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On locally monomial functions

By ATTILA GILÁNYI (Debrecen)

Abstract. In the present paper the equation

∆n
y f(x)− n!f(y) = o(yα) ((x, y) → (0, 0), x ≤ 0 ≤ x + ny),

for real functions, where n is a natural number and α a non-negative real number, is
considered.

1. Introduction

The subject of this paper is related to the study of real polynomial
and monomial functions with the aid of the Dinghas interval-derivative
and the operator D̃ defined below. In the sequel, in the Introduction we
assume that f is a real function.

For real numbers x, y write

∆1
yf(x) = f(x + y)− f(x)

and, for n ∈ N = {1, 2, 3, . . . },

∆n+1
y f(x) = ∆1

y(∆n
yf(x)).

For a non-negative integer n we say that f is a polynomial function of
degree n if ∆n+1

y f(x) = 0 for all x, y ∈ R; f is called a monomial function
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of degree n ∈ N if ∆n
yf(x) = n!f(y), (x, y ∈ R). A monomial function of

degree 1 is considered as an additive function, as well. (For polynomial
and monomial functions we refer to [10].)

If, for a positive integer n and for a real number ξ, the limit

Dnf(ξ) := lim
(x,y)→(ξ,0)

x≤ξ≤x+ny

∆n
yf(x)
yn

exists, then Dnf(ξ) is said to be the nth Dinghas interval-derivative of f

at ξ (cf. [1]). We consider, furthermore, the operator

D̃nf(ξ) := lim
(x,y)→(ξ,0)

x≤ξ≤x+ny

∆n
yf(x)− n!f(y)

yn
,

as far as it exists.
Polynomial and monomial functions can be characterized by the op-

erators above: A. Simon and P. Volkmann proved in [6] that for a non-
negative integer n, a function is a polynomial function of degree n if and
only if its (n + 1)th Dinghas derivative is zero at all ξ ∈ R. It was shown
in [2] that for a positive integer n, a function f is a monomial function of
degree n if and only if D̃nf(ξ) = 0 for all ξ ∈ R. It was also proved in [2]
that for n ∈ N, the property D̃nf(0) = 0 implies f(ly) − lnf(y) = o(yn),
(y ↘ 0) for any integer l.

The investigation of the local properties of the operators D and D̃

are motivated by the result mentioned above. The following two problems
in this field are due to P. Volkmann: given n ∈ N, does the property
Dn+1f(0) = 0 imply that there exists a polynomial function p : R → R
of degree n such that f(z) − p(z) = o(zn), (z → 0); and similarly does
D̃nf(0) = 0 imply that there exists a monomial function g : R → R
of degree n such that f(z) − g(z) = o(zn), (z → 0)? A. Simon and
P. Volkmann in [7] gave a positive answer to the first question in the
case when n = 1. Furthermore, they proved the following more general
theorem: for an arbitrary non-negative real number α 6= 1 if

lim
(x,y)→(0,0)

x≤0≤x+2y

∆2
yf(x)
yα

= 0,
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then there exists a polynomial function p : R → R of degree 1 such that
f(z)− p(z) = o(|z|α), (z → 0).

Surprisingly, the answer to the question related to the operator D̃nf(0)
is negative. A counterexample is given by F : (−1, 1) → R, F (x) =
x ln(− ln |x|) for x 6= 0, F (0) = 0. (See [3] and [7].) In the present paper
the relation

lim
(x,y)→(0,0)

x≤0≤x+ny

∆n
yf(x)− n!f(y)

yα
= 0,

or in other words

∆n
yf(x)− n!f(y) = o(yα) ((x, y) → (0, 0), x ≤ 0 ≤ x + ny)(1)

is studied (it is strongly related to some results in [7]), and a function f

satisfying (1) is called a locally monomial function of degree n with order α,
at 0.

