Publ. Math. Debrecen 51 / 3-4 (1997), 385–406

On Finsler spaces of Douglas type A generalization of the notion of Berwald space

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Dedicated to Professor Lajos Tamássy on his 75th birthday

Abstract. A new generalization of the notion of Berwald space is proposed from the viewpoint of the equation of geodesics. A Douglas space is characterized by the vanishing Douglas tensor. Various examples of Douglas spaces are given in relation to other special Finsler spaces.

1. Introduction

We consider a geodesic curve $C : x^i = x^i(t), t_0 \leq t \leq t_1$, of an *n*-dimensional Finsler space $F^n = (M^n, L(x, y))$ on a smooth *n*-manifold M^n , equipped with the fundamental function $L(x, y), x = (x^i), y = (y^i)$. C is the extremal of the length integral $s = \int_{t_0}^{t_1} L(x, \dot{x}) dt, \dot{x}^i = dx^i/dt$, given by the Euler equation

(1.1)
$$E_i(C) = \frac{d}{dt}L_{(i)} - L_i = 0,$$

where $L_{(i)} = \dot{\partial}_i L$ and $L_i = \partial_i L$. Putting $F = L^2/2$, we get the fundamental tensor $g_{ij} = \dot{\partial}_j \dot{\partial}_i F$ and the well-known functions

$$2G_j = (\dot{\partial}_j \partial_r F) y^r - \partial_j F.$$

This work was supported in part by the Ministry of Culture and Education of Hungary under Grant no. FKFP 0457.

Then, $(g^{ij}) = (g_{ij})^{-1}$ and $G^i = g^{ij}G_j$, we get

$$Lg^{ij}E_j(C) = \ddot{x}^i + 2G^i(x, \dot{x}) - \frac{\ddot{s}}{\dot{s}}\dot{x}^i = 0.$$

Consequently C is given by the system of differential equations

(1.2)
$$\ddot{x}^i \dot{x}^j - \ddot{x}^j \dot{x}^i + 2D^{ij}(x, \dot{x}) = 0,$$

where we put

(1.3)
$$D^{ij}(x,y) = G^i(x,y)y^j - G^j(x,y)y^i.$$

We are, in particular, concerned with a two-dimensional Finsler space F^2 with a local coordinate system $(x^1, x^2) = (x, y)$ and we put $(y^1, y^2) = (p, q)$. Let us take x as a parameter of curves and denote y' = dy/dx = q/p and $y'' = d^2y/dx^2 = (p\dot{q} - \dot{p}q)/p^3$. Since $D^{ij}(x, y; p, q)$ are positively homogeneous in (p, q) of degree three, we have $D^{ij}(x, y; p, q) = p^3 D^{ij}(x, y; 1, q/p)$, provided p > 0. Consequently (1.2) can be written in the form

$$y'' = 2\{G^1(x, y; 1, y')y' - G^2(x, y; 1, y')\}.$$

We consider the Berwald connection $B\Gamma = (G_i{}^j{}_k, G_j^i)$ ([1], [13]), which is given by $G_j^i = \dot{\partial}_j G^i$ and $G_j{}^i{}_k = \dot{\partial}_k G_j^i$. Then we get $2G^i = G_j{}^i{}_k y^j y^k$, and the equation above can be written in the form

(1.4)
$$y'' = X_3(y')^3 + X_2(y')^2 + X_1y' + X_0,$$

where we put

(1.4a)
$$X_{3} = G_{2}^{1}{}_{2}, \quad X_{2} = 2G_{1}^{1}{}_{2} - G_{2}^{2}{}_{2}, X_{1} = G_{1}^{1}{}_{1} - 2G_{1}^{2}{}_{2}, \quad X_{0} = -G_{1}^{2}{}_{1}.$$

Suppose that the F^2 under consideration is a Berwald space ([1], [13]), that is, $G_j{}^i{}_k$ are functions of position (x, y) alone. Then the X's of (1.4a) are functions of (x, y) and, in consequence, (1.4) shows that the right-hand side of the equation y'' = f(x, y, y') of a geodesic is a polynomial in y' of degree at most three. If our discussion is restricted to Riemannian space of dimension two, then $G_j{}^i{}_k$ are Christoffel symbols, and hence f(x, y, y') is, of course, a polynomial in y' of degree at most three for all geodesics of any two-dimensional Riemannian space.

