Publ. Math. Debrecen 40 / 3-4 (1992), 229-242

Inverse systems of quasi-compact spaces

By IVAN LONČAR (Varaždin)

Abstract. In this paper we investigate the non-emptiness and the quasi-compactness of a limit of an inverse system $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ of the non-empty and quasi compact spaces X_{α} .

The main result of Section One is the following

1.9. THEOREM. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha,\beta}, A\}$ be an inverse system of quasi-compact T_0 spaces X_{α} and SWO-mappings $f_{\alpha\beta}$ (almost closed mappings $f_{\alpha\beta}$, weakly closed mappings $f_{\alpha\beta}$). If the spaces X_{α} , $\alpha \in A$, are non-empty, then lim \mathbf{X} is non-empty.

Section Two contains some theorems concerning the inverse systems $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ with Wallman extendible mappings. The main result of this Section is the following

2.13. THEOREM. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system with closed mappings $f_{\alpha\beta}$ and onto projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \alpha \in A$. Then the functor w is **X**-continuous iff **X** is an S-system.

0. Introduction

We denote inverse systems by $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ and their limits by $X = \lim \mathbf{X}$. For all basic properties of inverse systems we refer to R. ENGELKING [5].

By N is denoted the set of natural numbers. The set of all ordinal numbers of cardinality $\leq \aleph_m$ is denoted by W_m .

The symbol cf(A) means the cofinality of a well-ordered set A i.e. the smallest ordinal number which is cofinal in A.

If $f: X \to Y$ is a mapping and if $A \subseteq X$, then $f^{\#}(A)$ denotes the set $\{y: f^{-1}(y) \subseteq A\}$.

The cardinality of a set A we denote by |A|.

Mathematics subject classifications (1980): Primary 54B25; Secondary 55S36. Key words and phrases: Inverse limit, Wallman extension, functor, continuity.

Ivan Lončar

1. Non-emptiness of the limit space

We say that a mapping $f: X \to Y$ is an SWO-mapping if for each finite open cover $\mathcal{V} = \{V_1, \ldots, V_n\}$ of Y, the cover $f^{-1}(\mathcal{V}) = \{f^{-1}(V_1), \ldots, f^{-1}(\mathcal{V})\}$ has the property that $\operatorname{Cl} f(A) \subseteq V_j$ if A is closed and $A \subseteq f^{-1}(V_j)$. Clearly, each closed mapping is an SWO-mapping.

1.1. Lemma. Let $f: X \to Y$ be an SWO-mapping. If Y is T_1 , then f is closed.

PROOF. Let $F \subseteq X$ be closed. Suppose that there is a point $y \in \operatorname{Cl} f(F) \setminus f(F)$. For the point y we consider a cover $\mathcal{V} = \{Y \setminus \{y\}, V\}$, where V is open and $y \in V$. Clearly, $V \cap f(F) \neq \emptyset$. Since f is an SWO-mapping and $F \subseteq f^{-1}(Y \setminus \{y\})$, we have $\operatorname{Cl} f(F) \subseteq Y \setminus \{y\}$. This is impossible since $y \in \operatorname{Cl} f(F)$. The proof is complete.

We say that $F \subseteq X$ is almost closed if $y \in F$ for each closed point $y \in \operatorname{Cl}(F)$. A mapping $f: X \to Y$ is almost closed if f(F) is almost closed for each closed $F \subseteq X$.

1.2. Lemma. Let $f: X \to Y$ be an almost closed mapping. If Y is T_1 then f is closed.

A mapping $f: X \to Y$ is called weakly closed if f/Y_x is closed for each set $Y_x = \bigcap \{ \text{Cl}U : U \text{ is a neighbourhood of } x \in X \}.$

1.3. Lemma. If X is a Hausdorff space and Y is T_1 , then each mapping $f: X \to Y$ is weakly closed.

1.4. Lemma. If X is a Hausdorff space and if $f: X \to Y$ is a weakly closed onto mapping, then Y is a T_1 space.

We are now going to study the non-emptiness of the inverse limit space.

Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of non-empty spaces X_{α} . We say that $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ is a subsystem of \mathbf{X} if $\emptyset \neq Y_{\alpha} \subseteq X_{\alpha}$ and $f_{\alpha\beta}(Y_{\beta}) \subseteq Y_{\alpha}$ for each pair $\alpha, \beta \in A$ such that $\alpha \leq \beta$.

A subsystem is closed if each $Y_{\alpha} \subseteq X_{\alpha}$ is closed.

1.5. Lemma. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of nonempty quasi-compact spaces X_{α} . There is a closed subsystem $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ such that $Y_{\alpha} = Clf_{\alpha\beta}(Y_{\beta})$.

PROOF. Let \mathcal{N} be the set of all subsystems of \mathbf{X} . The set N is nonempty since $\mathbf{X} \in \mathcal{N}$. Let $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ and $\mathbf{Z} = \{Z_{\alpha}, f_{\alpha\beta}/Z_{\beta}, A\}$ be a pair of subsystems of \mathbf{X} . We write $\mathbf{Z} \leq \mathbf{Y}$ if $Z_{\alpha} \subseteq Y_{\alpha}$ for each $\alpha \in A$. Clearly, the set (\mathcal{N}, \leq) is a partially ordered set. Moreover, if for each subsystem $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ we define $Y_{\alpha}^* = \cap\{\operatorname{Cl} f_{\alpha\beta}(Y_{\beta}), \beta \geq \alpha\}$, $\alpha \in A$, then $\mathbf{Y}^* = \{Y_{\alpha}^*, f_{\alpha\beta}/Y_{\beta}^*, A\}$ is a subsystem. From the quasicompactness of X_{α} it follows that Y_{α}^* is non-empty since a family $\{f_{\alpha\beta}(Y_{\beta}), \beta \geq \beta\}$. $\beta \geq \alpha$ } is a centred family. It is easy to prove that $\mathbf{Y}^* \leq \mathbf{Y}$. Let us prove that (\mathcal{N}, \leq) has a minimal member. It suffices to prove that for each chain $\mathbf{Y}_1 \geq \mathbf{Y}_2 \geq \ldots \geq \mathbf{Y}_{\mu} \geq \ldots, \ \mu \in \mathcal{M}$, there is \mathbf{Y} such that $\mathbf{Y}_{\mu} \geq \mathbf{Y}$ for each $\mu \in \mathcal{M}$. Since $\mathbf{Y}_{\mu} = \{Y_{\alpha}^{\mu}, f_{\alpha\beta}/Y_{\beta}^{\mu}, A\}$ we have a non-empty set $Y_{\alpha} =$ $\cap\{Y_{\alpha}^{\mu} : \mu \in M\}$ (X_{α} is quasi-compact). Clearly, $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ is a subsystem since $f_{\alpha\beta}(\cap\{Y_{\beta}^{\mu} : \mu \in M\}) \subseteq \cap\{f_{\alpha\beta}(Y_{\beta}^{\mu} : \mu \in M\}) \subseteq \cap\{Y_{\alpha}^{\mu} :$ $\mu \in M\} = Y_{\alpha}$. Thus, (\mathcal{N}, \leq) has a non-empty subset \mathcal{N}' of minimal elements. Let $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ be any member of \mathcal{N}' . Suppose that there is a pair $\alpha, \beta \in A$ such that $\operatorname{Cl} f_{\alpha\beta}(Y_{\beta}) \subset Y_{\alpha}$. Then $\mathbf{Y}^* \leq \mathbf{Y}$. On the other hand we have $\mathbf{Y} \geq \mathbf{Y}^*$ since $\mathbf{Y} \in \mathcal{N}'$. Thus $\mathbf{Y} = \mathbf{Y}^*$. This means that $\operatorname{Cl} f_{\alpha\beta}(Y_{\beta}) = Y_{\alpha}$ for each $\beta \geq \alpha$. The proof is completed.