In the second part of the paper we show that if, for n ∈ N, α ∈ R,
α > n, a function f is a locally monomial function of degree n with order α,
at 0, then there exists a monomial function g : R → R of degree n such
that

(2) f(x)− g(x) = o(|x|α) (x → 0).

For some similar results on monomial functions of degree 1 and 2 we refer
to [8] and [9].

In the third part of the paper we prove that if f is a locally monomial
function of degree 1 with order α (i.e. a locally additive function with
order α), at 0, then even for 0 ≤ α < 1 there exists a monomial function
g : R→ R of degree 1 (i.e. an additive function), such that (2) holds.

The results in the paper lead to the conjecture that for an arbitrary
n ∈ N, α ≥ 0, α 6= n if the function f satisfies (1) then there exists a
monomial function of degree n with property (2), but it may occur that
exactly when α = n (i.e. in the case of the operator D̃) there exists no
such monomial function.
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2. Locally monomial functions of degree n with order α > n

Lemma 1. For n, λ ∈ N, λ ≥ 2 put

A =




α
(0)
0 . . . α

(λn)
0

...
. . .

...

α
(0)
(λ−1)n . . . α

(λn)
(λ−1)n


 ,

where for i = 0, . . . , (λ− 1)n and k = −i, . . . , λn− i

α
(i+k)
i =





(−1)k

(
n

n− k

)
, if 0 ≤ k ≤ n,

0, otherwise.

Let ai denote the ith row in A, (i = 0, . . . , (λ − 1)n). Furthermore, let

b = (β(0) . . . β(λn)), where

β(k) =





(−1)
k
λ

(
n

n− k
λ

)
, if λ | k

0, if λ - k

for k = 0, . . . , λn.

There are positive integers K0, . . . , K(λ−1)n such that

K0a0 + . . . + K(λ−1)na(λ−1)n = b,(3)

and

K0 + . . . + K(λ−1)n = λn.(4)

Proof. It is trivial that the lemma holds for n = 1, λ ≥ 2, λ ∈ N
with K0 = · · · = Kλ−1 = 1.

For n, λ ≥ 2, n, λ ∈ N the existence of positive integers satisfying (3)
was proved in Lemma 2 in [3]. The numbers K0, . . . , K(λ−1)n satisfy

(1 + x + . . . + xλ−1)n = K0 + K1x
1 + . . . + K(λ−1)nx(λ−1)n (x ∈ R),

therefore, substituting x = 1 we get (4).
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Theorem 1. Let α ≥ 0 be a real, n be an arbitrary natural number

and f be a real function with property (1). Then we have

(5) f(lz)− lnf(z) = o(|z|α) (z → 0).

for any integer l.

Proof. In the special case α = n Theorem 1 was proved in [2]. The
proof, given here, is similar, with some technical simplifications.

Let α ≥ 0 and n ∈ N be given numbers and let f : R→ R satisfy (1).
We show relation (5) in two steps.

I. At first we prove, by induction on l, that (1) implies

(6) f(lz) = lnf(z) + o(zα) (z ↘ 0)

for any l ∈ N.
The case l = 1 is trivial.
Let l > 1 be an arbitrary integer and suppose that

(7) f(jy)− jnf(y) = o(yα) (y ↘ 0)

has already been proved for j = 1, . . . , l − 1.
We define the real functions ε0, . . . , ε(l−1)n and ε as follows:

εi(z) := ∆n
z f(−iz)− n!f(z) (i = 0, . . . , (l − 1)n; z ∈ R)(8)

and

ε(z) := ∆n
lzf(−(l − 1)nz)− n!f(lz) (z ∈ R).(9)

Using the notation of Lemma 1 for λ = l and by the well-known formula

∆n
yf(x) =

n∑

k=0

(−1)n−k

(
n

k

)
f(x + ky) (x, y ∈ R)

we get that these equations can be written as

(10)
εi(z) =

ln∑

k=0

α
(k)
i f((n− k)z)− n!f(z)

(i = 0, . . . , (l − 1)n; z ∈ R)
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and

ε(z) =
ln∑

k=0

β(k)f((n− k)z)− n!f(lz) (z ∈ R).