The remarkable property of y'' = f(x, y, y') as above given does not depend on the choice of coordinates (x, y). In fact, we have the following

Lemma. We consider an ordinary differential equation of second order having the following form

(1.5)
$$y'' = Y_3(y')^3 + Y_2(y')^2 + Y_1y' + Y_0,$$

where the Y's are functions of (x, y). This special form is preserved under any transformation of variables.

PROOF. Suppose that we have a differential equation

$$\bar{y}'' = \bar{Y}_3(\bar{y}')^3 + \bar{Y}_2(\bar{y}')^2 + \bar{Y}_1\bar{y}' + \bar{Y}_0,$$

where $\bar{y}' = d\bar{y}/d\bar{x}$ and the \bar{Y} 's are functions of (\bar{x}, \bar{y}) . Let us consider a transformation $(\bar{x}, \bar{y}) \to (x, y)$, given by $\bar{x} = f(x, y)$ and $\bar{y} = g(x, y)$. Then it is easy to find the transformed equation from (1.5) with the Y's as coefficients as follows: Putting $J = f_x g_y - f_y g_x$, we obtain

$$\begin{split} JY_3 &= g_y^3 \bar{Y}_3 + g_y^2 f_y \bar{Y}_2 + g_y f_y^2 \bar{Y}_1 + f_y^3 \bar{Y}_0 - f_y g_{yy} + f_{yy} g_y, \\ JY_2 &= 3g_x g_y^2 \bar{Y}_3 + (f_x g_y + 2f_y g_x) g_y \bar{Y}_2 + (f_y g_x + 2f_x g_y) f_y \bar{Y}_1 \\ &\quad + 3f_x f_y^2 \bar{Y}_0 - f_x g_{yy} + g_x f_{yy} + 2(f_{xy} g_y - g_{xy} f_y), \\ JY_1 &= 3g_x^2 g_y \bar{Y}_3 + (f_y g_x + 2f_x g_y) g_x \bar{Y}_2 + (f_x g_y + 2f_y g_x) f_x \bar{Y}_1 \\ &\quad + 3f_x^2 f_y \bar{Y}_0 - f_y g_{xx} + g_y f_{xx} + 2(f_{xy} g_x - g_{xy} f_x), \\ JY_0 &= g_x^3 \bar{Y}_3 + g_x^2 f_x \bar{Y}_2 + g_x f_x^2 \bar{Y}_1 + f_x^3 \bar{Y}_0 - f_x g_{xx} + f_{xx} g_x. \end{split}$$

It is observed from the above that " $Y_3 = 0$ ", for instance, is not preserved by such a transformation of variables.

The following proposition is obvious from the definition (1.3) and the homogeneity of D^{ij} :

Proposition 1. The right-hand side of the equation (1.4) is a polynomial in y' of degree at most three, if and only if $D^{12}(x, y; p, q)$ is a homogeneous polynomial in (p, q) of degree three.

The Lemma suggests that the differential equation of the type (1.5) will also be of great value and interest from a geometrical point of view. In fact, E. CARTAN ([7], p. 242) defines a projective connection and constructs two-dimensional differential-geometric entities.

S. Bácsó and M. Matsumoto

2. Douglas space

Definition. A Finsler space is said to be of Douglas type or a Douglas space, if $D^{ij} = G^i y^j - G^j y^i$ are homogeneous polynomials in (y^i) of degree three.

Theorem 1. A two-dimensional Finsler space is a Douglas space if and only if, in a local coordinate system (x, y), the right-hand side f(x, y, y')of the equation of geodesics y'' = f(x, y, y') is a polynomial in y' of degree at most three.