1.5.1. Remark. A space X is called C-closed if each quasi-compact subset $A \subseteq X$ is closed. If the X_{α} , $\alpha \in A$ in Lemma 1.5. are C-closed, then we have $Y_{\alpha} = f_{\alpha\beta}(Y_{\beta})$.

1.5.2. Remark. In fact, from the proof of Lemma 1.5. it follows that each closed subsystem Z contains some minimal closed subsystem Y.

1.6. Lemma. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of nonempty quasi-compact spaces X_{α} . Each minimal subsystem $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ has the property that $Y_{\alpha} \subseteq Y_{x(\alpha)}$ for some point $x(\alpha) \in Y_{\alpha}, \alpha \in A$.

PROOF. Let $x(\alpha)$ be any point of Y_{α} . From the relation $\operatorname{Cl} f_{\alpha\beta}(Y_{\beta}) = Y_{\alpha}, \ \beta \geq \alpha$ (Lemma 1.5.) it follows that $U \cap f_{\alpha\beta}(Y_{\beta}) \neq \emptyset$ for each $\beta \geq \alpha$ and each open neighbourhood of $x(\alpha)$. This means that $f_{\alpha\beta}^{-1}(U) \cap Y_{\beta} \neq \emptyset$, $\beta \geq \alpha$. A family $\{\operatorname{Cl} f_{\alpha\beta}^{-1}(U) \cap Y_{\beta} : U \text{ is a neighbourhood of } x(\alpha)\}$ is centred and $\cap\{\operatorname{Cl} f_{\alpha\beta}^{-1}(U) \cap Y_{\beta} : U \text{ is a neighbourhood of } x(\alpha)\} = Y'_{\beta}$ is non-empty. Clearly $f_{\alpha\beta}(Y'_{\beta}) \subseteq Y_{\alpha} \cap Y_{x(\alpha)}$, where $Y_{x(\alpha)} = \cap\{\operatorname{Cl} U : U \text{ is}$ open and $x(\alpha) \in U\}$. If we suppose that $Y_{\alpha} \notin Y_{x(\alpha)}$, then $Y_{\alpha} \cap Y_{x(\alpha)} = Z_{\alpha}$. Now we define $Z_{\beta} = Y'_{\beta}$ for each $\beta \geq \alpha$. For all other $\gamma \in A$ let Z_{γ} be the set $Y_{\gamma} \in \mathbf{Y}$. From the relation $f_{\alpha\beta}(Y'_{\beta}) \subseteq Y_{\alpha} \cap Y_{x(\alpha)} = Z_{\alpha}$ we infer that $\mathbf{Z} = \{Z_{\alpha}, f_{\alpha\beta}/Z_{\beta}, A\}$ is a subsystem such that $\mathbf{Z} \leq \mathbf{Y}$. This is impossible since \mathbf{Y} is minimal. The proof is complete.

In the sequel we use the following lemmas:

1.7. Lemma. Each closed subset F of a T_0 quasi-compact space X contains a closed point.

PROOF. See [21].

1.8. Lemma. Let $f: X \to Y$ be an SWO-mapping and let Y be T_0 . Then for each closed $F \subseteq X$ a set f(F) contains each closed point of Clf(F).

PROOF. Suppose that $y \in \operatorname{Cl} f(F) \setminus f(F)$ is a closed point. Consider a cover $\mathcal{V} = \{Y \setminus \{y\}, V\}$, where V is any neighbourhood of y. Then $f^{-1}(\mathcal{V}) = \{f^{-1}(Y \setminus \{y\}), f^{-1}(V)\}$ is a cover of X and $F \subseteq f^{-1}(Y \setminus \{y\})$. By virtue of the definition of SWO-mappings we have $\operatorname{Cl} f(F) \subseteq Y \setminus \{y\}$ i.e. $y \notin \operatorname{Cl} f(F)$. This is impossible since $y \in \operatorname{Cl} f(F)$. The proof is complete.

Now we prove the following theorem concerning the non-emptiness of the inverse limit.

1.9. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of quasicompact T_0 spaces X_{α} and SWO-mappings $f_{\alpha\beta}$ (almost closed mappings $f_{\alpha\beta}$, weakly closed mappings $f_{\alpha\beta}$). If the spaces X_{α} , $\alpha \in A$, are non-empty, then $\lim \mathbf{X}$ is non-empty.