By Lemma 1 there exist positive integers K1, . . . , K(l−1)n for which

K0a0 + . . . + K(l−1)na(l−1)n − b = 0

and
K0 + . . . + K(l−1)n = ln.

Therefore, by the equations in (8) and (9) we obtain

n!
(
f(lz)− lnf(z)

)
= K0ε0(z) + . . . + K(l−1)nε(l−1)n(z)− ε(z) (z ∈ R).

To prove (6), we show that for k = 0, . . . , (l − 1)n

εk(z) = o(zα) (z ↘ 0)(12)

and

ε(z) = o(zα) (z ↘ 0).(13)

If we choose x = −(l − 1)nz and y = lz for z > 0, z ∈ R, then
x ≤ 0 ≤ x + ny, so (1) and (9) imply (13).

If we replace (x, y) by

(0, z), (−z, z), . . . , (−nz, z) (z ∈ R, z > 0),

then x ≤ 0 ≤ x + ny, therefore, from (1) and (8) we have (12) for
k = 0, . . . , n. In the case l = 2 property (12) is already proved. If l > 2 for
k = 0, . . . , (l − 1)n we prove it by induction on k. The proof is done for
0 ≤ k ≤ n. Let n < k ≤ (l− 1)n be an arbitrary fixed integer and suppose
that

(14) εr(z) = o(zα) (z ↘ 0)

is true for r = 0, . . . , k − 1. Set

l̃ =
[
k − 1

n

]
+ 1,
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where [ ] denotes the integer part of a real number and we define ε̃ : R→ R
as follows:

(15) ε̃(z) := ∆n
l̃z

f(−kz)− n!f(l̃z).

Since

k − n ≤ n

[
k − 1

n

]

for x = −kz and y = l̃z, we have x ≤ 0 and

x + ny = −kz + n

([
k − 1

n

]
+ 1

)
z ≥ 0,

hence (1) implies

(16) ε̃(z) = o(zα) (z ↘ 0).

Let c = (γ0, . . . , γn+k) be a vector with components γ0 = . . . =
γn+k−l̃n−1 = 0 and write

γn+k−l̃n+j =





(−1)
j

l̃

(
n

n− j

l̃

)
, if l̃ | j

0, otherwise

for j = 0, . . . , l̃n. The simple inequality
[
k − 1

n

]
n ≤ k − 1

yields

(17)
n + k − l̃n = n + k −

[
k − 1

n

]
n− n

≥ k − (k − 1) = 1,

and then the components γn+k−l̃n, γn+k−l̃n+1, . . . , γn+k of the vector c,
defined above, exist.
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It is easy to see, like in (10) and (11), that (15) can be written in the
following form:

(18) ε̃(z) =
n+k∑

j=0

γjf((n− j)z)− n!f(l̃z).

Let us omit the components γ0, . . . , γn+k−l̃n−1 of the vector c and denote
the resulting vector by b̃ = (β̃(0) . . . β̃(l̃n)). It can be seen from the definition
of c that b̃ equals b = (β(0) . . . β(l̃n)) which was given for n and λ = l̃ in
Lemma 2.2. It is also easy to see, since we have cancelled only zeroes from
c, that (18) can be written as follows:

(19) ε̃(z) =
l̃n∑

j=0

β̃(j)f(n− (n + k − l̃n + j)z)− n!f(l̃z) (z ∈ R).

Let us now consider the functions εn+k−l̃n, εn+k−l̃n+1, . . . , εk and the
corresponding coefficient vectors an+k−l̃n, an+k−l̃n+1, . . . , ak from (10). It
follows from the definition of these vectors (see Lemma 1) that for their
components i = n + k − l̃n, n + k − l̃n + 1, . . . , k

α
(0)
i = α

(1)
i = . . . = αn+k−l̃n−2

i = αn+k−l̃n−1
i = 0.

