On locally monomial functions

By ATTILA GILÁNYI (Debrecen)

Abstract. In the present paper the equation

$$
\Delta_{y}^{n} f(x)-n!f(y)=o\left(y^{\alpha}\right) \quad((x, y) \rightarrow(0,0), x \leq 0 \leq x+n y)
$$

for real functions, where n is a natural number and α a non-negative real number, is considered.

1. Introduction

The subject of this paper is related to the study of real polynomial and monomial functions with the aid of the Dinghas interval-derivative and the operator \tilde{D} defined below. In the sequel, in the Introduction we assume that f is a real function.

For real numbers x, y write

$$
\Delta_{y}^{1} f(x)=f(x+y)-f(x)
$$

and, for $n \in \mathbb{N}=\{1,2,3, \ldots\}$,

$$
\Delta_{y}^{n+1} f(x)=\Delta_{y}^{1}\left(\Delta_{y}^{n} f(x)\right)
$$

For a non-negative integer n we say that f is a polynomial function of degree n if $\Delta_{y}^{n+1} f(x)=0$ for all $x, y \in \mathbb{R} ; f$ is called a monomial function

[^0]of degree $n \in \mathbb{N}$ if $\Delta_{y}^{n} f(x)=n!f(y),(x, y \in \mathbb{R})$. A monomial function of degree 1 is considered as an additive function, as well. (For polynomial and monomial functions we refer to [10].)

If, for a positive integer n and for a real number ξ, the limit

$$
D^{n} f(\xi):=\lim _{\substack{(x, y) \rightarrow(\xi, 0) \\ x \leq \xi \leq x+n y}} \frac{\Delta_{y}^{n} f(x)}{y^{n}}
$$

exists, then $D^{n} f(\xi)$ is said to be the $n^{\text {th }}$ Dinghas interval-derivative of f at ξ (cf. [1]). We consider, furthermore, the operator

$$
\tilde{D}^{n} f(\xi):=\lim _{\substack{(x, y) \rightarrow(\xi, 0) \\ x \leq \xi \leq x+n y}} \frac{\Delta_{y}^{n} f(x)-n!f(y)}{y^{n}},
$$

as far as it exists.
Polynomial and monomial functions can be characterized by the operators above: A. Simon and P. Volkmann proved in [6] that for a nonnegative integer n, a function is a polynomial function of degree n if and only if its $(n+1)^{\text {th }}$ Dinghas derivative is zero at all $\xi \in \mathbb{R}$. It was shown in [2] that for a positive integer n, a function f is a monomial function of degree n if and only if $\tilde{D}^{n} f(\xi)=0$ for all $\xi \in \mathbb{R}$. It was also proved in [2] that for $n \in \mathbb{N}$, the property $\tilde{D}^{n} f(0)=0$ implies $f(l y)-l^{n} f(y)=o\left(y^{n}\right)$, $(y \searrow 0)$ for any integer l.

The investigation of the local properties of the operators D and \tilde{D} are motivated by the result mentioned above. The following two problems in this field are due to P . Volkmann: given $n \in \mathbb{N}$, does the property $D^{n+1} f(0)=0$ imply that there exists a polynomial function $p: \mathbb{R} \rightarrow \mathbb{R}$ of degree n such that $f(z)-p(z)=o\left(z^{n}\right),(z \rightarrow 0)$; and similarly does $\tilde{D}^{n} f(0)=0$ imply that there exists a monomial function $g: \mathbb{R} \rightarrow \mathbb{R}$ of degree n such that $f(z)-g(z)=o\left(z^{n}\right),(z \rightarrow 0)$? A. Simon and P. Volkmann in [7] gave a positive answer to the first question in the case when $n=1$. Furthermore, they proved the following more general theorem: for an arbitrary non-negative real number $\alpha \neq 1$ if

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x \leq 0 \leq x+2 y}} \frac{\Delta_{y}^{2} f(x)}{y^{\alpha}}=0
$$

then there exists a polynomial function $p: \mathbb{R} \rightarrow \mathbb{R}$ of degree 1 such that $f(z)-p(z)=o\left(|z|^{\alpha}\right),(z \rightarrow 0)$.

Surprisingly, the answer to the question related to the operator $\tilde{D}^{n} f(0)$ is negative. A counterexample is given by $F:(-1,1) \rightarrow \mathbb{R}, F(x)=$ $x \ln (-\ln |x|)$ for $x \neq 0, F(0)=0$. (See [3] and [7].) In the present paper the relation

$$
\lim _{\substack{x, y) \rightarrow(0,0) \\ x \leq 0 \leq x+n y}} \frac{\Delta_{y}^{n} f(x)-n!f(y)}{y^{\alpha}}=0
$$

or in other words

$$
\begin{equation*}
\Delta_{y}^{n} f(x)-n!f(y)=o\left(y^{\alpha}\right) \quad((x, y) \rightarrow(0,0), x \leq 0 \leq x+n y) \tag{1}
\end{equation*}
$$

is studied (it is strongly related to some results in [7]), and a function f satisfying (1) is called a locally monomial function of degree n with order α, at 0 .

In the second part of the paper we show that if, for $n \in \mathbb{N}, \alpha \in \mathbb{R}$, $\alpha>n$, a function f is a locally monomial function of degree n with order α, at 0 , then there exists a monomial function $g: \mathbb{R} \rightarrow \mathbb{R}$ of degree n such that

$$
\begin{equation*}
f(x)-g(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0) . \tag{2}
\end{equation*}
$$

For some similar results on monomial functions of degree 1 and 2 we refer to [8] and [9].

