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On Finsler spaces of Douglas type
A generalization of the notion of Berwald space

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Dedicated to Professor Lajos Tamássy on his 75th birthday

Abstract. A new generalization of the notion of Berwald space is proposed from
the viewpoint of the equation of geodesics. A Douglas space is characterized by the
vanishing Douglas tensor. Various examples of Douglas spaces are given in relation to
other special Finsler spaces.

1. Introduction

We consider a geodesic curve C : xi = xi(t), t0 ≤ t ≤ t1, of an
n-dimensional Finsler space Fn = (Mn, L(x, y)) on a smooth n-manifold
Mn, equipped with the fundamental function L(x, y), x = (xi), y = (yi).
C is the extremal of the length integral s =

∫ t1
t0

L(x, ẋ)dt, ẋi = dxi/dt,
given by the Euler equation

(1.1) Ei(C) =
d

dt
L(i) − Li = 0,

where L(i) = ∂̇iL and Li = ∂iL. Putting F = L2/2, we get the fundamen-
tal tensor gij = ∂̇j ∂̇iF and the well-known functions

2Gj = (∂̇j∂rF )yr − ∂jF.

This work was supported in part by the Ministry of Culture and Education of Hungary
under Grant no. FKFP 0457.
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Then, (gij) = (gij)−1 and Gi = gijGj , we get

LgijEj(C) = ẍi + 2Gi(x, ẋ)− s̈

ṡ
ẋi = 0.

Consequently C is given by the system of differential equations

(1.2) ẍiẋj − ẍj ẋi + 2Dij(x, ẋ) = 0,

where we put

(1.3) Dij(x, y) = Gi(x, y)yj −Gj(x, y)yi.

We are, in particular, concerned with a two-dimensional Finsler space
F 2 with a local coordinate system (x1, x2) = (x, y) and we put (y1, y2) =
(p, q). Let us take x as a parameter of curves and denote y′ = dy/dx =
q/p and y′′ = d2y/dx2 = (pq̇ − ṗq)/p3. Since Dij(x, y; p, q) are posi-
tively homogeneous in (p, q) of degree three, we have Dij(x, y; p, q) =
p3Dij(x, y; 1, q/p), provided p > 0. Consequently (1.2) can be written
in the form

y′′ = 2{G1(x, y; 1, y′)y′ −G2(x, y; 1, y′)}.
We consider the Berwald connection BΓ = (Gi

j
k, Gi

j) ([1], [13]), which
is given by Gi

j = ∂̇jG
i and Gj

i
k = ∂̇kGi

j . Then we get 2Gi = Gj
i
kyjyk,

and the equation above can be written in the form

(1.4) y′′ = X3(y′)3 + X2(y′)2 + X1y
′ + X0,

where we put

(1.4a)
X3 = G2

1
2, X2 = 2G1

1
2 −G2

2
2,

X1 = G1
1
1 − 2G1

2
2, X0 = −G1

2
1.

Suppose that the F 2 under consideration is a Berwald space ([1], [13]),
that is, Gj

i
k are functions of position (x, y) alone. Then the X’s of (1.4a)

are functions of (x, y) and, in consequence, (1.4) shows that the right-hand
side of the equation y′′ = f(x, y, y′) of a geodesic is a polynomial in y′ of
degree at most three. If our discussion is restricted to Riemannian space
of dimension two, then Gj

i
k are Christoffel symbols, and hence f(x, y, y′)

is, of course, a polynomial in y′ of degree at most three for all geodesics of
any two-dimensional Riemannian space.

The remarkable property of y′′ = f(x, y, y′) as above given does not
depend on the choice of coordinates (x, y). In fact, we have the following
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Lemma. We consider an ordinary differential equation of second order

having the following form

(1.5) y′′ = Y3(y′)3 + Y2(y′)2 + Y1y
′ + Y0,

where the Y ’s are functions of (x, y). This special form is preserved under

any transformation of variables.

Proof. Suppose that we have a differential equation

ȳ′′ = Ȳ3(ȳ′)3 + Ȳ2(ȳ′)2 + Ȳ1ȳ
′ + Ȳ0,

where ȳ′ = dȳ/dx̄ and the Ȳ ’s are functions of (x̄, ȳ). Let us consider
a transformation (x̄, ȳ) → (x, y), given by x̄ = f(x, y) and ȳ = g(x, y).
Then it is easy to find the transformed equation from (1.5) with the Y ’s
as coefficients as follows: Putting J = fxgy − fygx, we obtain

JY3 = g3
yȲ3 + g2

yfyȲ2 + gyf2
y Ȳ1 + f3

y Ȳ0 − fygyy + fyygy,

JY2 = 3gxg2
yȲ3 + (fxgy + 2fygx)gyȲ2 + (fygx + 2fxgy)fyȲ1

+ 3fxf2
y Ȳ0 − fxgyy + gxfyy + 2(fxygy − gxyfy),

JY1 = 3g2
xgyȲ3 + (fygx + 2fxgy)gxȲ2 + (fxgy + 2fygx)fxȲ1

+ 3f2
xfyȲ0 − fygxx + gyfxx + 2(fxygx − gxyfx),

JY0 = g3
xȲ3 + g2

xfxȲ2 + gxf2
x Ȳ1 + f3

x Ȳ0 − fxgxx + fxxgx.