If we omit these components from these vectors and denote them, in the
order above, by

ã0 = (α̃(0)
0 . . . α̃

(l̃n)
0 )

...

ã(l̃−1)n = (α̃(0)

(l̃−1)n
. . . α̃

(l̃n)

(l̃−1)n
),

then we can write the functions εn+k−l̃n, εn+k−l̃n+1, . . . , εk in the form

(20)

εn+k−l̃n(z) =
l̃n∑

s=0

α̃
(s)
0 f(n− (n + k − l̃n + s)z)− n!f(z)

...

εk(z) =
l̃n∑

s=0

α̃
(s)

(l̃−1)n
f(n− (n + k − l̃n + s)z)− n!f(z).
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One can see that ã0, . . . , ã(l̃−1)n are equal to the vectors

a0 = (α(0)
0 . . . α

(l̃n)
0 )

...

a(l̃−1)n = (α(0)

(l̃−1)n
. . . α

(l̃n)

(l̃−1)n
),

defined for n and λ = l̃ in Lemma 1. So by this lemma, there exist positive
integers K̃0, . . . , K̃(l̃−1)n such that K̃0 ã0 + . . . + K̃(l̃−1)n ã(l̃−1)n − b̃ = 0
and K̃0 + . . . + K̃(l̃−1)n = l̃n. Thus (19) and (20) imply

K̃0εn+k−l̃n(z) + K̃1εn+k−l̃n+1(z) + . . . + K̃(l̃−1)nεk(z)

= ε̃(z) + n!f(l̃z)− n!l̃nf(z) (z ∈ R),

that is

(21)

εk(z) = − 1
K̃(l̃−1)n

(
K̃0εn+k−l̃n(z) + K̃1εn+k−l̃n+1(z) + . . .

. . . + K̃(l̃−1)n−1εk−1(z) + ε̃(z) + n!
(
f(l̃z)− l̃nf(z)

))
(z ∈ R).

From

l̃ =
[
k − 1

n

]
+ 1 ≤ k − 1

n
+ 1 ≤ (l − 1)n− 1 + n

n
< l

together with the inductive hypothesis (7) we get:

f(l̃z)− l̃nf(z) = o(zα) (z ↘ 0).

By (14) and (17)

εr(z) = o(zα) (z ↘ 0)

for r = n + k − l̃n, . . . , k − 1. Combining (21), (16) and the previous two
formulae we get

εk(z) = o(zα) (z ↘ 0).
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II. Now we prove that under our assumptions f(0) = 0 and

(22) f(−z)− (−1)nf(z) = o(|z|α) (z → 0).

We consider the functions

ε0(z) =
n∑

k=0

(−1)n−k

(
n

k

)
f(kz)− n!f(z)

and

ε1(z) =
n∑

k=0

(−1)n−k

(
n

k

)
f((k − 1)z)− n!f(z),

defined in (8). By the well-known formulae

n∑

k=0

(−1)n−k

(
n

k

)
kn − n! = 0

and
n∑

k=0

(−1)n−k

(
n

k

)
(k − 1)n − n! = 0

we can write the functions ε0 and ε1 in the form

ε0(z) =
n∑

k=0

(−1)n−k

(
n

k

)(
f(kz)− knf(z)

)
(23)

and

ε1(z) =
n∑

k=0

(−1)n−k

(
n

k

)(
f((k − 1)z)− (k − 1)nf(z)

)
.(24)

In the first part of the proof we have shown that ε0(z) = o(zα), ε1(z) =
o(zα) and f(lz) − lnf(z) = o(zα), (z ↘ 0, l = 1, . . . , n). This relation
together with (23) implies f(0) = 0, therefore, applying (24) we get

f(−z)− (−1)nf(z) = o(zα) (z ↘ 0)

which yields (22).
Finally, (6) and (22) prove Theorem 1.
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Theorem 2. Let δ > 0 be a real number and n ∈ N. If the function

f : [−δ, δ] → R satisfies the property

(25) ∆n
yf(x)− n!f(y) = 0 (x ∈ [−δ, 0], y, x + ny ∈ [0, δ]),

then for any integer l there exists a real number δl > 0 such that

(26) f(lz)− lnf(z) = 0 (z ∈ [−δl, δl]).