In the third part of the paper we prove that if f is a locally monomial function of degree 1 with order α (i.e. a locally additive function with order α), at 0 , then even for $0 \leq \alpha<1$ there exists a monomial function $g: \mathbb{R} \rightarrow \mathbb{R}$ of degree 1 (i.e. an additive function), such that (2) holds.

The results in the paper lead to the conjecture that for an arbitrary $n \in \mathbb{N}, \alpha \geq 0, \alpha \neq n$ if the function f satisfies (1) then there exists a monomial function of degree n with property (2), but it may occur that exactly when $\alpha=n$ (i.e. in the case of the operator \tilde{D}) there exists no such monomial function.

2. Locally monomial functions of degree n with order $\alpha>n$

Lemma 1. For $n, \lambda \in \mathbb{N}, \lambda \geq 2$ put

$$
A=\left(\begin{array}{ccc}
\alpha_{0}^{(0)} & \cdots & \alpha_{0}^{(\lambda n)} \\
\vdots & \ddots & \vdots \\
\alpha_{(\lambda-1) n}^{(0)} & \cdots & \alpha_{(\lambda-1) n}^{(\lambda n)}
\end{array}\right)
$$

where for $i=0, \ldots,(\lambda-1) n$ and $k=-i, \ldots, \lambda n-i$

$$
\alpha_{i}^{(i+k)}= \begin{cases}(-1)^{k}\binom{n}{n-k}, & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Let a_{i} denote the $i^{\text {th }}$ row in $A,(i=0, \ldots,(\lambda-1) n)$. Furthermore, let $b=\left(\beta^{(0)} \ldots \beta^{(\lambda n)}\right)$, where

$$
\beta^{(k)}= \begin{cases}(-1)^{\frac{k}{\lambda}}\binom{n}{n-\frac{k}{\lambda}}, & \text { if } \lambda \mid k \\ 0, & \text { if } \lambda \nmid k\end{cases}
$$

for $k=0, \ldots, \lambda n$.
There are positive integers $K_{0}, \ldots, K_{(\lambda-1) n}$ such that

$$
\begin{equation*}
K_{0} a_{0}+\ldots+K_{(\lambda-1) n} a_{(\lambda-1) n}=b \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{0}+\ldots+K_{(\lambda-1) n}=\lambda^{n} \tag{4}
\end{equation*}
$$

Proof. It is trivial that the lemma holds for $n=1, \lambda \geq 2, \lambda \in \mathbb{N}$ with $K_{0}=\cdots=K_{\lambda-1}=1$.

For $n, \lambda \geq 2, n, \lambda \in \mathbb{N}$ the existence of positive integers satisfying (3) was proved in Lemma 2 in [3]. The numbers $K_{0}, \ldots, K_{(\lambda-1) n}$ satisfy

$$
\left(1+x+\ldots+x^{\lambda-1}\right)^{n}=K_{0}+K_{1} x^{1}+\ldots+K_{(\lambda-1) n} x^{(\lambda-1) n} \quad(x \in \mathbb{R})
$$

therefore, substituting $x=1$ we get (4).

Theorem 1. Let $\alpha \geq 0$ be a real, n be an arbitrary natural number and f be a real function with property (1). Then we have

$$
\begin{equation*}
f(l z)-l^{n} f(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0) . \tag{5}
\end{equation*}
$$

for any integer l.
Proof. In the special case $\alpha=n$ Theorem 1 was proved in [2]. The proof, given here, is similar, with some technical simplifications.

Let $\alpha \geq 0$ and $n \in \mathbb{N}$ be given numbers and let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy (1). We show relation (5) in two steps.
I. At first we prove, by induction on l, that (1) implies

$$
\begin{equation*}
f(l z)=l^{n} f(z)+o\left(z^{\alpha}\right) \quad(z \searrow 0) \tag{6}
\end{equation*}
$$

for any $l \in \mathbb{N}$.
The case $l=1$ is trivial.
Let $l>1$ be an arbitrary integer and suppose that

$$
\begin{equation*}
f(j y)-j^{n} f(y)=o\left(y^{\alpha}\right) \quad(y \searrow 0) \tag{7}
\end{equation*}
$$

has already been proved for $j=1, \ldots, l-1$.
We define the real functions $\varepsilon_{0}, \ldots, \varepsilon_{(l-1) n}$ and ε as follows:

$$
\begin{equation*}
\varepsilon_{i}(z):=\Delta_{z}^{n} f(-i z)-n!f(z) \quad(i=0, \ldots,(l-1) n ; z \in \mathbb{R}) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon(z):=\Delta_{l z}^{n} f(-(l-1) n z)-n!f(l z) \quad(z \in \mathbb{R}) . \tag{9}
\end{equation*}
$$

Using the notation of Lemma 1 for $\lambda=l$ and by the well-known formula

$$
\Delta_{y}^{n} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(x+k y) \quad(x, y \in \mathbb{R})
$$

we get that these equations can be written as

$$
\begin{gather*}
\varepsilon_{i}(z)=\sum_{k=0}^{l n} \alpha_{i}^{(k)} f((n-k) z)-n!f(z) \tag{10}\\
(i=0, \ldots,(l-1) n ; \quad z \in \mathbb{R})
\end{gather*}
$$

and

$$
\varepsilon(z)=\sum_{k=0}^{l n} \beta^{(k)} f((n-k) z)-n!f(l z) \quad(z \in \mathbb{R}) .
$$

By Lemma 1 there exist positive integers $K_{1}, \ldots, K_{(l-1) n}$ for which

$$
K_{0} a_{0}+\ldots+K_{(l-1) n} a_{(l-1) n}-b=0
$$

and

$$
K_{0}+\ldots+K_{(l-1) n}=l^{n} .
$$

Therefore, by the equations in (8) and (9) we obtain

$$
n!\left(f(l z)-l^{n} f(z)\right)=K_{0} \varepsilon_{0}(z)+\ldots+K_{(l-1) n} \varepsilon_{(l-1) n}(z)-\varepsilon(z) \quad(z \in \mathbb{R})
$$

To prove (6), we show that for $k=0, \ldots,(l-1) n$

$$
\begin{equation*}
\varepsilon_{k}(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) \tag{13}
\end{equation*}
$$

If we choose $x=-(l-1) n z$ and $y=l z$ for $z>0, z \in \mathbb{R}$, then $x \leq 0 \leq x+n y$, so (1) and (9) imply (13).