PROOF. Firstly we consider the inverse systems with SWO-mappings. Let $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ be a minimal subsystem of **X**. Now we prove that for each $\alpha \in A$ the set Y_{α} has only one point. By virtue of Lemma 1.7. there is a closed point $y_{\alpha} \in Y_{\alpha}$. From Lemma 1.8. it follows that $y_{\alpha} \in f_{\alpha\beta}(Y_B)$ for each $\beta \geq \alpha$. (This is true also if the mappings $f_{\alpha\beta}$ are almost closed). This means that the sets $Z_{\beta} = f_{\alpha\beta}^{-1}(y_{\alpha}) \cap Y_{\beta}$ are non-empty. For each $\beta < \alpha$ let $Z_{\beta} = f_{\alpha\beta}(y_{\alpha})$. For all other $\gamma \in A$ we define $Z_{\gamma} = Y_{\gamma}$. Now we obtain a subsystem $\mathbf{Z} = \{Z_{\alpha}, f_{\alpha\beta}/Z_{\beta}, A\}$. Clearly, $\mathbf{Z} \leq \mathbf{Y}$. On the other hand we have $Y \leq Z$ since Y is a minimal subsytem. Thus, $\mathbf{Y} = \mathbf{Z}$ i.e. $Y_{\alpha} = y_{\alpha}$. Since this is true for each $\alpha \in A$ we have a subsystem $\mathbf{Y} = \{\{y_{\alpha}\}, f_{\alpha\beta}/\{y_{\alpha}\}, A\}$. Clearly, \mathbf{Y} is a point of $\lim \mathbf{X}$ i.e. $\lim \mathbf{X}$ is nonempty. In order to complete the proof it suffices to prove that $\lim X$ is non-empty if the mappings $f_{\alpha\beta}$ are weakly closed. Let us note that closed mappings are SWO-mappings. From the preceding part of this proof it follows that Theorem 1.9. is true for closed mappings $f_{\alpha\beta}$. Finally, if the mappings $f_{\alpha\beta}$ are weakly closed, then by Lemma 1.6. we infer that each minimal inverse subsystem $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ has the closed bonding mappings $f_{\alpha\beta}/Y_{\beta}$. Thus, $\lim \mathbf{Y} \subseteq \lim \mathbf{X}$ is non-empty i.e. $\lim \mathbf{X}$ is nonempty. The proof is complete.

1.10. *Remark.* Theorem 1.9. is a generalization of Stone's well-known theorem [21] since closed mappings are SWO-mappings (almost closed and weakly closed mappings).

Now we prove the quasi-compactness of the limit space.

1.11. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be as in Theorem 1.9. Then $\lim \mathbf{X}$ is quasi-compact.

PROOF. Let $\mathcal{U} = \{U_{\mu} : \mu \in M\}$ be any open cover of $\lim \mathbf{X}$. By virtue of the definition of a base in $\lim \mathbf{X}$ there is an open $U_{\mu,\alpha} \subseteq X_{\alpha}$, for each $\alpha \in A$ and $\mu \in M$, such that $U_{\mu} = \bigcup \{U_{\mu,\alpha} : \alpha \in A\}, f_{\alpha}^{-1}(U_{\mu,\alpha}) \subseteq U_{\mu}$ and $U_{\mu,\alpha}$ is a maximal set with respect to property $f^{-1}(U_{\mu,\alpha}) \subseteq U_{\mu}$. Let \mathcal{U}_{α} be a family $\{U_{\mu,\alpha} : \alpha \in A\}$. If \mathcal{U}_{α} is the cover of X_{α} then $f_{\alpha}^{-1}(\mathcal{U}_{\alpha})$ is a cover of $\lim \mathbf{X}$ which refines \mathcal{U} . This means that \mathcal{U} has a finite subcover since \mathcal{U}_{α} has a finite subcover. Now we prove that there exists an $\alpha \in A$ such that \mathcal{U}_{α} is a cover of X_{α} . In the opposite case the set $Z_{\alpha} = X_{\alpha} \setminus (\bigcup \{U_{\alpha,\mu} : \mu \in M\})$ is non-empty for each $\alpha \in A$. Now we obtain a closed subsystem $\mathbf{Z} = \{Z_{\alpha}, f_{\alpha\beta}/Z_{\beta}, A\}$. By virtue of 1.5.2. it follows that there is a closed subsystem $\mathbf{Y} \leq \mathbf{Z}$ such that \mathbf{Y} is minimal. From the proof of Theorem 1.9. it follows that $\lim \mathbf{Y}$ is non-empty. This means that $\lim \mathbf{Z} \neq \emptyset$. Let z be any point of $\lim \mathbf{Z}$. It is easy to prove that $z \notin \cup \{f_{\alpha}^{-1}(U_{\mu,\alpha}) : \alpha \in A, \mu \in M\}$. This is impossible since $\mathcal{U} = \{U_{\mu} : \mu \in M\}$ is the cover of $\lim \mathbf{X}$. Thus, there is an $\alpha \in A$ such that \mathcal{U}_{α} is a cover of X_{α} . The proof is complete.

We close this Section with two theorems concerning the week closedness of the projections.

1.12. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of quasicompact T_1 spaces. The projections $f_{\alpha} : \lim \mathbf{X} \to X_a, \ \alpha \in A$, are weakly closed if the mappings $f_{\alpha\beta}$ are weakly closed.

PROOF. Let x be any point of lim X. We have the inverse subsystem $\mathbf{Y} = \{Y_{\mathbf{x}_{\alpha}} : x_{\alpha} = f_{\alpha}(x), \ \alpha \in A\}$, where $Y_{\mathbf{x}_{\alpha}} = \cap \{\operatorname{Cl}U_{\alpha} : U_{\alpha} \text{ is open and } x_{\alpha} \in U_{\alpha}\}$. Let F be a closed subset of $Y_{\mathbf{x}}$. Let $\alpha \in A$ be fixed. Now we prove that $f_{\alpha}(F)$ is closed. Suppose that $Z_{\alpha} = \operatorname{Cl}f_{\alpha}(F)\setminus f_{\alpha}(F)$ is non-empty. Then $Z_{\beta} = \operatorname{Cl}f_{\beta}(F)\setminus f_{\beta}(F)$ is non-empty for each $\beta \geq \alpha$ since $f_{\beta}(F) \subseteq Y_{\mathbf{x}_{\beta}}$ and $f_{\alpha\beta}/Y_{\mathbf{x}_{\beta}}$ is closed. From the closedness of $f_{\alpha\beta}/Y_{\mathbf{x}_{\beta}}$ it follows that for each $z_{\alpha} \in Z_{\alpha}$ and each $\beta \geq \alpha$ the set $W_{\beta} = f^{-1}(z_{\alpha}) \cap Z_{\beta}$ is closed and non-empty. From Theorem 1.9. it follows that the inverse system $\mathbf{W} = \{W_{\beta}, f_{\beta\gamma}/W_{\gamma}, \ \alpha \leq \beta \leq \gamma\}$ has a non-empty limit W. Clearly, $W \subseteq F$ since $F = \lim\{\operatorname{Cl}f_{\alpha}(F), f_{\alpha\beta}/\operatorname{Cl}f_{\beta}(F), A\}$. On the other hand, for any $w \in W$ we have $f_{\alpha}(w) = z_{\alpha} \in \operatorname{Cl}f_{\alpha}(F)\setminus f_{\alpha}(F)$. This is impossible since $W \subseteq F$. The proof is complete.