Proof. Let δ > 0 and n ∈ N be given and let f : [−δ, δ] → R be
a function satisfying (25). We prove that for an arbitrary integer l with
δl = δ

|l|n equation (26) holds.
The proof can be done in a similar way as in the proof of Theorem 1,

therefore, we give the outline of the argument, only.
At first, we show by induction on l that for any l ∈ N

(27) f(lz)− lnf(z) = 0
(
z ∈

[
− δ

ln
,

δ

ln

])
.

For l > 1 we define the functions

ε0, . . . , ε(l−1)n and ε :
[
− δ

ln
,

δ

ln

]
→ R

by the same formula as in (8) and (9) and we use a similar method as in
the proof of Theorem 1, to show that

εk(z) = 0
(
z ∈

[
− δ

ln
,

δ

ln

])

for k = 0, . . . , (l − 1)n and

ε(z) = 0
(
z ∈

[
− δ

ln
,

δ

ln

])
.

By Lemma 1

n!
(
f(lz)− lnf(z)

)
= K0ε0(z) + . . . + K(l−1)nε(l−1)n(z)− ε(z)

(
z ∈

[
− δ

ln
,

δ

ln

])
,

which proves (27).
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To prove

(28) f(−z)− (−1)nf(z) = 0
(
z ∈

[
− δ

n
,
δ

n

])

we consider the functions ε0 and ε1 on the interval
[
− δ

n2 , δ
n2

]
. Here we

have
ε0(z) = 0

(
z ∈

[
− δ

n2
,

δ

n2

])

and
ε1(z) = 0

(
z ∈

[
− δ

n2
,

δ

n2

])
,

therefore, we get, by the method used in the second part of the proof of
Theorem 1, that

f(−z)− (−1)nf(z) = 0
(
z ∈

[
− δ

n2
,

δ

n2

])
,

from which with

f(2z)− 2nf(z) = 0
(
z ∈

[
− δ

2n
,

δ

2n

])

(28) follows.
Finally, (28) together with (27) implies (26).

Theorem 3. Let δ > 0 be a real number and n ∈ N. If the function
f : [−δ, δ] → R satisfies property (25), then there exists a real number
δ̄ > 0 such that

(29) ∆n
yf(x)− n!f(y) = 0

for x, y, x + ny ∈ [−δ̄, δ̄].

Proof. Let δ > 0 and n ∈ N be given numbers and let f : [−δ, δ] → R
be a function with property (25). Let, furthermore, δ̄ = δ

2n and x̄ and ȳ
be fixed numbers for which x̄, ȳ, x̄ + nȳ ∈ [−δ̄, δ̄].

It is trivial, that in the case when ȳ = 0 equation (29) holds. For an
arbitrary function ϕ : R→ R we have the simple formula

∆n
yϕ(x) = (−1)n∆n

−yϕ(x + ny) (x, y ∈ R),
so by

f(−y)− (−1)nf(y) = 0 (y ∈ [−δ̄, δ̄]),
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which was proved in Theorem 2, we can write

∆n
yf(x)− n!f(y) = (−1)n

(
∆n
−yf(x + ny)− n!f(−y)

)

(x, y, x + ny ∈ [−δ̄, δ̄]).

Therefore, we may suppose that ȳ ∈ (0, δ̄].
In the case when x̄ ∈ [−δ̄, 0] and x̄ + nȳ ∈ [0, δ̄], (29) comes from (1).