It is observed from the above that “Y3 = 0”, for instance, is not preserved
by such a transformation of variables.

The following proposition is obvious from the definition (1.3) and the
homogeneity of Dij :

Proposition 1. The right-hand side of the equation (1.4) is a poly-

nomial in y′ of degree at most three, if and only if D12(x, y; p, q) is a

homogeneous polynomial in (p, q) of degree three.

The Lemma suggests that the differential equation of the type (1.5)
will also be of great value and interest from a geometrical point of view. In
fact, E. Cartan ([7], p. 242) defines a projective connection and constructs
two-dimensional differential-geometric entities.
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2. Douglas space

Definition. A Finsler space is said to be of Douglas type or a Douglas
space, if Dij = Giyj−Gjyi are homogeneous polynomials in (yi) of degree
three.

Theorem 1. A two-dimensional Finsler space is a Douglas space if and

only if, in a local coordinate system (x, y), the right-hand side f(x, y, y′)
of the equation of geodesics y′′ = f(x, y, y′) is a polynomial in y′ of degree

at most three.

We treat of a Finlser space Fn with the Berwald connection BΓ =
(Gj

i
k, Gi

j). Fn is by definition a Douglas space if and only if

∂̇k∂̇j ∂̇i∂̇h(Glym −Gmyl) = 0.

We have first for Dlm = Glym −Gmyl

∂̇hDlm = Gl
hym + Glδm

h − [l, m],

where [l, m] denotes the interchange of indices (l, m) of the preceding terms.
Next

∂̇i∂̇hDlm = Gh
l
iy

m + Gl
hδm

i + Gl
iδ

m
h − [l, m],

∂̇j ∂̇i∂̇hDlm = Gh
l
ijy

m + {Gh
l
iδ

m
j + (h, i, j)} − [l,m],

where (h, i, j) denotes the cyclic permutation of the indices (h, i, j) of the
preceding terms in the parentheses and Gh

l
ij = ∂̇j Gh

l
i = ∂̇j ∂̇i∂̇hGl are

the components of the hv-curvature tensor of BΓ ([1], p. 86; [13], p. 118).
Further, introducing the tensor Gh

l
ijk = ∂̇kGh

l
ij , we obtain

(2.1) ∂̇k∂̇j ∂̇i∂̇hDlm(= Dlm
hijk) = Gh

l
ijkym +{Gh

l
ijδ

m
k +(h, i, j, k)}− [l,m],

where (h, i, j, k) is the symbol analogous to (h, i, j). Dlm
hijk are components

of a tensor and Dlm
hijk = 0 is necessary and sufficient for Fn to be a Douglas

space. By Gh
l
ijry

r = −Gh
l
ij , (2.1) yields

(2.2) Dlr
hijr = (n + 1)Dh

l
ij ,
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where Dh
l
ij are components of the well-known Douglas tensor ([1], (3.3.2.7);

[4]; [11]):

(2.3) Dh
l
ij = Gh

l
ij − 1

n + 1
Ghijy

l − 1
n + 1

{Ghiδ
l
j + (h, i, j)},

where Ghi = Gh
r
ir is the hv-Ricci tensor of BΓ and Ghij = ∂̇jGhi =

Gh
r
irj . Therefore the Douglas tensor must vanish for Fn.
Conversely, if the Douglas tensor of an Fn vanishes identically, then

Fn is a Douglas space, because it is easy to show the following equality:

(2.4) Dlm
hijk = (∂̇kDh

l
ij)ym + {Di

l
jkδm

h + (h, i, j, k)} − [l, m].

Therefore we have the following

Theorem 2. A Finsler space is of Douglas type, if and only if the
Douglas tensor vanishes identically.

Historical remark. It is well-known that the Douglas tensor (2.3) has
been introduced first by J. Douglas in 1928 in his paper on the general
geometry of paths [8]. He used the German letter H to show this tensor ([8],
(5.10), (5.11)), because the Roman letter H was already used to show the
hv-curvature tensor G. In Berwald’s paper [5], published in 1941, he
proved that a two-dimensional Landsberg space with vanishing Douglas
tensor is a Berwald space ([5], p. 110). In one of his posthumous papers [6],
published in 1947, he used the letter D to denote the Douglas tensor which
is preserved invariant under projective change, and showed that D = 0 is
one half of the necessary and sufficient conditions for a generalized affine
space to be projectively flat. The Douglas tensor also appeared in H.
Rund’s monograph ([20], p. 143), denoted by the letter B.