If A is the set N of natural numbers, then the quasi-compactness of X_{α} can be omitted since the point w can be constructed by total induction. Thus we have

1.13. Theorem. Let $\mathbf{X} = \{X_n, f_{nm}, N\}$ be an inverse sequence of T_1 spaces X_n with weakly closed mappings f_{nm} . Then the projections $f_n : \lim \mathbf{X} \to X_n, n \in N$, are weakly closed.

2. Inverse systems with Wallman extendible bonding mappings

Let X be a topological T_1 space and let $\mathcal{J} = \{A_\mu : \mu \in M\}$ be a centred family of closed subsets $A_\mu \subseteq X$. We say that \mathcal{J} is fixed (free) if $\cap \mathcal{J} = \cap \{F : F \in \mathcal{J}\}$ is non-empty (empty). By Zorn's lemma each centred family is contained in some maximal centred family.

Ivan Lončar

The Wallman extension wX of a space X is a set $wX = X \cup F_0(X)$, where $F_0(X)$ is a set of all free maximal centred families of closed subsets of X, with topology whose base is the family of all sets $U^* = U \cup \{\mathcal{J} \in$ $F_0(X) : F \subseteq U$ for some $F \in \mathcal{J}\}, U$ is open in X [5].

We say that a continuous mapping $f: X \to Y$ is Wallman extendible if there is a continuous mapping $wf: wX \to wY$ such that f = wf/X.

A category C of T_1 spaces and continuous mappings is said to be a W-category if each morphism of C has a unique Wallman extension.

2.1. Lemma. If C is any W-category, then $w: X \to wX$ is a covariant functor in a category Qcpt of T_1 quasi-compact spaces and continuous mappings. Moreover, if $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system, then wX, defined to be $\{wX_{\alpha}, wf_{\alpha\beta}, A\}$, is an inverse system.

PROOF. Trivial.

2.2. Definition. The functor w is called X-continuous if there is a homeomorphism $h: w(\lim X) \to \lim wX$ such that $h(x) = x, x \in \lim X$. In this case we write $w(\lim X) \approx \lim wX$. We say that w is C-continuous if w is X-continuous for each X in pro-C, the category with the inverse systems in C as the objects and the mappings of the inverse systems as the morphisms.

2.3. Remark. The functor w is not Top-continuous since there exists an inverse system with empty limit.

2.4. Definition. An inverse system $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is called an *S*-system if for each pair F, G of disjoint closed subsets of $\lim \mathbf{X}$ there is an $\alpha \in A$ such that $\operatorname{Cl} f_a(F) \cap \operatorname{Cl} f_{\alpha}(G) = \emptyset$, where $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}$ is a projection.

2.5. *Examples.* a) Each inverse system of quasi-compact spaces and closed bonding mappings is an S-system. This follows from [21].

b) If $\mathbf{X} = \{X_n, f_{nm}, N\}$ is an inverse sequence of countably compact spaces X_n and closed mappings f_{nm} , then X is an S-system [14].

c) Let X be an inverse sequence of sequentially compact (strongly countably compact, D-compact) spaces. Then X is an S-system.

d) Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, W_m\}$ be an inverse system of \aleph_m -compact spaces X_{α} and closed mappings $f_{\alpha\beta}$. Then \mathbf{X} is an S-system [14].

e) Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a well-ordered inverse system with weight $w(X_{\alpha}) < \tau$ and $cf(A) > \tau$. If X is continuous or $f_{\alpha\beta}$ are perfect (open) mappings, then X is an S-system. This follows from [23: Theorem 2.2.] since now the weight $w(\lim \mathbf{X}) < \tau$ and each closed $F \subseteq \lim \mathbf{X}$ is $f_{\alpha}^{-1}(F_{\alpha})$ for some closed $F_{\alpha} \subseteq X_{\alpha}$.

f) Similarly, each well-ordered inverse system $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ with $hl(X_{\alpha}) < \tau$ and $cf(A) > \tau$ is an S-system [15].

The importance of S-systems is shown by the following

2.6. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system. If $\lim wX \approx w(\lim \mathbf{X})$, then \mathbf{X} is an S-system.

PROOF. Let F, G be disjoint closed subsets of $\lim X$. It is known [4] that the closures of F, G in $\lim wX$ are the sets $F_* = F \cup \{\mathcal{J} \in F_0(\lim wX) : F \in \mathbf{J}\}$, $G_* = G \cup \{\mathcal{J} \in F_0(\lim wX) : G \in \mathcal{J}\}$ and that $(F \cap G)_* = F_* \cap G_*$. This means that $F_* \cap G_* = \emptyset$. Since wX is an S-system (see Examples 2.5.) and since $F_* \supseteq F$, $G_* \supseteq G$ are disjoint closed sets in $\lim wX$, we infer that there is an $\alpha \in A$ such that $\operatorname{Cl} f'_{\alpha}(F_*) \cap \operatorname{Cl} f'_{\alpha}(G_*) = \emptyset$, where f'_{α} is a projection. Since $f_{\alpha}(F) \subseteq f'_{\alpha}(F_*)$ and $f_{\alpha}(G) \subseteq f'_{\alpha}(G)$ we infer that $\operatorname{Cl} f_{\alpha}(F) \cap \operatorname{Cl} f_{\alpha}(G) = \emptyset$. Thus X is an S-system and the proof is complete.

2.7. Lemma. If $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse S-system with closed mappings $f_{\alpha\beta}$ and onto projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \alpha \in A$, then the projections $f_{\alpha}, \alpha \in A$, are closed.

