About some positive solutions of the diophantine equation $\sum_{1 \leq i<j \leq n} a_{i} a_{j}=m$

By K. KOVÁCS (Budapest)

Let \mathbf{N} denote the set of positive integers and let $n, m \in \mathbf{N}$ be fixed. We search for $a_{i} \in \mathbf{N}$ satisfying the equation

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} a_{i} a_{j}=m \tag{1}
\end{equation*}
$$

The case $n=2$ is trivial. For any m let be $a_{1} \mid m$ and $a_{2}=m / a_{1}$. For $n>3$ we prove that if $m \geq 136 n^{2}$ then (1) has a solution. In the case $n=3$ the problem is still open. (We have controlled, that (1) has solution for all $m \leq 10^{7}$ except the numbers $1,4,18,22,30,42,58,70,78,102,130,190,210,330$ and 462.) Let us use the following notations:

$$
A_{u}^{v}=\sum_{u \leq i \leq v} a_{i} \quad A_{u}^{* v}=\sum_{u \leq i<j \leq v} a_{i} a_{j} .
$$

We prove the following
Theorem. For $n>3$ and any $m \geq 136 n^{2}$ the equation $A_{1}^{* n}=m$ has at least one solution $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{N}^{n}$.

Proof of the Theorem. We need some Lemmas, which can be easily controlled by computer.

Lemma 1. For any fixed $q \in \mathbf{N}$ the equations $A_{1}^{3}=19$ and $a_{1}^{2}-a_{2} a_{3} \equiv q(\bmod 19)$ have a common solution $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbf{N}^{3}$.

Lemma 2. For any fixed $q \in \mathbf{N}$, the equations $A_{1}^{3} \doteq 23$ and $A_{1}^{* 3} \equiv q$ $(\bmod 26)$ have a common solution $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbf{N}^{3}$.

Lemma 3. Let $t \in\{40,41, \ldots, 47\}$ be fixed. Either for all even $q \in \mathbf{N}$ or for all odd $q \in \mathbf{N}$ (depending on $t) A_{1}^{4}=t$ and $A_{1}^{* 4} \equiv q(\bmod 52)$ have a common solution $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbf{N}^{4}$.
(For example the triplets $(1,7,11),(2,5,12),(1,4,14),(3,7,9),(4,5,10)$, $(1,6,12),(3,6,10),(1,2,16),(2,8,9),(2,4,13),(2,7,10),(3,5,11),(1,5,13)$, $(1,3,15),(2,6,11),(5,6,8),(1,8,10),(4,7,8)$ and $(3,4,12)$ give all the different remainders mod 19 in Lemma 1.)

The case $n=4$:
Let us write (1) in the form $\left(m+a_{1}^{2}-a_{2} a_{3}\right) / A_{1}^{3}=a_{1}+a_{4}$. Lemma (1) gives our result for m large enough. (For $n \geq 119$ the a_{i} 's can even be chosen pairwise different.)

The case $n=5$:
We have $\left(m+a_{1}^{2}-A_{2}^{* 4}\right) /\left(a_{1}+A_{2}^{4}\right)=a_{1}+a_{5}$. The choice $a_{1}=3$ and $A_{2}^{4}=23$ gives by Lemma 2 a solution.

The case $n=6$:
Let be $a_{5}=1$. So (1) ca be written in the form ($m+a_{1}^{2}-A_{2}^{4}-A_{2}^{* 4}$)/ $\left(a_{1}+A_{2}^{4}+1\right)=a_{1}+a_{6}$. The choice $a_{1}=2$ and $A_{2}^{4}=23$ gives by Lemma 2 a solution.

The case $n=7$:
The choice $a_{1}=a_{2}=a_{3}=1$ and $A_{4}^{6}=23$ leads by Lemma 2 to a solution, using that (1) implies

$$
\left(m+a_{1}^{2}-\left(a_{2}+a_{3}\right) A_{4}^{6}-a_{2} a_{3}-A_{4}^{* 6}\right) /\left(a_{1}+a_{2}+a_{3}+A_{4}^{6}\right)=a_{1}+a_{7} .
$$

The cases $8 \leq n \leq 15$:
Let us choose $a_{1}=1,\left(a_{2}, a_{3}\right)=(1,3)$ or $(2,2), a_{i}=1$ for $4 \leq i \leq n-5$ and $A_{1}^{n-1}=52$. So $A_{n-4}^{n-1} \in\{40, \ldots, 47\}$, i.e. by Lemma $3 A_{n-4}^{* n-1}$ can be either in any even or in any odd residue class mod 52 . The above choice of the a_{i} 's in (1) gives

$$
\begin{align*}
m+1-4 A_{4}^{n-1}-a_{2} a_{3}-\binom{n-8}{2}-(n-8) A_{n-4}^{n-1}-A_{n-4}^{* n-1}= \tag{2}\\
=\left(a_{1}+a_{n}\right) A_{1}^{n-1}
\end{align*}
$$

A suitable choice of the pair $\left(a_{2}, a_{3}\right)$ guarantees that the left side of (2) without $A_{n-4}^{* n-1}$ is even or odd. So we can achieve that the left side of (2) is divisible by 52 . For all $n \leq 15$ it can be easily verified, that the choice $m \geq 136 n^{2}$ guarantees $a_{n} \geq 1$.