In 1980 Z. I. Szabó’s paper [21] on the global foundations of Finsler
projective geometry was published; he denoted the Douglas tensor by the
letter D ([21], (3.3), (3.11)) and proposed first the name “Douglas ten-
sor”. Almost simultaneously the second author of the present paper was
concerned with this tensor ([11], (2.10)) and called it the projective hv-
curvature tensor or the Douglas tensor.

Recently the first author of the present paper considered n(>2)-di-
mensional Lansdberg spaces with vanishing Douglas tensor, and proved an
extension of Berwald’s theorem as above. This theorem was supplemented
and completed by the present authors [4].

Using the name “Douglas space”, this theorem can be stated as fol-
lows:
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Theorem 3. If a Finsler space Fn(n ≥ 2) is a Landsberg space and a

Douglas space, then it is a Berwald space. Conversely a Berwald space is

a Landsberg space and a Douglas space.

As is well-known, the Douglas tensor is projectively invariant. Hence
we have the

Theorem 4. If a Finsler space is projectively related to a Douglas

space, then it is also a Douglas space.

Example 1. In a previous paper of the second author [16] it is shown
that the family of solutions of a second order linear differential equation

y′′ + P (x)y′ + Q(x)y = R(x)

coincides with the family of geodesics of the two-dimensional Finsler space
F 2 with the metric

L(x, y; p, q) =
1
p
e
R

Pdx[(2R−Qy)yp2 + q2] + Exp + Eyq,

where E = E(x, y) is an arbitrary function. Consequently this F 2 is a
Douglas space. It is observed that this metric is of Kropina type (cf. The-
orem 8).

3. Douglas spaces with projective connection

It seems that the Douglas tensor has made a contribution only to the
theory of projective changes.

A Finsler space Fn is said to be projectively related or projective to
another Finsler space F̄n, if any geodesic of Fn is a geodesic of F̄n and
vice versa. The condition for it is written as

(3.1) Ḡi = Gi + Pyi,

where P = P (x, y) is a scalar function. The change Fn → F̄n is called
projective.

From (3.1) we have

Ḡh
i = Gh

i + Piy
h + Pδh

i ,(3.2)

Ḡi
h
j = Gi

h
j + Pijy

h + Piδ
h
j + Pjδ

h
i ,(3.3)
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where Pi = ∂̇iP and Pij = ∂̇jPi. If we put G = Gr
r, then (3.1) and (3.2)

give

Ḡ = G + (n + 1)P, Ḡh − Ḡ

n + 1
yh = Gh − G

n + 1
yh,

which gives rise to a projective invariant

(3.4) Qh = Gh − G

n + 1
yh, G = Gr

r.

Putting Qh
i = ∂̇iQ

h and Qi
h
j = ∂̇jQ

h
i , we have

(3.5) Qi
h
j = Gi

h
j − 1

n + 1
(Gijy

h + Gr
r
iδ

h
j + Gr

r
jδ

h
i ).

Finally we get a remarkable expression of the Douglas tensor as follows:

(3.6) ∂̇k∂̇j ∂̇iQ
h = Di

h
jk.

Remark. Though K. Yano’s notation in his monograph [23] is quite
different from our notation, his (9.28), p. 197 is just the same with our (3.6).
See [11], (5.1).

We are led from (3.6) and Theorem 2 to the

Theorem 5. A Finsler space is of Douglas type, if and only if Qh

of (3.4) are homogeneous polynomials in (yi) of degree two.

Let Fn be a Douglas space. Then Qi
h
j of (3.5) are functions of posi-

tion (x) alone and we may put

Qi
h
j(x)yiyj = 2Gh − 2

n + 1
Gr

ry
h,

which implies

(3.7) 2Dhk = (Qi
h
j(x)yiyj)yk − [h, k].

Proposition 2. For a Douglas space, Dhk = Ghyk −Gkyh are homo-

geneous polynomials in (yi) of degree three as written in the form (3.7).

In particular, for a two-dimensional Douglas space, the equation of
geodesics y′′ = f(x, y, y′) is written as (1.5). As it is seen from (1.4), (1.5)
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is written in more convenient form as

(3.8) y′′ = Q2
1
2(y′)3 + (2Q1

1
2 −Q2

2
2)(y′)2 + (Q1

1
1 − 2Q1

2
2)y′ −Q1

2
1,

where Qj
i
k = Qj

i
k(x).

We consider a Finsler space Fn with the projective connection PΓ =
(Pj

i
k, Gi

j) [14], where the h-connection coefficients Pj
i
k are given by

(3.9) Pj
i
k = Gj

i
k − 1

n + 1
Gjkyi.

Since Gjk = Gj
r
kr is a tensor, called the hv-Ricci tensor, (Pj

i
k) define

certainly a horizontal connection ([13], §9). It is noteworthy that Pj
i
k

appear in (3.5):

(3.5’) Qj
i
k = Pj

i
k − 1

n + 1
(Gr

r
jδ

i
k + Gr

r
kδi

j).