PROOF. Let F be any closed subset of $\lim \mathbf{X}$. In order to prove that f_{α} is closed it suffices to prove that $f_{\alpha}(F)$ is closed. For each $x_{\alpha} \notin f_{\alpha}(F)$ we have $f_{\alpha}^{-1}(x_{\alpha}) \cap F = \emptyset$. There is a $\beta \in A$, $\beta > \alpha$, with $f_{\beta}f_{\alpha}^{-1}(x_{\alpha}) \cap f_{\beta}(F) = \emptyset$ since \mathbf{X} is an S-system. From the closedness of $f_{\alpha\beta}$ it follows that $\operatorname{Cl} f_{\alpha}(F) = f_{\alpha\beta}(\operatorname{Cl} f_{\beta}(F))$. We now have that $\{x_{\alpha}\} \cap f_{\alpha\beta}(\operatorname{Cl} f_{\beta}(F)) = \emptyset$ i.e. $x_{\alpha} \notin \operatorname{Cl} f_{\alpha}(F)$. Thus, $x_{\alpha} \notin f_{\alpha}(F)$ implies $x_{\alpha} \notin \operatorname{Cl} f_{\alpha}(F)$. This means that $f_{\alpha}(F)$ is closed. The proof is complete.

2.8. Remark. We say that a mapping $f : X \to Y$ is hereditarily quotient [5, Exercise 2.4.F.] if for each $y \in Y$ and any open $U \supseteq f^{-1}(y)$ we have $y \in \text{Int} f(U)$.

By the same method as in the proof of Lemma 2.7. we have the following

2.9. Lemma. If X is an S-system with quotient (hereditarily quotient) mappings $f_{\alpha\beta}$ and onto projections, then the projections are quotient (hereditarily quotient).

2.10. Remark. We say that a topological property \mathcal{P} is relatively continuous with respect to X if $\lim X$ has \mathcal{P} when the spaces $X_{\alpha} \in X$ have \mathcal{P} . Let us note that if X is an S-system, then $\mathcal{P} =$ "normal" ("connected") is relatively continuous with respect to X.

2.11. Definition. A mapping $f: X \to Y$ is called a WC-mapping if f has a unique closed extension $wf: wX \to wY$.

A class of WC-mappings was introduced by D. Harris [9].

2.12. Lemma. [20]. Every closed onto mapping $f : X \to Y$ has a closed onto extension $wf : wX \to wY$.

PROOF. In [20] the proof for multi-valued mappings was given. We now give an alternate proof. The proof is broken up into several steps.

Step 1. A w-mapping $f: X \to Y$ is a wc-mapping iff $wf(F_*)$ is closed in wY for each closed subset $F \subseteq X$.

PROOF. Necessity. For each closed $F \subseteq X$ we have that $\operatorname{Cl}_{wX}F = F_*$. If $f: X \to Y$ is a wc-mapping, then $wf: wX \to wY$ is closed. Thus, $wf(F_*)$ is closed in wY.

Sufficiency. Suppose that each $wf(F_*)$ is closed and let us prove that wf is closed. Let A be a closed subset of wX. There is a family $\{F_{\mu}: F_{\mu} \text{ is closed in } X, \mu \in M\}$ such that $a = \cap\{F_{\mu*}, \mu \in M\}$. Clearly, $wf(A) \subseteq \cap\{wf(F_{\mu*}): \mu \in M\}$. Let us prove that $wf(A) \supseteq \cap\{wf(F_{\mu*}): \mu \in M\}$. For each $y \in \cap\{wf(F_{\mu*}): \mu \in M\}$ we infer that $(wf)^{-1}(y) \cap$ $F_{\mu*}$ is non-empty. Since $(wf)^{-1}(y)$ is quasi-compact, we have that the intersection $\cap\{(wf)^{-1}(y) \cap F_{\mu*}: \mu \in M\}$ is non-empty. Thus, there is a point $x \in (wf)^{-1}(y)$ such that $y \in \cap\{F_{\mu*}: \mu \in M\} = A$. This means that $y \in wf(A)$. Finally, we have that $wf(A) = \cap\{wf(F_{\mu*}): \mu \in M\}$. Since each $wf(F_{\mu*})$ is closed, we infer that wf(A) is closed. The proof is complete.

Step 2. In the sequel we use the following relations. The continuity of wf implies

(1)
$$wf(F_*) \subseteq \operatorname{Cl}_{wY} wf(F) = \operatorname{Cl}_{wY} f(F), F \text{ is closed in } X.$$

On the other hand we have

(2)
$$\operatorname{Cl}_Y f(F) = \operatorname{Cl}_{wY} f(F) \cap Y \subseteq \operatorname{Cl}_{wY} f(F).$$

The inclusion $f(F) \subseteq \operatorname{Cl}_Y f(F)$ gives

(3)
$$\operatorname{Cl}_{wY}f(F) \subseteq \operatorname{Cl}_{wY}(\operatorname{Cl}_Yf(F)).$$

Similarly from (2) we obtain

(4)
$$\operatorname{Cl}_{wY}(\operatorname{Cl}_Y f(F)) \subseteq \operatorname{Cl}_{wY} f(F).$$

Finally we have

(5)
$$\operatorname{Cl}_{wY}f(F) = \operatorname{Cl}_{wY}(\operatorname{Cl}_Yf(F)).$$

From (1) and the last relation it follows

(6)
$$wf(F_*) \subseteq \operatorname{Cl}_{wY}(\operatorname{Cl}_Y f(F)), F \text{ is closed in } X.$$

Step 3. A w-mapping $f: X \to Y$ is a wc-mapping iff for each closed set $F \subseteq X$ it follows $wf(F_*) = \operatorname{Cl}_{wY}(\operatorname{Cl}_Y f(F)) = (\operatorname{Cl}_Y f(F))_*$

PROOF. Apply Step 1. and the relations (1)-(6).

Step 3. If $f: X \to Y$ is closed then wf is a wc-mapping.

PROOF. It is sufficient to prove that $wf(F_*) = (f(F))_*$ for each closed $F \subseteq X$. From (1) it follows that $wf(F_*) \subseteq (f(F))_*$. Clearly, $f(F) \subseteq wf(F_*) \subseteq (f(F))_*$. We now use the condition (KC).

