn(t)) such that

(3.6) ‖Fρ(x1, . . . , xn)‖W 3−ε
r [0,1] ≤ K∗

ρ

(
1 +

n∑

i=1

‖xi‖αρ
i

W 3−ε
r [0,1]

)
‖uρ‖~pρ,~sρ .

Now we define a function

F : (W 3−ε
r [0, 1])n −→ (W 3−ε

r [0, 1])n by

F (x1, . . . , xn)(t) = (F1(x1, . . . , xn)(t), . . . , Fn(x1, . . . , xn)(t)).

In the following we shall look for conditions for the function F to
satisfy the hypotheses of Schauder’s fixed-point theorem.

For each ρ = 1, 2, . . . , n, we define

Rρ = K∗
ρ

(
1 +

n∑

i=1

R
αρ

i
ρ

)
‖uρ‖~pρ,~sρ .

Then, for R > Rρ we have

(3.7) R > K∗
ρ

(
1 +

n∑

i=1

Rαρ
i

)
‖uρ‖~pρ,~sρ .
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Hence, taking R > max
ρ=1,2,... ,n

{Rρ}, we obtain that

‖(x1, . . . , xn)‖(W 3−ε
r [0,1])n = max

i=1,2,... ,n
‖xi‖W 3−ε

r [0,1] ≤ R

implies

‖F (x1, . . . , xn)‖(W 3−ε
r [0,1])n = max

ρ=1,2,... ,n
‖Fρ(x1, . . . , xn)‖W 3−ε

r [0,1] ≤ R.

Indeed, from inequalities (3.6) and (3.7) we get

‖Fρ(x1, . . . , xn)‖W 3−ε
r [0,1] ≤ K∗

ρ

(
1 +

n∑

i=1

‖xi‖αρ
i

W 3−ε
r [0,1]

)
‖uρ‖~pρ,~sρ ≤ R.

Let us consider now the sets D1 and D2 defined as follows:

D1 =
{

(x1, . . . , xn) ∈ (W 3−ε
r [0, 1])n : max

i=1,2,... ,n
‖xi‖W 3−ε

r [0,1] ≤ R,

ẋ1, . . . , ẋn ≥ 0, ẍ1, . . . , ẍn ≤ 0

a.e. in [0, 1] and x1, . . . , xn satisfy (3.2)
}
.

D2 =
{

(x1, . . . , xn) ∈ (W 3−ε
r [0, 1])n : max

i=1,2,... ,n
‖xi‖W 3−ε

r [0,1] ≤ R,

ẋ1, . . . , ẋn, ẍ1, . . . , ẍn ≤ 0

a.e. in [0, 1] and x1, . . . , xn satisfy (3.2)
}
.

In terms of these notations, using the above results, we can prove the
following

Theorem 3.1. Suppose that the above conditions a/, b/, . . . , e/ are
satisfied and for all ρ = 1, 2, . . . , n and τ = 1, 2, . . . , 2n + 1 we have

(3.8) sρ
τ

(
1−

2n+1∑

i=1

1
pρ

i s
ρ
i

)
≥ 1.

For each ρ = 1, 2, . . . , n let Mρ denote the norm of the imbedding

W~sρ

~pρ (Ω) ↪→ b′(Ω)

Put rρ = 1 + |νρ| + 2|ηρ| + 7
4MρR, and suppose that Brρ(0) ⊂ Ω and at

least one of the following conditions is satisfied:

a′/ ηρ ≥ 0 (ρ = 1, 2, . . . , n)

b′/ ηρ ≤ 0 sup
η∈Brρ (0)

uρ(η) ≤ −ηρ (ρ = 1, 2, . . . , n)
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Then the initial value problem (3.1) has a solution belonging to the
space (W 3−ε

r [0, 1])n for all ε > 0.

Proof. Differentiating with respect to t in formula (3.2), by a’/ and
b’/ we obtain that

F (D1) ⊆ D1 and F (D2) ⊂ D2.

Since inequality (3.8) is fulfilled, each component of the function Fρ is
continuous /see Th. 1.4/, so F is continuous. From the Rellich-Kondrasov
theorem we know that the inclusions

W 3−ε
r [0, 1]

i1
↪→ W 2

r [0, 1] and W 3
r [0, 1]

i2
↪→ W 3−ε

r [0, 1]

are compact. Therefore F is a compact function. Thus Schauder’s theorem
provides a fixed-point for the function F which is a solution to the initial
value problem (3.1).

I am grateful to prof. F. Szigeti for calling my attention to the
problem and his helpful suggestions.
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