Remark. In Yano’s monograph [23] the Pj
i
k are denoted by the Greek

letter Π ((9.11), p. 196), and called the connection coefficients of the nor-
mal projective connection. On the other hand, the name “projective con-
nection coefficients” appears in Rund’s monograph [20], p. 142, and coin-
cides with Qi

h
j of (3.5). Rund writes:

They define a projective covariant derivative in the same manner as
the Gj

i
k give rise to a covariant derivative. However the projective covari-

ant derivatives of a tensor are not, in general, tensors.
Thus it is sure that Rund did not recognize the entity (Qj

i
k) as a

connection in the modern sense; nevertheless, how many strange papers
have been devoted to studying Rund’s theory of projective connection!

According to the theory of the paper [14], our PΓ is symmetric and
L-metrical: L;i = 0. Its deflection tensor yrPr

i
k − Gi

k vanishes and the
(v)hv-torsion tensor Uj

i
k = ∂̇kGi

j − Pk
i
j is given by

(3.10) Uj
i
k =

1
n + 1

yiGjk.

The hv-curvature tensor of PΓ, denoted by Ui
h
jk, is equal to ∂̇kPi

h
j , which

is written as

(3.11) Ui
h
jk = Gi

h
jk − 1

n + 1
(Gijkyh + Gijδ

h
k ).
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Since the hv-Ricci tensor is Uij = Ui
r
jr = 2Gij/(n + 1), (2.3) and (3.11)

lead to the expression of the Douglas tensor in terms of PΓ as follows:

(3.12) Di
h
jk = Ui

h
jk − 1

2
(δh

i Ujk + δh
j Uik).

Consequently we have the

Theorem 6. In terms of the projective connection PΓ a Douglas space
is characterized by the equation

Ui
h
jk =

1
2
(δh

i Ujk + δh
j Uik),

where Ui
h
jk and Uij are the hv-curvature tensor and the hv-Ricci tensor.

Remark. On p. 244 of Cartan’s monograph [7] we find the differential
equation

d2v

du2
= Π2

1
2

(
dv

du

)3

+ (2Π1
1
2 + Π2

1
1)

(
dv

du

)2

+ (2Π1
1
1 −Π1

2
2)

dv

du
−Π1

2
1,

where Πj
i
k = Πj

i
k(u, v) are coefficients of Cartan’s projective connection.

It is seemingly analogous to (3.8), but Qj
i
k of (3.8) are not the projective

connection PΓ; however Pj
i
k may depend on (yi) of (xi, yi).

4. Wagner spaces of Douglas type

The notion of Wagner space was originally defined by V.V. Wag-
ner in 1943 [22] and established strictly from the modern standpoint by
M. Hashiguchi in 1975 [9] (cf. [2]; [13], Definition 25.4).

Let si(x) be components of a covariant vector field on an n-manifold
M . Then the Wagner connection WΓ(s) = (Fj

i
k, N i

j , Cj
i
k) of a Finsler

space Fn = (Mn, L(x, y)) is by definition a Finsler connection which is
uniquely determined by the following five axioms:

(1) h-metrical: gij|k = 0,
(2) (h)h-torsion tensor Tj

i
k = Fj

i
k − Fk

i
j is given by Tj

i
k =

δi
jsk − δi

ksj .
(3) deflection tensor: Di

j = yrFr
i
j −N i

j = 0,
(4) v-metrical: gij |k = 0,
(5) (v)v-torsion tensor: Sj

i
k = Cj

i
k − Ck

i
j = 0.
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Thus WΓ(s) is not intrinsically defined in Fn, but is a geometrical
structure on Mn given by L(x, y) together with si(x).

A Finsler space Fn is called a Wagner space, if its WΓ(s) is linear,
that is, Fj

i
k are functions of position (xi) alone. Consequently the notion

of Wagner space is regarded as a generalization of Berwald space.
Let CΓ = (Γ∗ijk, Gi

j , Cj
i
k) be the Cartan connection of a Finsler space

with a Wagner connection WΓ(s). The difference Dj
i
k = Fj

i
k − Γ∗ijk of

WΓ(s) from CΓ is given [2] by

Dj
i
k = Vj

i
krs

r, sr = grisi(x),(4.1)

Vj
i
kh = gjkδi

h − gjhδi
k − Cj

i
hyk − Ck

i
hyj + Cj

i
kyh(4.1a)

+ Cjkhyi + L2(Sj
i
kh + Cj

i
rCk

r
h),

where yi = giry
r = LL(i) and Sj

i
kh is the v-curvature tensor of CΓ.

Consequently we have

V0
i
0h = L2hi

h, D0
i
0 = L2si − s0y

i,

where hi
h = δi

h − lilh is the angular metric tensor. Thus we get

(4.2) F0
i
0 = 2Gi + L2si − s0y

i,

which implies

F0
i
0y

j − F0
j
0y

i = 2(Giyj −Gjyi) + L2(giryj − gjryi)sr.