If we replace (x, y) by

$$
(0, z),(-z, z), \ldots,(-n z, z) \quad(z \in \mathbb{R}, z>0)
$$

then $x \leq 0 \leq x+n y$, therefore, from (1) and (8) we have (12) for $k=0, \ldots, n$. In the case $l=2$ property (12) is already proved. If $l>2$ for $k=0, \ldots,(l-1) n$ we prove it by induction on k. The proof is done for $0 \leq k \leq n$. Let $n<k \leq(l-1) n$ be an arbitrary fixed integer and suppose that

$$
\begin{equation*}
\varepsilon_{r}(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) \tag{14}
\end{equation*}
$$

is true for $r=0, \ldots, k-1$. Set

$$
\tilde{l}=\left[\frac{k-1}{n}\right]+1,
$$

where [] denotes the integer part of a real number and we define $\tilde{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\tilde{\varepsilon}(z):=\Delta_{\tilde{z}}^{n} f(-k z)-n!f(\tilde{l} z) . \tag{15}
\end{equation*}
$$

Since

$$
k-n \leq n\left[\frac{k-1}{n}\right]
$$

for $x=-k z$ and $y=\tilde{l} z$, we have $x \leq 0$ and

$$
x+n y=-k z+n\left(\left[\frac{k-1}{n}\right]+1\right) z \geq 0
$$

hence (1) implies

$$
\begin{equation*}
\tilde{\varepsilon}(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) \tag{16}
\end{equation*}
$$

Let $c=\left(\gamma_{0}, \ldots, \gamma_{n+k}\right)$ be a vector with components $\gamma_{0}=\ldots=$ $\gamma_{n+k-\tilde{n} n-1}=0$ and write

$$
\gamma_{n+k-\tilde{l} n+j}= \begin{cases}(-1)^{\frac{j}{l}(}\binom{n}{n-\frac{j}{l}}, & \text { if } \tilde{l} \mid j \\ 0, & \text { otherwise }\end{cases}
$$

for $j=0, \ldots, \tilde{l} n$. The simple inequality

$$
\left[\frac{k-1}{n}\right] n \leq k-1
$$

yields

$$
\begin{align*}
n+k-\tilde{l} n & =n+k-\left[\frac{k-1}{n}\right] n-n \tag{17}\\
& \geq k-(k-1)=1,
\end{align*}
$$

and then the components $\gamma_{n+k-\tilde{l}_{n}}, \gamma_{n+k-\tilde{l}_{n+1}}, \ldots, \gamma_{n+k}$ of the vector c, defined above, exist.

It is easy to see, like in (10) and (11), that (15) can be written in the following form:

$$
\begin{equation*}
\tilde{\varepsilon}(z)=\sum_{j=0}^{n+k} \gamma_{j} f((n-j) z)-n!f(\tilde{l} z) . \tag{18}
\end{equation*}
$$

Let us omit the components $\gamma_{0}, \ldots, \gamma_{n+k-\tilde{l}_{n-1}}$ of the vector c and denote the resulting vector by $\tilde{b}=\left(\tilde{\beta}^{(0)} \ldots \tilde{\beta}^{(\tilde{l} n)}\right)$. It can be seen from the definition of c that \tilde{b} equals $b=\left(\beta^{(0)} \ldots \beta^{(\tilde{l} n)}\right)$ which was given for n and $\lambda=\tilde{l}$ in Lemma 2.2. It is also easy to see, since we have cancelled only zeroes from c, that (18) can be written as follows:

$$
\begin{equation*}
\tilde{\varepsilon}(z)=\sum_{j=0}^{\tilde{l}_{n}} \tilde{\beta}^{(j)} f(n-(n+k-\tilde{l} n+j) z)-n!f(\tilde{l} z) \quad(z \in \mathbb{R}) . \tag{19}
\end{equation*}
$$

Let us now consider the functions $\varepsilon_{n+k-\tilde{l}_{n}}, \varepsilon_{n+k-\tilde{l}_{n+1}}, \ldots, \varepsilon_{k}$ and the corresponding coefficient vectors $a_{n+k-\tilde{l}_{n}}, a_{n+k-\tilde{l}_{n+1}}, \ldots, a_{k}$ from (10). It follows from the definition of these vectors (see Lemma 1) that for their components $i=n+k-\tilde{l} n, n+k-\tilde{l} n+1, \ldots, k$

$$
\alpha_{i}^{(0)}=\alpha_{i}^{(1)}=\ldots=\alpha_{i}^{n+k-\tilde{l}_{n-2}}=\alpha_{i}^{n+k-\tilde{l}_{n-1}}=0 .
$$