(KC) If A is a closed subset of Y and $K \subseteq wY$ is quasi-compact with $A \subseteq K \subseteq \operatorname{Cl}_{wY}A$, then K is closed.

If we prove that wY satisfies condition (KC) then Step 3. is proved since $wf(F_*)$ is quasi-compact.

Step 4. The Wallman compactification wX of a T_1 space X satisfies condition (KC).

PROOF. Suppose that we have a closed subset of X and a quasicompact subset K such that $A \subseteq K \subseteq \operatorname{Cl}_{wY}A$. If we suppose that K is not closed then there exists a point $y \in \operatorname{Cl}_{wX}A \setminus K$. For each point $k \in K$ there is an open set U_k^* [2:232] such that $k \in U_k^*$ and $y \notin U_k^*$. From the compactness of K it follows that there is a finite subfamily $\{U_{k_1}^*, \ldots, U_{k_n}^*\}$ which covers K. Since $(U_{k_1} \cup \ldots \cup U_{k_n})^* = (U_{k_1}^* \cup \ldots \cup U_{k_n})$ [5] we infer that $A \subseteq U_{k_1} \cup \ldots \cup U_{k_n}$. This means that $\operatorname{Cl}_{wX}A \subseteq (U_{k_1} \cup \ldots \cup U_{k_n})^*$. This is impossible since $y \notin (U_{k_1} \cup \ldots \cup U_{k_n})^*$. The proof of Lemma 2.12. is complete.

The main result of this Section is the following

2.13. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system with closed mappings $f_{\alpha\beta}$ and onto projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \ \alpha \in A$. Then the functor w is X-continuous iff X is an S-system.

PROOF. Let the functor w be X-continuous. Then by Theorem 2.5. X is an S-system. Conversely, if X is an S-system we consider the inverse system $w\mathbf{X} = \{wX_{\alpha}, wf_{\alpha\beta}, A\}$. This system exists since $wf_{\alpha\beta}$ are the unique extensions of $f_{\alpha\beta}$. Since f_{α} : $\lim \mathbf{X} \to X_{\alpha}$ is onto and closed (Lemma 2.7.) we have a closed extension $wf_{\alpha}: w(\lim \mathbf{X}) \to wX_{\alpha}, \ \alpha \in A$. The mappings $wf_{\alpha}, \alpha \in A$, induce a mapping $H: w(\lim \mathbf{X}) \to \lim w\mathbf{X}$ such that $f'H = wf_{\alpha}$, where f'_{α} : $\lim wX \to wX_{\alpha}$, $\alpha \in A$, are projections. Now we prove that H is onto and a 1-1 mapping. If x is a $\lim wX$, then $f'_{\alpha}(x) \in wX_{\alpha}, \ \alpha \in A$, and $(wf_{\alpha})^{-1}f'_{\alpha}(x)$ is a non-empty subset of $w(\lim \mathbf{X})$. Since $w(\lim \mathbf{X})$ is quasi-compact and since $\{(wf_{\alpha})^{-1}f'_{\alpha}(x): \alpha \in \mathcal{A}\}$ A} is a centred family of closed sets, there is a point $y \in \bigcap \{ (wf_{\alpha})^{-1} f'_{\alpha}(x) :$ $\alpha \in A$. Clearly, $wf_{\alpha}(y) = f'_{\alpha}(x)$ i.e. H(y) = x. Thus, H is onto. Let us prove that H is 1-1. Let y, z be a pair of distinct points in $w(\lim X)$. This means that there is a pair of disjoint closed subsets F, G of $\lim X F \in$ y, $G \in z$. Since X is an S-system we have some $\alpha \in A$ such that $f_{\alpha}(F)$ and $f_{\alpha}(G)$ are disjoint (f_{α} is closed !). This means that $wf_{\alpha}(y) \neq wf_{\alpha}(z)$ and, consequently, $H(y) \neq H(z)$. In order to prove that H is a homeomorphism it remains to prove that H is closed. If $F \subseteq w(\lim X)$ is closed, then each $wf_{\alpha}(F)$, $\alpha \in A$, is closed (Lemma 2.12.). The set

Ivan Lončar

 $Y = \cap\{(f'_{\alpha})^{-1}wf_{\alpha}(F) : \alpha \in A\}$ is closed and $H(F) \subseteq Y$. We prove that Y = H(F). Suppose that $y \in Y \setminus H(F)$. We have $f'_{\alpha}(x) \in wf_{\alpha}(F)$ and $(wf_{\alpha})^{-1}f'_{\alpha}(x) \cap F \neq \emptyset$. Since F is quasi-compact the intersection $Z = \cap\{(wf_{\alpha})^{-1}f'_{\alpha}(x) \cap F : \alpha \in A\}$ is non-empty. For each $z \in Z$ we have $wf_{\alpha}(z) = f'_{\alpha}(x), \ \alpha \in A$. This means that H(z) = x. On the other hand we have $z \in F$ and $H(z) \in H(F)$. A contradiction $H(z) = x \in Y \setminus H(F)$ and $H(z) \in H(F)$ completes the proof of the closedness of H. The proof of Theorem 2.13. is complete.

If the spaces X_{α} , $\alpha \in A$, are normal then $\lim X$ is normal if X is an S-system (see Remark 2.10.). Moreover, $wX_a = \beta X_{\alpha}$ and $w(\lim X) \approx \beta(\lim X)$ [5]. Thus, from Theorem 2.13. follows

2.14. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of normal spaces $X_{\alpha}, \alpha \in A$, with onto projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \alpha \in A$. Then $\beta(\lim \mathbf{X}) \approx \lim \beta \mathbf{X}$ iff \mathbf{X} is an S-system.

PROOF. Now, $f_{\alpha\beta}$ and f_{α} , $\alpha \in A$, are WC-mappings since $wX_{\alpha} = \beta X_{\alpha}$. Apply Theorem 2.3.

Applying the Examples 2.5. we obtain the following corollaries of Theorem 2.13.

2.15. Corollary. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of T_1 quasi-compact spaces X_{α} and closed onto mappings $f_{\alpha\beta}$. Then $\lim \mathbf{X}$ is T_1 and quasi-compact.