If x̄, x̄ + nȳ ∈ [−δ̄, 0] and ȳ ∈ (0, δ̄] since

∆n
yf(x)− n!f(y) = (−1)n∆n

−yf(−x)− (−1)nn!f(−y)

= ∆n
yf(−x− ny)− n!f(y) (x, y, x + ny ∈ [−δ̄, δ̄])

with x̃ = −x̄ − nȳ we get x̃, ȳ, x̃ + nȳ ∈ (0, δ̄], which means that we
may suppose that x̄ ∈ (0, δ̄]. Therefore, it is sufficient to prove (29) for
x̄, ȳ ∈ (0, δ̄].

If x̄ and ȳ have these properties, then there exist natural numbers m
such that x̄ −mȳ ≤ 0. Let m0 be the smallest natural number with this
property and we define x∗µ = x̄− (m0 − µ)ȳ for µ = 0, . . . ,m0.

We prove by induction on µ that by

(30) cµ := ∆n
ȳf(x∗µ)− n!f(ȳ)

cµ = 0 for µ = 0, . . . ,m0, which with µ = m0 implies

∆n
ȳf(x̄)− n!f(ȳ) = 0,

which is our statement.
By (25), obviously, c0 = 0.
Let µ ∈ {1, . . . , m0} and suppose that cν = 0 is already proved for

ν = 0, . . . , µ− 1. Taking

x = x∗µ − iȳ, y = ȳ (i = 1, . . . , n)
and

x = x∗µ − nȳ, y = 2ȳ,

respectively, the inductive hypothesis and (25) lead to

∆n
ȳf(x∗µ − iȳ)− n!f(ȳ) = 0 (i = 1, . . . , n)

and
∆n

2ȳf(x∗µ − nȳ)− n!f(2ȳ) = 0.
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It is easy to see that with the notation of Lemma 1 (for λ = 2) we can
write these equations as follows

2n∑

k=0

α
(k)
i f(x∗µ + (n− k)ȳ)− n!f(ȳ) = 0 (i = 1, . . . , n)(31)

and
2n∑

k=0

β(k)f(x∗µ + (n− k)ȳ)− n!f(2ȳ) = 0.(32)

Furthermore, (30) has the form

(33)
2n∑

k=0

α
(k)
0 f(x∗µ + (n− k)ȳ)− n!f(ȳ) = cµ.

By Lemma 1 for ai = (α(0)
i , . . . , α

(2n)
i ), (i = 0, . . . , n) and

b = (β(0), . . . , β(2n)) there exist positive integers K0, . . . , Kn such that
K0a0 + . . . + Knan − b = 0 and K0 + · · · + Kn = 2n. Therefore, by the
equations in (31), (32) and (33) we get

−(K0 + · · ·+ Kn)n!f(ȳ) + n!f(2ȳ) = K0cµ,

that is

−2nn!f(ȳ) + n!f(2ȳ) = K0cµ.

By Theorem 2 we have f(2ȳ)− 2nf(ȳ) = 0, which implies cµ = 0.

Theorem 4. Let n be a natural number and α > n be a real number.

If a function f : R→ R satisfies

(1) ∆n
yf(x)− n!f(y) = o(yα) ((x, y) → (0, 0), x ≤ 0 ≤ x + ny)

then there exists a monomial function g : R→ R of degree n such that

(2) f(x)− g(x) = o(|x|α) (x → 0).

Proof. Let n ∈ N and α > n, α ∈ R be given. For a function
f : R→ R satisfying (1) Theorem 1 implies

(34) f(lz)− lnf(z) = o(|z|α) (z → 0)
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for any integer l. Let now l ∈ N, l > 1 be fixed. It is easy to see, that (34)
is equivalent to the following statement: there exist a real number δ > 0
and a continuous, increasing function h : [0, δ] → R with the property
limz↘0 h(z) = 0 such that

|f(lz)− lnf(z)| ≤ |z|αh(|z|) (z ∈ [−δ, δ]).