If we omit these components from these vectors and denote them, in the order above, by

$$
\begin{aligned}
\tilde{a}_{0} & =\left(\tilde{\alpha}_{0}^{(0)} \ldots \tilde{\alpha}_{0}^{(\tilde{l} n)}\right) \\
& \vdots \\
\tilde{a}_{(\tilde{l}-1) n} & =\left(\tilde{\alpha}_{(\tilde{l}-1) n}^{(0)} \ldots \tilde{\alpha}_{(\tilde{l}-1) n}^{(\tilde{l} n)}\right),
\end{aligned}
$$

then we can write the functions $\varepsilon_{n+k-\tilde{l}_{n}}, \varepsilon_{n+k-\tilde{l}_{n+1}}, \ldots, \varepsilon_{k}$ in the form

$$
\begin{align*}
\varepsilon_{n+k-\tilde{l}_{n}}(z) & =\sum_{s=0}^{\tilde{l}_{n}} \tilde{\alpha}_{0}^{(s)} f\left(n-\left(n+k-\tilde{l}_{n}+s\right) z\right)-n!f(z) \\
& \vdots \tag{20}\\
\varepsilon_{k}(z) & =\sum_{s=0}^{\tilde{l}_{n}} \tilde{\alpha}_{(\tilde{l}-1) n}^{(s)} f(n-(n+k-\tilde{l} n+s) z)-n!f(z) .
\end{align*}
$$

One can see that $\tilde{a}_{0}, \ldots, \tilde{a}_{(\tilde{l}-1) n}$ are equal to the vectors

$$
\begin{aligned}
a_{0} & =\left(\alpha_{0}^{(0)} \ldots \alpha_{0}^{(\tilde{l} n)}\right) \\
& \vdots \\
a_{(\tilde{l}-1) n} & =\left(\alpha_{(\tilde{l}-1) n}^{(0)} \ldots \alpha_{(\tilde{l}-1) n}^{(\tilde{l} n)}\right),
\end{aligned}
$$

defined for n and $\lambda=\tilde{l}$ in Lemma 1. So by this lemma, there exist positive integers $\tilde{K}_{0}, \ldots, \tilde{K}_{(\tilde{l}-1) n}$ such that $\tilde{K}_{0} \tilde{a}_{0}+\ldots+\tilde{K}_{(\tilde{l}-1) n} \tilde{a}_{(\tilde{l}-1) n}-\tilde{b}=0$ and $\tilde{K}_{0}+\ldots+\tilde{K}_{(\tilde{l}-1) n}=\tilde{l}^{n}$. Thus (19) and (20) imply

$$
\begin{gathered}
\tilde{K}_{0} \varepsilon_{n+k-\tilde{l}_{n}}(z)+\tilde{K}_{1} \varepsilon_{n+k-\tilde{l}_{n+1}}(z)+\ldots+\tilde{K}_{(\tilde{l}-1) n} \varepsilon_{k}(z) \\
=\tilde{\varepsilon}(z)+n!f(\tilde{l} z)-n!\tilde{l}^{n} f(z) \quad(z \in \mathbb{R}),
\end{gathered}
$$

that is

$$
\begin{gather*}
\varepsilon_{k}(z)=-\frac{1}{\tilde{K}_{(\tilde{l}-1) n}}\left(\tilde{K}_{0} \varepsilon_{n+k-\tilde{l} n}(z)+\tilde{K}_{1} \varepsilon_{n+k-\tilde{l}_{n+1}}(z)+\ldots\right. \\
\left.\ldots+\tilde{K}_{(\tilde{l}-1) n-1} \varepsilon_{k-1}(z)+\tilde{\varepsilon}(z)+n!\left(f(\tilde{l} z)-\tilde{l}^{n} f(z)\right)\right) \quad(z \in \mathbb{R}) . \tag{21}
\end{gather*}
$$

From

$$
\tilde{l}=\left[\frac{k-1}{n}\right]+1 \leq \frac{k-1}{n}+1 \leq \frac{(l-1) n-1+n}{n}<l
$$

together with the inductive hypothesis (7) we get:

$$
f(\tilde{l} z)-\tilde{l}^{n} f(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) .
$$

By (14) and (17)

$$
\varepsilon_{r}(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0)
$$

for $r=n+k-\tilde{l} n, \ldots, k-1$. Combining (21), (16) and the previous two formulae we get

$$
\varepsilon_{k}(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0) .
$$

II. Now we prove that under our assumptions $f(0)=0$ and

$$
\begin{equation*}
f(-z)-(-1)^{n} f(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0) . \tag{22}
\end{equation*}
$$

We consider the functions

$$
\varepsilon_{0}(z)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(k z)-n!f(z)
$$

and

$$
\varepsilon_{1}(z)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f((k-1) z)-n!f(z),
$$

defined in (8). By the well-known formulae

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{n}-n!=0
$$

and

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(k-1)^{n}-n!=0
$$

we can write the functions ε_{0} and ε_{1} in the form

$$
\begin{equation*}
\varepsilon_{0}(z)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\left(f(k z)-k^{n} f(z)\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{1}(z)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\left(f((k-1) z)-(k-1)^{n} f(z)\right) . \tag{24}
\end{equation*}
$$

In the first part of the proof we have shown that $\varepsilon_{0}(z)=o\left(z^{\alpha}\right), \varepsilon_{1}(z)=$ $o\left(z^{\alpha}\right)$ and $f(l z)-l^{n} f(z)=o\left(z^{\alpha}\right),(z \searrow 0, l=1, \ldots, n)$. This relation together with (23) implies $f(0)=0$, therefore, applying (24) we get

$$
f(-z)-(-1)^{n} f(z)=o\left(z^{\alpha}\right) \quad(z \searrow 0)
$$

which yields (22).
Finally, (6) and (22) prove Theorem 1.