PROOF. Now, $wX_{\alpha} = X_{\alpha}$ and $w\mathbf{X} = \mathbf{X}$. By Theorem 2.13. $w(\lim \mathbf{X}) \approx \lim w\mathbf{X} = \lim \mathbf{X}$. The proof is complete.

Let us recall that the proof of Corollary 2.15. is an alternative proof of Stone's theorem [21].

We say that a space X is a C-space if each countably compact subspace $Y \subseteq X$ is closed in X. It is readily seen that each first-countable regular space is a C-space. Moreover, if $f: X \to Y$ is a mapping of a countably compact X onto a C-space Y, then f is closed. From these facts and from Example 2.5.b) follows the

2.16. Corollary. Let $\mathbf{X} = \{X_n, f_{nm}, N\}$ be an inverse sequence of countably compact spaces X_n and closed onto mappings f_{nm} or countably compact C-spaces (regular first-countable spaces) X_n and onto mappings f_{nm} . Then $w(\lim \mathbf{X}) \approx \lim w\mathbf{X}$.

By virtue of Examples 2.5.d) – 2.5.f) and Theorem 2.13. we obtain

2.17. Corollary. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system from examples 2.5.d) – 2.5.f). If the mappings $f_{\alpha\beta}$ are closed and the projections f_{α} : $\lim \mathbf{X} \to X_{\alpha}$ are onto mappings, then $\lim w\mathbf{X} \approx w(\lim \mathbf{X})$.

2.18. Remark. If $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system of normal spaces $X_{\alpha}, \alpha \in A$, then Corollaries 2.16. and 2.17. are corresponding theorems for the continuity of the Stone-Čech functor β .

We say that a mapping $f: X \to Y$ is fully closed [6] if for each $y \in Y$ and each open cover $\{U_1, \ldots, U_n\}$ of a set $f^{-1}(y)$ the set $\{y\} \cup f^{\#}(U_1) \cup \ldots \cup f^{\#}(U_n)$ is open.

2.19. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system such that the $f_{\alpha\beta}$ are perfect fully closed. If the spaces $X_{\alpha}, \alpha \in A$, are countably compact, then $w(\lim \mathbf{X}) \approx \lim w\mathbf{X}$.

PROOF. The projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \alpha \in A$, are perfect fully closed [6]. If F, G are disjoint closed subsets of $\lim \mathbf{X}$, then $Y_{\alpha} = f_{\alpha}(F) \cap f_{\alpha}(G)$, $\alpha \in A$ is discrete. By countable compactness of X_{α} it follows that Y_{α} is finite. This means that $\mathbf{Y} = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ has a non-empty limit $Y \subseteq F \cap G$. Since this is impossible we infer that there is an $\alpha \in A$ such that $Y_{\alpha} = \emptyset$. This means that \mathbf{X} is an S-system. Theorem 2.13. completes the proof.

The space $\lim X$ in Theorem 2.19. is countably compact as shown by the following

2.20. Lemma. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse S-system with closed mappings $f_{\alpha\beta}$ and onto projections f_{α} . A space $X = \lim \mathbf{X}$ is countably compact if and only if the spaces X_{α} , $\alpha \in A$, are countably compact.

PROOF. The "only if" part follows from the fact that a continuous image of a countably compact space is countably compact [5: Theorem 3.10.5].

The "if" part: Let F be a countably closed subset of X. Then $f_{\alpha}(F)$, $\alpha \in A$, is a countably closed subset of X_a since f_{α} , $\alpha \in A$, is closed (Lemma 2.7.). By the countable compactness of X_{α} $f_{\alpha}(F)$ is compact [5: Exercise 3.10.a)]. We have a system $\mathbf{Y} = \{f_a(F), f_{\alpha\beta}/f_{\beta}(F), A\}$ whose limit Y is compact [5]. Since Y = F [5: Proposition 2.5.6.] we infer that F is compact. The proof is complete.

2.21. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system in a W-category \mathcal{C} (i.e. \mathbf{X} is an object in pro- \mathcal{C}). Then there exists a continuous mapping $H : w(\lim \mathbf{X}) \to \lim w\mathbf{X}$. If \mathbf{X} is an S-system, then H is 1-1.

PROOF. A straightforward modification of the proof of Theorem 2.3.

2.22. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system in a W-category \mathcal{C} of quasi-compact T_1 spaces X_{α} . Then $\lim \mathbf{X}$ is a quasi-compact T_1 space.

PROOF. Now we have $w\mathbf{X} = \{wX_{\alpha}, wf_{\alpha\beta}, A\} = \{X_{\alpha}, f_{\alpha\beta}, A\}$. By Theorem 2.21. we have a continuous mapping $H : w(\lim \mathbf{X}) \to \lim w\mathbf{X}$.

Since $w(\lim X)$ is T_1 and quasi-compact it follows that $\lim wX = \lim X$ is quasi-compact. The proof is complete.

A mapping $f : X \to Y$ is said to be a WO-mapping if for each finite open cover $\mathcal{U} = \{U_1, \ldots, U_n\}$ of Y there exists a finite open cover $\mathcal{V} = \{V_1, \ldots, V_m\}$ of X with the following property [9]:

(WO) If $A \subseteq X$ is closed and $A \subseteq V_j \in \mathcal{V}$, then there is $U_1 \in \mathcal{U}$ such that $\operatorname{Cl} f(A) \subseteq U_i$.

If \mathcal{U} and \mathcal{V} are as in the last definition, then we write $\mathcal{V} <_f \mathcal{U}$. The importance of WO-mappings lies in the following.

2.23. Theorem. [9: Theorem A.]. Every WO-mapping has a unique w-extension, and this extension is also a WO-mapping.

2.24. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of quasicompact T_1 spaces $X_{\alpha}, \alpha \in A$, and WO-mappings $f_{\alpha\beta}$ such that the projections $f_a : \lim \mathbf{X} \to X_{\alpha}, \ \alpha \in A$, are onto WO-mappings. Then $\lim \mathbf{X}$ is a quasi-compact T_1 space.

PROOF. Let us observe that from the assumption of Theorem it follows that X is an object in pro-C, where C is the category of quasi-compact T_1 spaces and WO-mappings. Thus, from Theorem 2.21. it follows that there exists a continuous mapping $H: w(\lim X) \to \lim wX$. The proof is complete.