Therefore from the definition of Wagner space we obtain

Proposition 3. For a Wagner space with WΓ(s),

2(Giyj −Gjyi) + L2(giryj − gjryi)sr

are homogeneous polynomials in (yi) of degree three.

From the definition of Douglas type and Proposition 3 it follows

Theorem 7. Let Fn be a Wagner space with a Wagner connection
WΓ(s). Fn is of Douglas type, if and only if

W ij = L2(giryj − gjryi)sr

are homogeneous polynomials in (yi) of degree three.
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Example 2. We consider a Kropina space Fn = (Mn, L = α2/β),
α2 = aij(x)yiyj , β = bi(x)yi ([13], p. 107). The fundamental tensor gij

and gij of Fn are given on account of the formulae (30.4) and (30.7) of [13]
as follows:

gij =
2α2

β2
aij +

3α4

β4
bibj − 4α2

β3
(biYj + bjYi) +

4
β2

YiYj ,

gij =
β2

2α2
aij − β2

2b2α2
BiBj +

β3

b2α2
(Biyj + Bjyi) +

β2

α4

(
1− 2β2

b2α2

)
yiyj ,

where Yi = airy
r, Bi = airbr and b2 = brB

r. Consequently we get

W ij =
1

2b2
(b2α2air − α2BiBr + 2βBiyr)sry

j − [i, j].

It is obvious that W ij above are homogeneous polynomials in (yi) of degree
three. Therefore Fn is of Douglas type, provided that it is a Wagner space.
In particular, a Kropina space F 2 is a Wagner space, as shown by the
second author of the present paper [12] (cf. [2], [19]). Therefore we have
the

Theorem 8. Let Fn be a Kropina space. (1) If Fn (n > 2) is a

Wagner space, then it is a Douglas space. (2) F 2 is a Douglas space.

Remark. The second author is so sorry to correct the equation (30.7’)
of his monograph [13] as follows:

s−1 =
1
τp
{pp−1 − (p0p−2 − p2

−1)β}.

We shall continue to consider Wagner spaces of Douglas type, accord-
ing to Theorem 5. For a Wagner space Fn with WΓ(s) we have from (4.2)

Fj
i
0 + F0

i
j = 2Gi

j + 2Lsilj − 2L2Cj
i
rs

r − yisj − s0δ
i
j .

The second axiom Fj
i
k − Fh

i
j = δi

jsk − δi
ksj yields

F0
i
j = Gi

j − L2Cj
i
rs

r − s0δ
i
j + siyj ,

which implies

F0
r
r = Gr

r − L2Crsr − (n− 1)s0, Cr = gijCi
r
j .
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Consequently Qi of (3.4) is written as

Qi =
{

1
2
F0

i
0 − 1

n + 1
F0

r
ry

i +
(

1
2
− n− 1

n + 1

)
s0y

i

}
(4.3)

+ L2

(
1
2
si +

1
n + 1

Crsry
i

)
.

The terms in the first parentheses of (4.3) are homogeneous polynomials
in (yi) of degree two, and hence we have

Theorem 9. Let Fn be a Wagner space with a Wagner connection

WΓ(s). Fn is a Douglas space, if and only if

V i = L2{(n + 1)gir + 2yiCr}sr

are homogeneous polynomials in (yi) of degree two.

Similarly as in the case of (3.7), W ij of Theorem 7 are in relation to
V i as

(4.4) (n + 1)W ij = V iyj − V jyi.

5. Two-dimensional Douglas spaces

We consider two-dimensional Douglas spaces based on the Berwald
frame and the main scalar I(x, y) ([13], §28; [1], 3.5; [4]).

In a two-dimensional Finsler space F 2 we have an orthonormal frame
field, called the Berwald frame (l, m); the vector fields are defined by

(5.1)
{

li = 1
Lyi, li = L(i), hij = εmimj , ε = ±1,

lim
i = 0, mim

i = ε,

where hij is the angular metric tensor hij = LL(i)(j) and the sign ε is the
signature of F 2. Then we get

(5.2)





gij = lilj + εmimj ,

(mi) = h(−l2, l1), (mi) = k(−l2, l1), hk = ε,

g(= det(gij)) = εh2.
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As is shown in [17], we have

2Gi = L0l
i +

L2M

h
mi,(5.3)

L0 = Lry
r, M = L1(2) − L2(1),(5.3a)

where Lr = ∂rL and L(i) = ∂̇iL.
For an F 2 we can introduce the Weierstrass invariant

(5.4) W =
L(1)(1)

(y2)2
=
−L(1)(2)

y1y2
=

L(2)(2)

(y1)2
.

Hence we have

h11 = LL(1)(1) = LW (y2)2, h11 = ε(m1)2 = εh2(l2)2,

which implies

(5.5) L3W = εh2 = g.

Consequently (5.3) is rewritten in a simpler form as

(5.3’) 2G1 =
1
L

(
L0y

1 − M

W
L(2)

)
, 2G2 =

1
L

(
L0y

2 +
M

W
L(1)

)
.