Theorem 2. Let $\delta>0$ be a real number and $n \in \mathbb{N}$. If the function $f:[-\delta, \delta] \rightarrow \mathbb{R}$ satisfies the property

$$
\begin{equation*}
\Delta_{y}^{n} f(x)-n!f(y)=0 \quad(x \in[-\delta, 0], y, x+n y \in[0, \delta]) \tag{25}
\end{equation*}
$$

then for any integer l there exists a real number $\delta_{l}>0$ such that

$$
\begin{equation*}
f(l z)-l^{n} f(z)=0 \quad\left(z \in\left[-\delta_{l}, \delta_{l}\right]\right) . \tag{26}
\end{equation*}
$$

Proof. Let $\delta>0$ and $n \in \mathbb{N}$ be given and let $f:[-\delta, \delta] \rightarrow \mathbb{R}$ be a function satisfying (25). We prove that for an arbitrary integer l with $\delta_{l}=\frac{\delta}{|l| n}$ equation (26) holds.

The proof can be done in a similar way as in the proof of Theorem 1, therefore, we give the outline of the argument, only.

At first, we show by induction on l that for any $l \in \mathbb{N}$

$$
\begin{equation*}
f(l z)-l^{n} f(z)=0 \quad\left(z \in\left[-\frac{\delta}{l n}, \frac{\delta}{l n}\right]\right) . \tag{27}
\end{equation*}
$$

For $l>1$ we define the functions

$$
\varepsilon_{0}, \ldots, \varepsilon_{(l-1) n} \text { and } \varepsilon:\left[-\frac{\delta}{l n}, \frac{\delta}{l n}\right] \rightarrow \mathbb{R}
$$

by the same formula as in (8) and (9) and we use a similar method as in the proof of Theorem 1, to show that

$$
\varepsilon_{k}(z)=0 \quad\left(z \in\left[-\frac{\delta}{l n}, \frac{\delta}{l n}\right]\right)
$$

for $k=0, \ldots,(l-1) n$ and

$$
\varepsilon(z)=0 \quad\left(z \in\left[-\frac{\delta}{l n}, \frac{\delta}{l n}\right]\right)
$$

By Lemma 1

$$
\begin{aligned}
n!\left(f(l z)-l^{n} f(z)\right)= & K_{0} \varepsilon_{0}(z)+\ldots+K_{(l-1) n} \varepsilon_{(l-1) n}(z)-\varepsilon(z) \\
& \left(z \in\left[-\frac{\delta}{l n}, \frac{\delta}{l n}\right]\right),
\end{aligned}
$$

which proves (27).

To prove

$$
\begin{equation*}
f(-z)-(-1)^{n} f(z)=0 \quad\left(z \in\left[-\frac{\delta}{n}, \frac{\delta}{n}\right]\right) \tag{28}
\end{equation*}
$$

we consider the functions ε_{0} and ε_{1} on the interval $\left[-\frac{\delta}{n^{2}}, \frac{\delta}{n^{2}}\right]$. Here we have

$$
\varepsilon_{0}(z)=0 \quad\left(z \in\left[-\frac{\delta}{n^{2}}, \frac{\delta}{n^{2}}\right]\right)
$$

and

$$
\varepsilon_{1}(z)=0 \quad\left(z \in\left[-\frac{\delta}{n^{2}}, \frac{\delta}{n^{2}}\right]\right)
$$

therefore, we get, by the method used in the second part of the proof of Theorem 1, that

$$
f(-z)-(-1)^{n} f(z)=0 \quad\left(z \in\left[-\frac{\delta}{n^{2}}, \frac{\delta}{n^{2}}\right]\right),
$$

from which with

$$
f(2 z)-2^{n} f(z)=0 \quad\left(z \in\left[-\frac{\delta}{2 n}, \frac{\delta}{2 n}\right]\right)
$$

(28) follows.

Finally, (28) together with (27) implies (26).
Theorem 3. Let $\delta>0$ be a real number and $n \in \mathbb{N}$. If the function $f:[-\delta, \delta] \rightarrow \mathbb{R}$ satisfies property (25), then there exists a real number $\bar{\delta}>0$ such that

$$
\begin{equation*}
\Delta_{y}^{n} f(x)-n!f(y)=0 \tag{29}
\end{equation*}
$$

for $x, y, x+n y \in[-\bar{\delta}, \bar{\delta}]$.
Proof. Let $\delta>0$ and $n \in \mathbb{N}$ be given numbers and let $f:[-\delta, \delta] \rightarrow \mathbb{R}$ be a function with property (25). Let, furthermore, $\bar{\delta}=\frac{\delta}{2 n}$ and \bar{x} and \bar{y} be fixed numbers for which $\bar{x}, \bar{y}, \bar{x}+n \bar{y} \in[-\bar{\delta}, \bar{\delta}]$.

It is trivial, that in the case when $\bar{y}=0$ equation (29) holds. For an arbitrary function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ we have the simple formula

$$
\Delta_{y}^{n} \varphi(x)=(-1)^{n} \Delta_{-y}^{n} \varphi(x+n y) \quad(x, y \in \mathbb{R})
$$

so by

$$
f(-y)-(-1)^{n} f(y)=0 \quad(y \in[-\bar{\delta}, \bar{\delta}]),
$$

which was proved in Theorem 2, we can write

$$
\begin{gathered}
\Delta_{y}^{n} f(x)-n!f(y)=(-1)^{n}\left(\Delta_{-y}^{n} f(x+n y)-n!f(-y)\right) \\
(x, y, x+n y \in[-\bar{\delta}, \bar{\delta}]) .
\end{gathered}
$$