A filter \mathcal{J} in the lattice of closed subsets of a T_1 space will be called indicative provided that $\cap \{C(A) : A \in \mathcal{J}\}$ is a singleton in wX, where C(A) is the family of all ultrafilters in wX which contain A. A continuous mapping $f : X \to Y$ from a T_1 space X to a T_1 space Y will be called a WI-mapping provided that: i) f has a continuous Wallman extension, ii) for every indicative filter \mathcal{J} in the lattice of closed subsets of $X, \{B \subseteq Y :$

B is closed in Y and $f(A) \subseteq B$ for some $A \in \mathcal{J}$ is indicative [10].

The category of all T_1 spaces and all WI-mappings is larger than the category of all T_1 spaces and all WO-mappings [10].

2.25. Lemma. [10: Proposition 4.] If $f: X \to Y$ is a WI-mapping, then the continuous Wallman extension $wf: wX \to wY$ is unique.

2.26. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of T_1 quasi-compact spaces $X_{\alpha}, \alpha \in A$, and WI-mappings $f_{\alpha\beta}$ such that the projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \alpha \in A$, are onto WI-mappings. Then $\lim \mathbf{X}$ is a quasi-compact T_1 space.

PROOF. A straightforward modification of the proof of Theorem 2.24.

At the end of this Section we consider a WC-category i.e. the category of T_1 spaces and WC-mappings (not necessarily closed) (see Definition 2.11.).

2.27. Theorem. Let $\mathbf{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse S-system of T_1 spaces X_{α} and WC-mappings $f_{\alpha\beta}$ which is onto. Then $w(\lim \mathbf{X}) \approx \lim w\mathbf{X}$ iff the projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \ \alpha \in A$, are onto W-mappings.

PROOF. The "if" part: If the projections f_{α} , $\alpha \in A$, are Wmappings, then there exist the mappings $wf_{\alpha} : w(\lim \mathbf{X}) \to \lim w\mathbf{X}$ which are onto. As in the proof of Theorem 2.13. we obtain a mapping $H: w(\lim \mathbf{X}) \to \lim w\mathbf{X}$ which is onto and 1-1 (see the proof of Theorem 2.13.). Similarly, as in the proof of Theorem 2.13. it follows that H is closed. Thus, H is a homeomorphism.

The "only if" part: If a homeomorphism $H : w(\lim \mathbf{X}) \to \lim w\mathbf{X}$ exists such that H(x) = x for each $x \in \lim \mathbf{X}$, then the mappings $Hp_{\alpha} :$ $w(\lim \mathbf{X}) \to wX_{\alpha}, \ \alpha \in A$, are extensions of the projections $f_{\alpha} : \lim \mathbf{X} \to X_{\alpha}, \ \alpha \in A$, onto $w(\lim \mathbf{X})$, where $p_{\alpha} : \lim w\mathbf{X} \to wX_{\alpha}, \ \alpha \in A$, are the projections. The proof is complete.

Acknowledgement. The autor is grateful to the referee Prof. DARELL W. HAJEK for his help and valuable suggestions.

References

- P. S. ALEKSANDROV i P. S. URYSON, Memuar o kompaktnyh topologičeskih prostranstvah, "Nauka", Moskva, 1971.
- [2] A. V. ARHANGEL'SKIJ i V. I. PONOMAREV, Osnovy obščej topologii v zadačah i upražnenijah, "Nauka", Moskva, 1974.
- [3] N. BURBAKI, Obščaja topologija (osnovnye struktury), "Nauka", Moskva, 1968.
- [4] D. E. CAMERON, Some maximal topologies which are QHC, Proc. Amer. Math. Soc. 75 (1979), 149-155.
- [5] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [6] V. V. FEDORČUK, Vpol'ne zamknutye otobraženija i sovmestimost nekotoryh teorem obščej topologiji, Math. Sb. 99 (141) (1976), 3-33.
- [7] V. V. FEDORČUK, Kovariantnye funktory v kategorii kompaktov, absoljutnye retrakty i Q-mnogoobrazija, UMN 36 (1981), 177-195.
- [8] D. HARRIS, The Wallman extension is an epireflection, General Topology and Appl. 31 (1972), 275-267.
- [9] D. HARRIS, The Wallman compactification as a functor, General Topology and Appl. 1 (1971), 273-281.
- [10] D. W. HAJEK, Functions with continuous Wallman extensions, Czechoslovak Math. J. 24 (99) (1974), 40-43.
- [11] D. W. HAJEK, Categories of Wallman extendible functions, Compositio Math. 34 (1977), 109-111.
- [12] D. W. HAJEK, An internal characterization of WI spaces, Mat. Vesnik 38 (1986), 273-277.
- [13] D. W. HAJEK, A characterization of T₃ spaces, Ind. U. Jour. Math. 23 (1973), 23-25.
- [14] I. LONČAR, Inverse limits for spaces which generalize compact spaces, Glasnik matematički 17 (37) (1982), 155-173.

- [15] I. LONČAR, Lindelöfov broj i inverzni sistemi, Zbornik radova Fakulteta organizacije i informatike Varaždin 7 (1983), 115-123.
- [16] I. LONČAR, Application of O-closed and u-closed sets, Zbornik radova Fakulteta organizacije i informatike Varaždin 8 (1984), 237-254.
- [17] I. LONČAR, Inverse systems of R-closed spaces, Mathematica Balkanica 2 (1988), 173-181.
- [18] I. LONČAR, A note on inverse systems of H-closed space, Glasnik matematički 19 (39) (1984), 169-175.
- [19] I. LONČAR, Extensions of the inverse limit space (to appear in "Rad JAZU", Zagreb).
- [20] V. I. PONOMAREV, O prodol'ženiji mnogoznačnyh otobraženij topologičeskih prostranstv na ih bikompaktnye proširenija, Mat. Sbornik 52(94) (1960), 847-862.
- [21] A. H. STONE, Inverse limits of compact spaces, General Topology and Appl. 10 (1979), 203-211.
- [22] E. V. ŠČEPIN, Funktory i nesčetnye stepeni kompaktov, UMN 36 (1981), 3-62.
- [23] M. G. TKAČENKO, Cepi i kardinaly, DAN SSSR 238 (1978), 546-549.

IVAN LONČAR FAKULTET ORGANIZACIJE I INFORMATIKE 4200 VARAŽDIN YUGOSLAVIA

(Received September 17, 1990)