We treat of a Finlser space F^n with the Berwald connection $B\Gamma = (G_j^{\ i}{}_k, G_i^i)$. F^n is by definition a Douglas space if and only if

$$\dot{\partial}_k \dot{\partial}_j \dot{\partial}_i \dot{\partial}_h (G^l y^m - G^m y^l) = 0.$$

We have first for $D^{lm} = G^l y^m - G^m y^l$

$$\dot{\partial}_h D^{lm} = G_h^l y^m + G^l \delta_h^m - [l, m],$$

where [l, m] denotes the interchange of indices (l, m) of the preceding terms. Next

$$\dot{\partial}_i \dot{\partial}_h D^{lm} = G_h{}^l{}_i y^m + G_h^l \delta_i^m + G_h^l \delta_h^m - [l, m],$$

$$\dot{\partial}_j \dot{\partial}_i \dot{\partial}_h D^{lm} = G_h{}^l{}_i{}_j y^m + \{G_h{}^l{}_i \delta_i^m + (h, i, j)\} - [l, m]$$

where (h, i, j) denotes the cyclic permutation of the indices (h, i, j) of the preceding terms in the parentheses and $G_h{}^l{}_{ij} = \dot{\partial}_j \ G_h{}^l{}_i = \dot{\partial}_j \dot{\partial}_i \dot{\partial}_h G^l$ are the components of the *hv-curvature tensor* of $B\Gamma$ ([1], p. 86; [13], p. 118). Further, introducing the tensor $G_h{}^l{}_{ijk} = \dot{\partial}_k G_h{}^l{}_{ij}$, we obtain

$$(2.1) \ \dot{\partial}_k \dot{\partial}_j \dot{\partial}_i \dot{\partial}_h D^{lm} (= D^{lm}_{hijk}) = G^{l}_{hijk} y^m + \{G^{l}_{hij} \delta^m_k + (h, i, j, k)\} - [l, m],$$

where (h, i, j, k) is the symbol analogous to (h, i, j). D_{hijk}^{lm} are components of a tensor and $D_{hijk}^{lm} = 0$ is necessary and sufficient for F^n to be a Douglas space. By $G_h^{\ l}{}_{ijr}y^r = -G_h^{\ l}{}_{ij}$, (2.1) yields

(2.2)
$$D_{hijr}^{lr} = (n+1)D_{h\,ij}^{l},$$

where $D_h{}^l_{ij}$ are components of the well-known *Douglas tensor* ([1], (3.3.2.7); [4]; [11]):

(2.3)
$$D_{h}{}^{l}{}_{ij} = G_{h}{}^{l}{}_{ij} - \frac{1}{n+1}G_{hij}y^{l} - \frac{1}{n+1}\{G_{hi}\delta^{l}_{j} + (h, i, j)\},$$

where $G_{hi} = G_h^{\ r}{}_{ir}$ is the *hv-Ricci tensor* of $B\Gamma$ and $G_{hij} = \dot{\partial}_j G_{hi} = G_h^{\ r}{}_{irj}$. Therefore the Douglas tensor must vanish for F^n .

Conversely, if the Douglas tensor of an F^n vanishes identically, then F^n is a Douglas space, because it is easy to show the following equality:

(2.4)
$$D_{hijk}^{lm} = (\dot{\partial}_k D_h^{\ l}{}_{ij})y^m + \{D_i^{\ l}{}_{jk}\delta_h^m + (h, i, j, k)\} - [l, m].$$

Therefore we have the following

Theorem 2. A Finsler space is of Douglas type, if and only if the Douglas tensor vanishes identically.

Historical remark. It is well-known that the Douglas tensor (2.3) has been introduced first by J. DOUGLAS in 1928 in his paper on the general geometry of paths [8]. He used the German letter \mathfrak{H} to show this tensor ([8], (5.10), (5.11)), because the Roman letter \mathcal{H} was already used to show the *hv*-curvature tensor G. In BERWALD's paper [5], published in 1941, he proved that a two-dimensional Landsberg space with vanishing Douglas tensor is a Berwald space ([5], p. 110). In one of his posthumous papers [6], published in 1947, he used the letter D to denote the Douglas tensor which is preserved invariant under projective change, and showed that D = 0 is one half of the necessary and sufficient conditions for a generalized affine space to be projectively flat. The Douglas tensor also appeared in H. Rund's monograph ([20], p. 143), denoted by the letter B.