Therefore, we may suppose that $\bar{y} \in(0, \bar{\delta}]$.
In the case when $\bar{x} \in[-\bar{\delta}, 0]$ and $\bar{x}+n \bar{y} \in[0, \bar{\delta}]$, (29) comes from (1). If $\bar{x}, \bar{x}+n \bar{y} \in[-\bar{\delta}, 0]$ and $\bar{y} \in(0, \bar{\delta}]$ since

$$
\begin{aligned}
\Delta_{y}^{n} f(x)-n!f(y) & =(-1)^{n} \Delta_{-y}^{n} f(-x)-(-1)^{n} n!f(-y) \\
& =\Delta_{y}^{n} f(-x-n y)-n!f(y) \quad(x, y, x+n y \in[-\bar{\delta}, \bar{\delta}])
\end{aligned}
$$

with $\tilde{x}=-\bar{x}-n \bar{y}$ we get $\tilde{x}, \bar{y}, \tilde{x}+n \bar{y} \in(0, \bar{\delta}]$, which means that we may suppose that $\bar{x} \in(0, \bar{\delta}]$. Therefore, it is sufficient to prove (29) for $\bar{x}, \bar{y} \in(0, \bar{\delta}]$.

If \bar{x} and \bar{y} have these properties, then there exist natural numbers m such that $\bar{x}-m \bar{y} \leq 0$. Let m_{0} be the smallest natural number with this property and we define $x_{\mu}^{*}=\bar{x}-\left(m_{0}-\mu\right) \bar{y}$ for $\mu=0, \ldots, m_{0}$.

We prove by induction on μ that by

$$
\begin{equation*}
c_{\mu}:=\Delta_{\bar{y}}^{n} f\left(x_{\mu}^{*}\right)-n!f(\bar{y}) \tag{30}
\end{equation*}
$$

$c_{\mu}=0$ for $\mu=0, \ldots, m_{0}$, which with $\mu=m_{0}$ implies

$$
\Delta_{\bar{y}}^{n} f(\bar{x})-n!f(\bar{y})=0,
$$

which is our statement.
By (25), obviously, $c_{0}=0$.
Let $\mu \in\left\{1, \ldots, m_{0}\right\}$ and suppose that $c_{\nu}=0$ is already proved for $\nu=0, \ldots, \mu-1$. Taking

$$
x=x_{\mu}^{*}-i \bar{y}, \quad y=\bar{y} \quad(i=1, \ldots, n)
$$

and

$$
x=x_{\mu}^{*}-n \bar{y}, \quad y=2 \bar{y},
$$

respectively, the inductive hypothesis and (25) lead to

$$
\Delta_{\bar{y}}^{n} f\left(x_{\mu}^{*}-i \bar{y}\right)-n!f(\bar{y})=0 \quad(i=1, \ldots, n)
$$

and

$$
\Delta_{2 \bar{y}}^{n} f\left(x_{\mu}^{*}-n \bar{y}\right)-n!f(2 \bar{y})=0
$$

It is easy to see that with the notation of Lemma 1 (for $\lambda=2$) we can write these equations as follows

$$
\begin{equation*}
\sum_{k=0}^{2 n} \alpha_{i}^{(k)} f\left(x_{\mu}^{*}+(n-k) \bar{y}\right)-n!f(\bar{y})=0 \quad(i=1, \ldots, n) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{2 n} \beta^{(k)} f\left(x_{\mu}^{*}+(n-k) \bar{y}\right)-n!f(2 \bar{y})=0 . \tag{32}
\end{equation*}
$$

Furthermore, (30) has the form

$$
\begin{equation*}
\sum_{k=0}^{2 n} \alpha_{0}^{(k)} f\left(x_{\mu}^{*}+(n-k) \bar{y}\right)-n!f(\bar{y})=c_{\mu} . \tag{33}
\end{equation*}
$$

By Lemma 1 for $a_{i}=\left(\alpha_{i}^{(0)}, \ldots, \alpha_{i}^{(2 n)}\right),(i=0, \ldots, n)$ and
$b=\left(\beta^{(0)}, \ldots, \beta^{(2 n)}\right)$ there exist positive integers K_{0}, \ldots, K_{n} such that $K_{0} a_{0}+\ldots+K_{n} a_{n}-b=0$ and $K_{0}+\cdots+K_{n}=2^{n}$. Therefore, by the equations in (31), (32) and (33) we get

$$
-\left(K_{0}+\cdots+K_{n}\right) n!f(\bar{y})+n!f(2 \bar{y})=K_{0} c_{\mu}
$$

that is

$$
-2^{n} n!f(\bar{y})+n!f(2 \bar{y})=K_{0} c_{\mu} .
$$

By Theorem 2 we have $f(2 \bar{y})-2^{n} f(\bar{y})=0$, which implies $c_{\mu}=0$.
Theorem 4. Let n be a natural number and $\alpha>n$ be a real number. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\Delta_{y}^{n} f(x)-n!f(y)=o\left(y^{\alpha}\right) \quad((x, y) \rightarrow(0,0), x \leq 0 \leq x+n y) \tag{1}
\end{equation*}
$$

then there exists a monomial function $g: \mathbb{R} \rightarrow \mathbb{R}$ of degree n such that

$$
\begin{equation*}
f(x)-g(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0) . \tag{2}
\end{equation*}
$$