Therefore D12 of (1.3) is written in the remarkable form

(5.6) 2D12 = − 1
W

(L1(2) − L2(1)).

Theorem 10. A two-dimensional Finsler space is a Douglas space, if

and only if (L1(2) − L2(1))/W is a homogeneous polynomial in (y1, y2) of

degree three, where W is the Weierstrass invariant.

We have, particularly in an F 2, a simple form of the equation of
geodesics, called the Weierstrass form ([1], (1.1.3.2); [16], p. 296; [17],
(1.4)):

(5.7) pq̇ − ṗq +
1
W

(Lxq − Lyp) = 0,

where (xi) = (x, y) and (yi) = (p, q). Thus Theorem 10 is shown directly
from the definition of Douglas space.
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Example 3. We consider a two-dimensional Finsler space with the
metric

L(x, y; p, q) = q tan−1 q

p
− p log

√
1 +

(
q

p

)2

− xq.

The differential equation of the geodesics of F 2 is given by

y′′ = (y′)2 + 1,

which shows that F 2 is a Douglas space ([16], Example 4). The finite
equation of geodesics is

y = c1 − log | cos(x + c2)|,

where the c’s are arbitrary constants. We have

Lxq − Lyp = −1, L0 = −pq, Lpp =
q2

p(p2 + q2)
, W =

1
p(p2 + q2)

.

Thus (5.3’) leads to

2LG1 = −p2q + p(p2 + q2)
(

tan−1 q

p
− x

)
,

2LG2 = −pq2 + p(p2 + q2) log

√
1 +

(
q

p

)2

.

Consequently F 2 is certainly not a Berwald space, but we have 2(G1q −
G2p) = p(p2 + q2), which implies again that F 2 is a Douglas space.

The main scalar I(x, y; p, q) of F 2 is a scalar, positively homogeneous
in (p, q) of degree zero, defined from the C-tensor as

LCijk = Imimjmk.

Then the hv-curvature tensor Gi
h
jk of BΓ is written ([13], §28; [1], 3.5;

[4]) as

LGi
h
jk = (−2I,1l

h + I2m
h)mimjmk, I2 = I,1;2 + I,2.

The scalar derivatives (S,1, S,2) and (S;1, S;2) of a scalar field S are defined
by

S|i = S,1li + S,2mi, LS|i = S;1li + S;2mi,
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where S|i = ∂iS − (∂̇rS)Gr
i and S|i = ∂̇iS. We have S;1 = 0 if S is of

degree zero in (p, q). Then (2.3) leads to the expression of the Douglas
tensor as follows:

(5.8) 3LDi
h
jk = −(6I,1 + εI2;2 + 2II2)mil

hmjmk.

Theorem 11. A two-dimensional Finsler space is a Douglas space, if

and only if the main scalar I satisfies the equation

D2 = 6I,1 + εI2;2 + 2II2 = 0, I2 = I,1;2 + I,2.

We first deal with a Douglas space F 2 with vanishing T -tensor. This
tensor is defined by

Thijk = LChij |k + lhCijk + liCjkh + ljCkhi + lkChij ,

where |k denotes the v-covariant differentiation in CΓ. In terms of the
Berwald frame we have ([13], §28; [1], 3.5.3.)

LThijk = I;2mhmimjmk.

Consequently the conditions for F 2 under consideration are as follows:

(5.9) (1) D2 = 6I,1 + εI2;2 + 2II2 = 0, (2) I;2 = 0.

We have to pay attention to two of the Ricci identities for the scalar
derivatives;

(1) S,1;2 − S;2,1 = S,2,(5.10)

(2) S,2;2 − S;2,2 = −ε(S,1 + IS,2 + I,2S;2).

Consequently we observe for F 2 that

I,1;2 = I,2, I,2;2 = −ε(I,1 + II,2).

Hence we get I2 = 2I,2 and (1) of (5.9) is reduced to

(5.11) 2I,1 + II,2 = 0.

Differentiating (;) we get from (5.11) an equation, which is rewritten as

−εII,1 + (2− εI2)I,2 = 0.
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This together with (5.11) yields 4− εI2 = 0, if I,1 = I,2 = 0 do not hold.
Even if they hold, we get I = const from (2) of (5.9). Consequently I

is reduced to a constant, and hence F 2 is a Berwald space ([1], Theorem
3.5.3.1; [13]).

Theorem 12. If a two-dimensional Douglas space has vanishing T -

tensor, then it is a Berwald space with constant main scalar.

Next we consider Wagner spaces F 2 of dimension two. In terms of
the Berwald frame, W ij of Theorem 7 is written as

W ij = L3ε(milj −mj li)mrsr.

Putting si = s1li + s2mi, we get mrsr = εs2, and hence W 12 = L3(m1l2−
m2l1)s2 = −L3ks2, k2 = ε/g. Therefore we have from Theorem 7 the
following

Theorem 13. Let F 2 be a two-dimensional Wagner space with WΓ(s).
F 2 is a Douglas space, if and only if (L3/

√
|g| )s2 is a homogeneous poly-

nomial in (y1, y2) of degree three, where si = s1li + s2mi.