In 1980 Z. I. SZABÓ's paper [21] on the global foundations of Finsler projective geometry was published; he denoted the Douglas tensor by the letter D ([21], (3.3), (3.11)) and proposed first the name "Douglas tensor". Almost simultaneously the second author of the present paper was concerned with this tensor ([11], (2.10)) and called it the projective hv-curvature tensor or the Douglas tensor.

Recently the first author of the present paper considered n(>2)-dimensional Lansdberg spaces with vanishing Douglas tensor, and proved an extension of Berwald's theorem as above. This theorem was supplemented and completed by the present authors [4].

Using the name "Douglas space", this theorem can be stated as follows:

S. Bácsó and M. Matsumoto

Theorem 3. If a Finsler space $F^n (n \ge 2)$ is a Landsberg space and a Douglas space, then it is a Berwald space. Conversely a Berwald space is a Landsberg space and a Douglas space.

As is well-known, the Douglas tensor is projectively invariant. Hence we have the

Theorem 4. If a Finsler space is projectively related to a Douglas space, then it is also a Douglas space.

Example 1. In a previous paper of the second author [16] it is shown that the family of solutions of a second order linear differential equation

$$y'' + P(x)y' + Q(x)y = R(x)$$

coincides with the family of geodesics of the two-dimensional Finsler space ${\cal F}^2$ with the metric

$$L(x,y;p,q) = \frac{1}{p} e^{\int P dx} [(2R - Qy)yp^2 + q^2] + E_x p + E_y q,$$

where E = E(x, y) is an arbitrary function. Consequently this F^2 is a Douglas space. It is observed that this metric is of Kropina type (cf. Theorem 8).

3. Douglas spaces with projective connection

It seems that the Douglas tensor has made a contribution only to the theory of projective changes.

A Finsler space F^n is said to be projectively related or projective to another Finsler space \overline{F}^n , if any geodesic of F^n is a geodesic of \overline{F}^n and vice versa. The condition for it is written as

(3.1)
$$\bar{G}^i = G^i + Py^i,$$

where P = P(x, y) is a scalar function. The change $F^n \to \overline{F}^n$ is called projective.

From (3.1) we have

(3.2)
$$\bar{G}_i^h = G_i^h + P_i y^h + P \delta_i^h,$$

(3.3)
$$\bar{G}_{i\,j}^{\ h} = G_{i\,j}^{\ h} + P_{ij}y^h + P_i\delta_j^h + P_j\delta_i^h,$$

where $P_i = \dot{\partial}_i P$ and $P_{ij} = \dot{\partial}_j P_i$. If we put $G = G_r^r$, then (3.1) and (3.2) give

$$\bar{G} = G + (n+1)P,$$
 $\bar{G}^h - \frac{G}{n+1}y^h = G^h - \frac{G}{n+1}y^h,$

which gives rise to a projective invariant

(3.4)
$$Q^{h} = G^{h} - \frac{G}{n+1}y^{h}, \qquad G = G_{r}^{r}$$

Putting $Q_i^h = \dot{\partial}_i Q^h$ and $Q_i{}^h{}_j = \dot{\partial}_j Q_i^h$, we have

(3.5)
$$Q_i{}^h{}_j = G_i{}^h{}_j - \frac{1}{n+1}(G_{ij}y^h + G_r{}^r{}_i\delta^h_j + G_r{}^r{}_j\delta^h_i).$$

Finally we get a remarkable expression of the Douglas tensor as follows:

(3.6)
$$\dot{\partial}_k \dot{\partial}_j \dot{\partial}_i Q^h = D_i{}^h{}_{jk}.$$

Remark. Though K. YANO's notation in his monograph [23] is quite different from our notation, his (9.28), p. 197 is just the same with our (3.6). See [11], (5.1).

We are led from (3.6) and Theorem 2 to the

Theorem 5. A Finsler space is of Douglas type, if and only if Q^h of (3.4) are homogeneous polynomials in (y^i) of degree two.