Therefore, for an arbitrary z0 ∈ [−δ, δ] and k ∈ N we have
∣∣∣∣ f

(
z0

lk−1

)
− lnf

(
z0

lk

) ∣∣∣∣≤
|z0|α
lkα

h

( |z0|
lk

)
.

With

εk(z0) := l(k−1)nf

(
z0

lk−1

)
− lknf

(
z0

lk

)

we get

|εk(z0)| ≤ l(k−1)n |z0|α
lkα

h

( |z0|
lk

)

and the monotony of h yields

(35) |εk(z0)| ≤ 1
lk(α−n)

|z0|α
ln

h(|z0|).

For an arbitrary N ∈ N we obtain

(36) ε1(z0) + · · ·+ εN (z0) = f(z0)− lNnf

(
z0

lN

)
.

Since α > n ∞∑

k=1

1
lk(α−n)

=
1

lα−n − 1
,

therefore,
∞∑

k=1

εk(z0)

is convergent, so the limit

(37) g(z0) = lim
k→∞

lknf

(
z0

lk

)
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exists, and (35) and (36) yield

|f(z0)− g(z0)| ≤ 1
lα−n − 1

|z0|α
ln

h(|z0|),

which implies (2).
For x ∈ [−δ, 0], x + ny ∈ [0, δ] by (1) we have

lim
k→∞

∆n
y

lk
f
(

x
lk

)− n!f
(

y
lk

)
(

y
lk

)α = 0,

and (37) gives

∆n
yg(x)− n!g(y) = lim

k→∞
lkn

(
∆n

y

lk
f

(
x

lk

)
− n!f

(
y

lk

))
= 0,

which together with Theorem 3 show that there exists a real number δ̄ > 0
such that g is a monomial function of degree n on the interval [−δ̄, δ̄]. This
result and the known extension theorem for monomial functions (cf. [5],
for instance) imply our statement.

3. Locally additive functions with order α 6= 1

Lemma 2. Let δ be a positive real number and f : [−δ, δ] → R. If

there exists a real number K ≥ 0 such that

(38) |f(x + y)− f(x)− f(y)| ≤ K (x ∈ [−δ, 0], y, x + y ∈ [0, δ]),

then we have

(39) |f(x + y)− f(x)− f(y)| ≤ 3K

for all x, y, x + y ∈ [−δ, δ].

Proof. Let x̄ and ȳ be fixed real numbers such that x̄, ȳ, x̄ + ȳ ∈
[−δ, δ]. Then we have one of the following relations:

(A) x̄ ∈ [−δ, 0], ȳ ∈ [0, δ], x̄ + ȳ ∈ [0, δ];
(B) x̄ ∈ [−δ, 0], ȳ ∈ [0, δ], x̄ + ȳ ∈ [−δ, 0];
(C) x̄ ∈ [0, δ], ȳ ∈ [0, δ], x̄ + ȳ ∈ [0, δ];
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(D) x̄ ∈ [−δ, 0], ȳ ∈ [−δ, 0], x̄ + ȳ ∈ [−δ, 0];
(E) x̄ ∈ [0, δ], ȳ ∈ [−δ, 0], x̄ + ȳ ∈ [0, δ];
(F) x̄ ∈ [0, δ], ȳ ∈ [−δ, 0], x̄ + ȳ ∈ [−δ, 0];

Case (A) is trivial.
In case (B) we get the following inequalities from (38):

– |f(ȳ)− f(x̄ + ȳ)− f(−x̄)| ≤ K, with x = x̄ + ȳ and y = −x̄;
– | − f(0) + f(x̄) + f(−x̄)| ≤ K, with x = x̄ and y = −x̄;
– |f(ȳ)− f(0)− f(ȳ)| ≤ K, with x = 0 and y = ȳ;

and the addition of these inequalities implies (39).
In case (F) we get (39) by case (B) and with x = ȳ and y = x̄.