Remark. This is an interesting result, compared with the following
fact from the theory of Berwald spaces of dimension two ([5]; [13], p. 189;
[1], p. 139); I;2 = 0, that is, I is a function of postition alone, if and only
if L2/

√
|g| is a homogeneous polynomial in (y1, y2) of degree two.

We have a remarkable theorem on two-dimensional Wagner spaces,
shown by Wagner ([22], [12]): F 2 is a Wagner space, if and only if I;2

can be written as a function f(I) of I, provided that I;2 6= 0, that is, the
T-tensor 6= 0. Since Theorem 12 has been shown, we may consider only
two-dimensional Wagner space with I;2 6= 0, and hence I;2 = f(I) may be
supposed in the following.

Now we deal with a Wagner space F 2 of Douglas type with I;2 =
f(I) 6= 0. Then (5.10) shows that

I,1;2 = f ′I,1 + I,2, I,2;2 = −ε(1 + f)I,1 + (f ′ − εI)I,2,

which implies

I2 = f ′I,1 + 2I,2,

I2;2 = {ff ′′ + (f ′)2 − 2ε(1 + f)}I,1 + (3f ′ − 2εI)I,2.
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Consequently D2 of Theorem 11 is written in the form

D1I,1 + D2I,2 = 0,(5.12)
{

D1 = ε{ff ′′ + (f ′)2}+ 2(f ′I − f + 2)),

D2 = 3εf ′ + 2I.
(5.12a)

Proposition 4. Let F 2 be a two-dimensional Wagner space with non-
zero I;2. F 2 is a Douglas space, if and only if I;2 = f(I) satisfies (5.12).

We treat only of the sufficient conditions D1 = D2 = 0 in Proposi-
tion 4. D2 = 0 yields f = c − εI2/3 with a constant c and then D1 = 0
gives c = 3/2. Consequently F 2 has I;2 = 3/2− εI2/3, which implies that
F 2 is nothing but a Kropina space ([12], [2]).

Up to now we have only two kinds of two-dimensional Wagner spaces
whose metrics are known concretely. That is, Kropina metric and cubic
metric. A cubic metric L(x, y) [18] is defined as

L3(x, y) = aijk(x)yiyjyk,

where aijk are assumed to be symmetric. A two-dimensional Finsler space
F 2 with cubic metric has I;2 = f(I) = −3/2 − 3εI2 [2], provided that
I;2 6= 0, which yields D1 = 16(3εI2 + 1) and D2 = −16I. Thus D2 = 0 is
written in the form

(5.13) (3εI2 + 1)I,1 − II,2 = 0.

Differentiating (;) this, a procedure similar to (5.11) yields
(
−31

2
εI − 39I3

)
I,1 +

(
5
2

+ 13εI2

)
I,2 = 0.

This together with (5.13) shows that 1 + 2εI2 = 0, if I,1 = I,2 = 0 do not
hold. But 1 + 2εI2 = 0 leads to I;2 = 0, a contradiction, and hence we
obtain I,1 = I,2 = 0. Then one of the Ricci identities [4]: S,1,2 − S,2,1 =
−RS;2, gives rise to R = 0, that is, F 2 is a locally Minkowski space,
because R is the curvature.

On the other hand, if I;2 = 0, then Theorem 12 shows that F 2 is a
Berwald space with constant main scalar I [18]. Therefore we have the

Theorem 14. Let F 2 be a two-dimensional Douglas space with cubic
metric. Then F 2 is (1) a locally Minkowski space, or (2) a Berwald space
with ε = −1, I2 = 1/2 and L3 = βγ2, where β and γ are 1-forms.
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6. Douglas spaces with special metric

First we consider the Randers spaces. They, with the Kropina spaces
which appeared in Example 1 etc., have played a central role in the theory
of (α, β)-metrics, where α2 = aij(x)yiyj and β = bi(x)yi (cf. [1], 1.3 and
1.4; [13]; [19]).

For a Finsler space Fn = (Mn, L(α, β)) with (α, β)-metric the Rie-
mannian space Rn = (Mn, α) is said to associate with Fn. In Rn we
have the Levi-Civita connection (γj

i
k(x)), in which we have the symbols

as follows:

rij =
1
2
(bi;j + bj;i), sij =

1
2
(bi;j − bj;i) =

1
2
(∂jbi − ∂ibj),

si
j = airsrj , si = brs

r
i .

Now we consider a Randers space Fn = (Mn, L = α+β). On account
of the simplicity of its metric, the functions Gi of Fn are easily written [15]
as

2Gi = γ0
i
0 + 2(Ayi + αsi

0),

where A = (r00 − 2αs0)/2(α + β). Then we get

2Dij = (γ0
i
0y

j − γ0
j
0y

i) + 2α(si
0y

j − sj
0y

i).