Proof. Let $n \in \mathbb{N}$ and $\alpha>n, \alpha \in \mathbb{R}$ be given. For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (1) Theorem 1 implies

$$
\begin{equation*}
f(l z)-l^{n} f(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0) \tag{34}
\end{equation*}
$$

for any integer l. Let now $l \in \mathbb{N}, l>1$ be fixed. It is easy to see, that (34) is equivalent to the following statement: there exist a real number $\delta>0$ and a continuous, increasing function $h:[0, \delta] \rightarrow \mathbb{R}$ with the property $\lim _{z \backslash 0} h(z)=0$ such that

$$
\left|f(l z)-l^{n} f(z)\right| \leq|z|^{\alpha} h(|z|) \quad(z \in[-\delta, \delta]) .
$$

Therefore, for an arbitrary $z_{0} \in[-\delta, \delta]$ and $k \in \mathbb{N}$ we have

$$
\left|f\left(\frac{z_{0}}{l^{k-1}}\right)-l^{n} f\left(\frac{z_{0}}{l^{k}}\right)\right| \leq \frac{\left|z_{0}\right|^{\alpha}}{l^{k \alpha}} h\left(\frac{\left|z_{0}\right|}{l^{k}}\right)
$$

With

$$
\varepsilon_{k}\left(z_{0}\right):=l^{(k-1) n} f\left(\frac{z_{0}}{l^{k-1}}\right)-l^{k n} f\left(\frac{z_{0}}{l^{k}}\right)
$$

we get

$$
\left|\varepsilon_{k}\left(z_{0}\right)\right| \leq l^{(k-1) n} \frac{\left|z_{0}\right|^{\alpha}}{l^{k \alpha}} h\left(\frac{\left|z_{0}\right|}{l^{k}}\right)
$$

and the monotony of h yields

$$
\begin{equation*}
\left|\varepsilon_{k}\left(z_{0}\right)\right| \leq \frac{1}{l^{k(\alpha-n)}} \frac{\left|z_{0}\right|^{\alpha}}{l^{n}} h\left(\left|z_{0}\right|\right) . \tag{35}
\end{equation*}
$$

For an arbitrary $N \in \mathbb{N}$ we obtain

$$
\begin{equation*}
\varepsilon_{1}\left(z_{0}\right)+\cdots+\varepsilon_{N}\left(z_{0}\right)=f\left(z_{0}\right)-l^{N n} f\left(\frac{z_{0}}{l^{N}}\right) . \tag{36}
\end{equation*}
$$

Since $\alpha>n$

$$
\sum_{k=1}^{\infty} \frac{1}{l^{k(\alpha-n)}}=\frac{1}{l^{\alpha-n}-1},
$$

therefore,

$$
\sum_{k=1}^{\infty} \varepsilon_{k}\left(z_{0}\right)
$$

is convergent, so the limit

$$
\begin{equation*}
g\left(z_{0}\right)=\lim _{k \rightarrow \infty} l^{k n} f\left(\frac{z_{0}}{l^{k}}\right) \tag{37}
\end{equation*}
$$

exists, and (35) and (36) yield

$$
\left|f\left(z_{0}\right)-g\left(z_{0}\right)\right| \leq \frac{1}{l^{\alpha-n}-1} \frac{\left|z_{0}\right|^{\alpha}}{l^{n}} h\left(\left|z_{0}\right|\right),
$$

which implies (2).
For $x \in[-\delta, 0], x+n y \in[0, \delta]$ by (1) we have

$$
\lim _{k \rightarrow \infty} \frac{\Delta_{\frac{y}{k^{k}}}^{n} f\left(\frac{x}{l^{k}}\right)-n!f\left(\frac{y}{l^{k}}\right)}{\left(\frac{y}{l^{k}}\right)^{\alpha}}=0
$$

and (37) gives

$$
\Delta_{y}^{n} g(x)-n!g(y)=\lim _{k \rightarrow \infty} l^{k n}\left(\Delta_{\frac{y}{l^{k}}}^{n} f\left(\frac{x}{l^{k}}\right)-n!f\left(\frac{y}{l^{k}}\right)\right)=0,
$$

which together with Theorem 3 show that there exists a real number $\bar{\delta}>0$ such that g is a monomial function of degree n on the interval $[-\bar{\delta}, \bar{\delta}]$. This result and the known extension theorem for monomial functions (cf. [5], for instance) imply our statement.

3. Locally additive functions with order $\alpha \neq 1$

Lemma 2. Let δ be a positive real number and $f:[-\delta, \delta] \rightarrow \mathbb{R}$. If there exists a real number $K \geq 0$ such that

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)| \leq K \quad(x \in[-\delta, 0], y, x+y \in[0, \delta]), \tag{38}
\end{equation*}
$$

then we have

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)| \leq 3 K \tag{39}
\end{equation*}
$$

for all $x, y, x+y \in[-\delta, \delta]$.
Proof. Let \bar{x} and \bar{y} be fixed real numbers such that $\bar{x}, \bar{y}, \bar{x}+\bar{y} \in$ $[-\delta, \delta]$. Then we have one of the following relations:
(A) $\bar{x} \in[-\delta, 0], \bar{y} \in[0, \delta], \bar{x}+\bar{y} \in[0, \delta]$;
(B) $\bar{x} \in[-\delta, 0], \bar{y} \in[0, \delta], \bar{x}+\bar{y} \in[-\delta, 0]$;
(C) $\bar{x} \in[0, \delta], \bar{y} \in[0, \delta], \bar{x}+\bar{y} \in[0, \delta]$;
(D) $\bar{x} \in[-\delta, 0], \bar{y} \in[-\delta, 0], \bar{x}+\bar{y} \in[-\delta, 0]$;
(E) $\bar{x} \in[0, \delta], \bar{y} \in[-\delta, 0], \bar{x}+\bar{y} \in[0, \delta]$;
(F) $\bar{x} \in[0, \delta], \bar{y} \in[-\delta, 0], \bar{x}+\bar{y} \in[-\delta, 0]$;