The remaining cases can be treated by the substitutions
x = −ȳ and y = ȳ; x = −ȳ and y = x̄ + ȳ; x = 0 and y = ȳ in case (C);

x = ȳ and y = −ȳ; x = x̄ and y = −x̄− ȳ; x = x̄ + ȳ and y = −x̄− ȳ

in case (D); x = ȳ and y = x̄ in case (E), respectively.

Theorem 5. Let α ≥ 0 α 6= 1 be a real number and let f : R→ R be

a function with the property

(40) f(x + y)− f(x)− f(y) = o(yα) (x ≤ 0 ≤ x + y, y ↘ 0).

Then there exists an additive function a : R→ R such that

f(x)− a(x) = o(|x|α) (x → 0).

Proof. For α > 1 the statement is proved in Theorem 4.
In the sequel, α ∈ [0, 1). In this case the proof is similar to some

reasoning in [7].
By (40) there exist real numbers δ > 0 and K > 0 such that

|f(x + y)− f(x)− f(y)| ≤ K (x ∈ [−δ, 0], y, x + y ∈ [0, δ]),

hence from Lemma 2 we have

|f(x + y)− f(x)− f(y)| ≤ 3K (x, y, x + y ∈ [−δ, δ]).

Z. Kominek proved ([4], Lemma 1) that this property implies the existence
of an additive function a : R→ R such that

|f(x)− a(x)| ≤ 12K (x ∈ [−δ, δ]).
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For the function ε : [−δ, δ] → R, ε(x) = f(x)− a(x) we have ε(0) = 0
and by Theorem 1

ε(2z)− 2ε(z) = o(|z|α) (z → 0).

It is easy to see, that this property is equivalent to the following: there exist
a real number δ1 > 0 and a continuous, increasing function h : [0, δ1] → R
such that limz↘0 h(z) = 0 and

|ε(2z)− 2ε(z)| ≤ |z|αh(|z|) (z ∈ [−δ1, δ1]).

Introducing the function

ε̄(z) =





ε(z)
|z|α , if z ∈ [−δ1, δ1], z 6= 0,

0, if z = 0

we have

∣∣∣∣ |z|αε̄(z)− 1
2
2α|z|αε̄(2z)

∣∣∣∣≤
1
2
|z|αh(|z|) (z ∈ [−δ1, δ1])

and

|ε̄(z)− 2α−1ε̄(2z)| ≤ 1
2
h(|z|) (z ∈ [−δ1, δ1]).

Write

sk = sup
{
|ε̄(z)|

∣∣∣ δ1

2k
≤ |z| ≤ δ1

2k−1

}
(k ∈ N).

Then

sk+1 ≤ 2α−1sk +
1
2
h

(
δ1

2k

)
, (k ∈ N)

therefore, limk→∞ sk = 0 and

ε(z) = o(|z|α) (z → 0).
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[1] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad.
Sci. Fennicae, Ser. A I 375 (1966).

[2] A. Gil�anyi, A characterization of monomial functions (to appear in Aequationes
Math.).

[3] A. Gil�anyi, A remark to a characterization of monomial functions (to appear).

[4] Z. Kominek, On the local stability of the Jensen functional equation, Demonstratio
Math. 22 (1989), 499–507.

[5] Zs. P�ales, Extension theorems for functional equations with bisymmetric opera-
tions (preprint).

[6] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktio-
nen mittels der Dinghasschen Intervall-Derivierten, Results in Math. 26 (1994),
382–384.

[7] A. Simon and P. Volkmann, Perturbations de fonctions additives (to appear).

[8] F. Skof, Sull’approssimazione delle applicazioni localmente δ-additive, Atti della
Accademia delle Scienze di Torino, I. Classe 117 (1983), 377–389.
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