Let F^n be a Douglas space. Then $Q_i{}^h{}_j$ of (3.5) are functions of position (x) alone and we may put

$$Q_i{}^{h}{}_{j}(x)y^{i}y^{j} = 2G^{h} - \frac{2}{n+1}G^{r}_{r}y^{h},$$

which implies

(3.7)
$$2D^{hk} = (Q_i{}^h{}_j(x)y^iy^j)y^k - [h,k].$$

Proposition 2. For a Douglas space, $D^{hk} = G^h y^k - G^k y^h$ are homogeneous polynomials in (y^i) of degree three as written in the form (3.7).

In particular, for a two-dimensional Douglas space, the equation of geodesics y'' = f(x, y, y') is written as (1.5). As it is seen from (1.4), (1.5)

is written in more convenient form as

(3.8)
$$y'' = Q_2^{1} (y')^3 + (2Q_1^{1} - Q_2^{2})(y')^2 + (Q_1^{1} - 2Q_1^{2})y' - Q_1^{2},$$

where $Q_j{}^i{}_k = Q_j{}^i{}_k(x)$.

We consider a Finsler space F^n with the projective connection $P\Gamma = (P_j^i{}_k, G_j^i)$ [14], where the *h*-connection coefficients $P_j{}^i{}_k$ are given by

(3.9)
$$P_{jk}^{i} = G_{jk}^{i} - \frac{1}{n+1}G_{jk}y^{i}.$$

Since $G_{jk} = G_j^r{}_{kr}$ is a tensor, called the *hv*-Ricci tensor, $(P_j{}^i{}_k)$ define certainly a horizontal connection ([13], §9). It is noteworthy that $P_j{}^i{}_k$ appear in (3.5):

(3.5')
$$Q_{j\,k}^{\ i} = P_{j\,k}^{\ i} - \frac{1}{n+1} (G_{r\,j}^{\ r} \delta_{k}^{i} + G_{r\,k}^{\ r} \delta_{j}^{i}).$$

Remark. In Yano's monograph [23] the $P_j{}^i{}_k$ are denoted by the Greek letter Π ((9.11), p. 196), and called the connection coefficients of the normal projective connection. On the other hand, the name "projective connection coefficients" appears in RUND's monograph [20], p. 142, and coincides with $Q_i{}^h{}_j$ of (3.5). Rund writes:

They define a projective covariant derivative in the same manner as the $G_j^{i}{}_k^{i}$ give rise to a covariant derivative. However the projective covariant derivatives of a tensor are not, in general, tensors.

Thus it is sure that Rund did not recognize the entity $(Q_j^{i_k})$ as a connection in the modern sense; nevertheless, how many strange papers have been devoted to studying Rund's theory of projective connection!

According to the theory of the paper [14], our $P\Gamma$ is symmetric and *L*-metrical: $L_{;i} = 0$. Its deflection tensor $y^r P_r^{\ i}_k - G_k^i$ vanishes and the (v)hv-torsion tensor $U_j^{\ i}_k = \dot{\partial}_k G_j^i - P_k^{\ i}_j$ is given by

(3.10)
$$U_{jk}^{i} = \frac{1}{n+1} y^{i} G_{jk}.$$

The *hv*-curvature tensor of $P\Gamma$, denoted by $U_i^{\ h}{}_{jk}$, is equal to $\dot{\partial}_k P_i^{\ h}{}_{j}$, which is written as

(3.11)
$$U_i{}^h{}_{jk} = G_i{}^h{}_{jk} - \frac{1}{n+1}(G_{ijk}y^h + G_{ij}\delta^h_k).$$

Since the hv-Ricci tensor is $U_{ij} = U_i^r{}_{jr} = 2G_{ij}/(n+1)$, (2.3) and (3.11) lead to the expression of the Douglas tensor in terms of $P\Gamma$ as follows:

(3.12)
$$D_i{}^h{}_{jk} = U_i{}^h{}_{jk} - \frac{1}{2}(\delta^h_i U_{jk} + \delta^h_j U_{ik}).$$

Consequently we have the

Theorem 6. In terms of the projective connection $P\Gamma$ a Douglas space is characterized by the equation

$$U_i{}^h{}_{jk} = \frac{1}{2} (\delta^h_i U_{jk} + \delta^h_j U_{ik})$$

where $U_i{}^h{}_{jk}$ and U_{ij} are the hv-curvature tensor and the hv-Ricci tensor.