Case (A) is trivial.
In case (B) we get the following inequalities from (38):
$-|f(\bar{y})-f(\bar{x}+\bar{y})-f(-\bar{x})| \leq K$, with $x=\bar{x}+\bar{y}$ and $y=-\bar{x}$;
$-|-f(0)+f(\bar{x})+f(-\bar{x})| \leq K$, with $x=\bar{x}$ and $y=-\bar{x}$;
$-|f(\bar{y})-f(0)-f(\bar{y})| \leq K$, with $x=0$ and $y=\bar{y}$;
and the addition of these inequalities implies (39).
In case (F) we get (39) by case (B) and with $x=\bar{y}$ and $y=\bar{x}$.
The remaining cases can be treated by the substitutions $x=-\bar{y}$ and $y=\bar{y} ; x=-\bar{y}$ and $y=\bar{x}+\bar{y} ; x=0$ and $y=\bar{y}$ in case (C);
$x=\bar{y}$ and $y=-\bar{y} ; x=\bar{x}$ and $y=-\bar{x}-\bar{y} ; x=\bar{x}+\bar{y}$ and $y=-\bar{x}-\bar{y}$
in case (D); $x=\bar{y}$ and $y=\bar{x}$ in case (E), respectively.
Theorem 5. Let $\alpha \geq 0 \alpha \neq 1$ be a real number and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the property

$$
\begin{equation*}
f(x+y)-f(x)-f(y)=o\left(y^{\alpha}\right) \quad(x \leq 0 \leq x+y, y \searrow 0) . \tag{40}
\end{equation*}
$$

Then there exists an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)-a(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0) .
$$

Proof. For $\alpha>1$ the statement is proved in Theorem 4.
In the sequel, $\alpha \in[0,1)$. In this case the proof is similar to some reasoning in [7].

By (40) there exist real numbers $\delta>0$ and $K>0$ such that

$$
|f(x+y)-f(x)-f(y)| \leq K \quad(x \in[-\delta, 0], y, x+y \in[0, \delta])
$$

hence from Lemma 2 we have

$$
|f(x+y)-f(x)-f(y)| \leq 3 K \quad(x, y, x+y \in[-\delta, \delta])
$$

Z. Kominek proved ([4], Lemma 1) that this property implies the existence of an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
|f(x)-a(x)| \leq 12 K \quad(x \in[-\delta, \delta]) .
$$

For the function $\varepsilon:[-\delta, \delta] \rightarrow \mathbb{R}, \varepsilon(x)=f(x)-a(x)$ we have $\varepsilon(0)=0$ and by Theorem 1

$$
\varepsilon(2 z)-2 \varepsilon(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0)
$$

It is easy to see, that this property is equivalent to the following: there exist a real number $\delta_{1}>0$ and a continuous, increasing function $h:\left[0, \delta_{1}\right] \rightarrow \mathbb{R}$ such that $\lim _{z \backslash 0} h(z)=0$ and

$$
|\varepsilon(2 z)-2 \varepsilon(z)| \leq|z|^{\alpha} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

Introducing the function

$$
\bar{\varepsilon}(z)= \begin{cases}\frac{\varepsilon(z)}{|z|^{\alpha}}, & \text { if } z \in\left[-\delta_{1}, \delta_{1}\right], z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

we have

$$
\left.\left.\left||z|^{\alpha} \bar{\varepsilon}(z)-\frac{1}{2} 2^{\alpha}\right| z\right|^{\alpha} \bar{\varepsilon}(2 z)\left|\leq \frac{1}{2}\right| z\right|^{\alpha} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

and

$$
\left|\bar{\varepsilon}(z)-2^{\alpha-1} \bar{\varepsilon}(2 z)\right| \leq \frac{1}{2} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

Write

$$
s_{k}=\sup \left\{|\bar{\varepsilon}(z)|\left|\frac{\delta_{1}}{2^{k}} \leq|z| \leq \frac{\delta_{1}}{2^{k-1}}\right\} \quad(k \in \mathbb{N}) .\right.
$$

Then

$$
s_{k+1} \leq 2^{\alpha-1} s_{k}+\frac{1}{2} h\left(\frac{\delta_{1}}{2^{k}}\right), \quad(k \in \mathbb{N})
$$

therefore, $\lim _{k \rightarrow \infty} s_{k}=0$ and

$$
\varepsilon(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0) .
$$

References

[1] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
[2] A. Gilányi, A characterization of monomial functions (to appear in Aequationes Math.).
[3] A. Gilányi, A remark to a characterization of monomial functions (to appear).
[4] Z. Kominek, On the local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), 499-507.
[5] ZS. PÁLES, Extension theorems for functional equations with bisymmetric operations (preprint).
[6] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, Results in Math. 26 (1994), 382-384.
[7] A. Simon and P. Volkmann, Perturbations de fonctions additives (to appear).
[8] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atti della Accademia delle Scienze di Torino, I. Classe 117 (1983), 377-389.
[9] F. Skof, Sulla stabilità dell'equazione funzionale quadratica su un dominio ristretto, Atti della Accademia delle Scienze di Torino 121 5-6 (1987), 153-167.
[10] L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Sci. Publ. Co., Singapore, 1991.

ATTILA GILÁNYI
INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, P.O.BOX 12
HUNGARY
E-mail: gil@math.klte.hu
(Received March 20, 1997)

[^0]: Mathematics Subject Classification: Primary 39B22; Secondary 26A24.
 Key words and phrases: monomial function, polynomial function, stability, intervalderivative.
 Research supported by the Hungarian National Science Foundation no. OTKA T-016846.