It is obvious that the terms in the first (..) of the right-hand side are
homogeneous polynomials in (yi) of degree three, while the Riemannian α

is surely irrational in (yi). Therefore Fn is a Douglas space, if and only if
si
0y

j − sj
0y

i = 0; transvection by Yj = ajry
r gives si

0 = 0, that is, sij = 0.
Therefore

Theorem 15. A Randers space is of Douglas type, if and only if ∂jbi−
∂ibj = 0, that is, β is a closed form. Then

2Gi = γ0
i
0 +

r00

α + β
yi,

where rij is equal to bi;j .
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Remark. It is interesting for the authors to compare Theorem 15 with
Kikuchi’s theorem ([10], [15]). A Randers space is a Berwald space if and
only if bi;j = 0, and then 2Gi = γ0

i
0.

We shall pay attention to another special metric, called the 1-form
metric ([1], 1.5). A Finsler metric L is called a 1-form metric, if we have
a typical Minkowski metric L(vα) on an n-dimensional vector space and
L = L(aα), aα = aα

i (x)yi being n 1-forms. Of course, aα, α = 1, . . . , n,
should be independent: d = det(aα

i ) 6= 0. Putting Lα = ∂L/∂aα, we have

L(i) = Lαaα
i , L(i)(j) = Lαβaα

i aβ
j .

We shall restrict our consideration to two-dimensional spaces F 2 with 1-
form metric L(a1, a2). Analogously to the Weierstrass invariant W of (5.4),
because of the homogeneity of L(a1, a2) we can also define

(6.1) w =
L11

(a2)2
=
−L12

a1a2
=

L22

(a1)2
,

called the intrinsic Weierstrass invariant . It is easy to show

(6.2) W = wd2.

In a general Fn with 1-form metric we have a linear non-symmetric con-
nection (Γj

i
k(x)), which is called the 1-form connection ([1], 1.5.2) and is

given by
Γj

i
k = bi

α∂kaα
j , (bi

α) = (aα
i )−1.

The definition is rewritten as aα
i;j = ∂ja

α
i − aα

r Γi
r
j = 0, and hence, in the

induced Finsler connection (Γj
i
k,Γ0

i
j), we have

L(j);i = (Lαaα
j );i = 0 = L(j)i − L(j)(r)Γ0

r
i − L(r)Γj

r
i.

Now, let us return to F 2 with 1-form metric, and we have

M = L1(2) − L2(1) = L(2)(r)Γ0
r
1 − L(1)(r)Γ0

r
2 − L(r)T1

(r)
2

= W (y1Γ0
2
0 − y2Γ0

1
0)− LαTα, α = 1, 2,

where Ti
r
j = br

α (∂ja
α
i −∂ia

α
j ) is the torsion tensor of the 1-form connection

and Tα = aα
r T1

r
2 = ∂2 aα

1 − ∂1a
α
2 . It is noted that the terms in the

parentheses are homogeneous polynomials in (y1, y2) of degree three.
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Therefore Theorem 10 together with (6.2) shows the

Theorem 16. Let F 2 be a two-dimensional Finsler space with 1-form

metric L(a1, a2). F 2 is a Douglas space, if and only if LαTα/w is a homo-

geneous polynomial in (y1, y2) of degree three, where

Lα = ∂L/∂aα, Tα = ∂2a
α
1 − ∂1a

α
2 , α = 1, 2,

and w is the intrinsic Weierstrass invariant.

It is noted from (5.7) that for an F 2 with 1-form metric the Weierstrass
form of geodesics equation is written in the form

(6.3) pq̇ − ṗq + pΓ0
2
0 − qΓ0

1
0 − 1

wd2
LαTα = 0, α = 1, 2.

Example 4. As is well-known ([5]; [13], §28; [1], 3.5), any two-dimen-
sional Berwald spaces with constant main scalar are with 1-form metric.
Except those trivial spaces, let us here treat of an F 2 with the metric

L = a2 log
∣∣∣∣
a2

a1

∣∣∣∣
r

,

where r is a non-zero real number. We have

L1 = −r
a2

a1
, L2 = r

(
1 + log

∣∣∣∣
a2

a1

∣∣∣∣
)

, L12 = − r

a1
,

w =
r

(a1)2a2
,

1
w

LαTα = −a1(a2)2T 1 + (a1)2a2

(
1 + log

∣∣∣∣
a2

a1

∣∣∣∣
)

T 2.

Since Tα do not contain (p, q), LαTα/w is homogeneous polynomial in
(p, q) of degree three, if and only if T 2 = 0; (a2

1)y − (a2
2)x = 0. Therefore

this F 2 is a Douglas space, if and only if the form a2 is closed , and then
the equation of the geodesics is written from (6.3) as

pq̇ − ṗq + pΓ0
2
0 − qΓ0

1
0 + a1(a2)2

T 1

(d)2
= 0,

where T 1 = (a1
1)y − (a1

2)x.
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SÁNDOR BÁCSÓ
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