The case $n \geq 16$:
Let us choose $a_{1}=22 \cdot 2^{2 s}+13-n-23 \cdot 2^{s}, a_{2 i}=2^{2 s-1}-c_{i}$, $a_{2 i+1}=2^{2 s-1}+c_{i}$ with a suitable choice (see later) of $0 \leq c_{i}<2^{s}$ if $1 \leq i \leq 4, a_{j}=1$ if $10 \leq j \leq n-4$ and $a_{t}=b_{t} \cdot 2^{s}$ with some $b_{t}>0$ if $n-3 \leq t \leq n-1$, such that $b_{n-1}+b_{n-2}+b_{n-3}=23$ is satisfied. So all the a_{i} 's are positive if $2 \leq i \leq n-1$. For a fixed $n \in \mathbf{N}$ all the choices s for which $22 \cdot 2^{2 s}-23 \cdot 2^{s}+12 \geq n$ guarantee $a_{1} \geq 1$ too. ($s=1$ is suitable for all $54 \geq n \geq 13$.)

About some positive solutions of the diophantine equation $\sum_{1 \leq i<j \leq n} a_{i} a_{j}=m \quad 209$
The above choice of the a_{i} 's implies $A_{1}^{n-1}=26 \cdot 2^{2 s}$ and $A_{n-3}^{n-1}=23 \cdot 2^{s}$. We can write (1) in the form

$$
\begin{align*}
L= & m+a_{1}^{2}-\sum_{i=1}^{4}\left[\left(a_{2 i}+a_{2 i+1}\right)-A_{2 i+2}^{n-1}+a_{2 i} a_{2 i+1}\right]- \tag{3}\\
& -\binom{n-13}{2}-(n-13) A_{n-3}^{n-1}-A_{n-3}^{* n-1}= \\
= & \left(a_{1}+a_{n}\right) A_{1}^{n-1} .
\end{align*}
$$

To get $a_{n} \geq 1$ it is sufficient to prove

$$
\begin{equation*}
L \geq\left(a_{1}+1\right) A_{1}^{n-1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}^{n-1} \mid L \tag{5}
\end{equation*}
$$

If we change the values of the numbers c_{i}, the left side of (3) remains unchanged excepted the sum

$$
\sum_{i=1}^{4} a_{2 i} a_{2 i+1}=2^{4 s}-\sum_{i=1}^{4} c_{i}^{2}
$$

By the theorem of Lagrange any positive integer can be written as the sum of at most 4 squares. It is enough to take all summands $0 \leq c_{i}<2^{s}$ to guarantee

$$
2^{2 s} \mid L-A_{n-3}^{* n-1} .
$$

Lemma 2 implies that for all $q \in \mathbf{N}$ there exist $a_{n-3}, a_{n-2}, a_{n-1}$, such that $A_{n-3}^{n-1}=23 \cdot 2^{s}$ and $A_{n-3}^{* n-1} \equiv q \cdot 2^{2 s}\left(\bmod 26 \cdot 2^{2 s}\right)$ are valid. A suitable choice of q and $a_{n-3}, a_{n-2}, a_{n-1}$ implies

$$
2^{2 s} \cdot 26 \mid L
$$

too. So we have (5).
We can choose $22 \cdot 2^{2 s}-23 \cdot 2^{s}+12 \geq n>22 \cdot 2^{2 s-2}-23 \cdot 2^{s-1}+12$ ($s=1,2, \ldots$) to get all $n \geq 16$. By (3) and (4), $a_{n} \geq 1$ can be guaranteed, if we have
$m \geq 2^{2 s}, 26 \cdot 2^{2 s}, 4+2^{4 s}+\left(22 \cdot 2^{2 s}\right)^{2}+22 \cdot 2^{2 s} \cdot 23 \cdot 2^{s}+\left(23 \cdot 2^{s}\right)^{2}+26 \cdot 2^{2 s} \cdot 22 \cdot 2^{2 s}$.
This solves (1) for all $m \geq 1547 \cdot 2^{4 s}$ too. This condition is satisfied for all $m \geq 97 n^{2}$ if $s \geq 3$ (i.e. for $n \geq 1236$). If $s=1$ or $s=2$, the choices
$m \geq 97 n^{2}(54 \geq n \geq 16)$ and $m \geq 136 n^{2}(1235 \geq n>54)$, respectively, imply $a_{n} \geq 1$.
K. KovAcs

EÖTVŌS LORAND UNIVERSITY
DEPARTMENT OF ALGEBRA AND NUMBER THEORY
H-1088, BUDAPEST, MÚZEUM KRT. 6-8
(Received February 4, 1990)