Remark. On p. 244 of Cartan's monograph [7] we find the differential equation

$$\begin{split} \frac{d^2v}{du^2} &= \Pi_2{}^1_2 \left(\frac{dv}{du}\right)^3 + (2\Pi_1{}^1_2 + \Pi_2{}^1_1) \left(\frac{dv}{du}\right)^2 \\ &+ (2\Pi_1{}^1_1 - \Pi_1{}^2_2)\frac{dv}{du} - \Pi_1{}^2_1, \end{split}$$

where $\prod_{j}{}^{i}_{k} = \prod_{j}{}^{i}_{k}(u, v)$ are coefficients of Cartan's projective connection. It is seemingly analogous to (3.8), but $Q_j^{i}{}_k^i$ of (3.8) are not the projective connection $P\Gamma$; however P_{jk}^{i} may depend on (y^{i}) of (x^{i}, y^{i}) .

4. Wagner spaces of Douglas type

The notion of Wagner space was originally defined by V.V. WAG-NER in 1943 [22] and established strictly from the modern standpoint by M. HASHIGUCHI in 1975 [9] (cf. [2]; [13], Definition 25.4).

Let $s_i(x)$ be components of a covariant vector field on an *n*-manifold M. Then the Wagner connection $W\Gamma(s) = (F_j{}^i_k, N^i_j, C_j{}^i_k)$ of a Finsler space $F^n = (M^n, L(x, y))$ is by definition a Finsler connection which is uniquely determined by the following five axioms:

- (1)
- h-metrical: $g_{ij|k} = 0$, (h)h-torsion tensor $T_j{}^i{}_k = F_j{}^i{}_k F_k{}^i{}_j$ is given by $T_j{}^i{}_k =$ (2) $\delta^i_j s_k - \delta^i_k s_j.$
- (3) deflection tensor: $D_j^i = y^r F_r^{\ i} N_j^i = 0,$ (4) v-metrical: $g_{ij}|_k = 0,$
- (5) (v)v-torsion tensor: $S_j{}^i{}_k = C_j{}^i{}_k C_k{}^i{}_j = 0.$

S. Bácsó and M. Matsumoto

Thus $W\Gamma(s)$ is not intrinsically defined in F^n , but is a geometrical structure on M^n given by L(x, y) together with $s_i(x)$.

A Finsler space F^n is called a *Wagner space*, if its $W\Gamma(s)$ is linear, that is, $F_j{}^i{}_k$ are functions of position (x^i) alone. Consequently the notion of Wagner space is regarded as a generalization of Berwald space.

Let $C\Gamma = (\Gamma_{jk}^{*i}, G_j^i, C_j^{i_k})$ be the Cartan connection of a Finsler space with a Wagner connection $W\Gamma(s)$. The difference $D_j^{i_k} = F_j^{i_k} - \Gamma_{jk}^{*i}$ of $W\Gamma(s)$ from $C\Gamma$ is given [2] by

(4.1)
$$D_j{}^i{}_k = V_j{}^i{}_{kr}s^r, \qquad s^r = g^{ri}s_i(x),$$

(4.1a)
$$V_{j\,kh}^{i} = g_{jk}\delta_{h}^{i} - g_{jh}\delta_{k}^{i} - C_{j\,h}^{i}y_{k} - C_{k\,h}^{i}y_{j} + C_{j\,k}^{i}y_{h} + C_{jkh}y^{i} + L^{2}(S_{j\,kh}^{i} + C_{j\,r}^{i}C_{k\,r}^{r}),$$

where $y_i = g_{ir}y^r = LL_{(i)}$ and $S_j^i{}_{kh}$ is the *v*-curvature tensor of $C\Gamma$. Consequently we have

$$V_0{}^i{}_{0h} = L^2 h_h^i, \qquad D_0{}^i{}_0 = L^2 s^i - s_0 y^i,$$

where $h_h^i = \delta_h^i - l^i l_h$ is the angular metric tensor. Thus we get

(4.2)
$$F_0{}^i{}_0 = 2G^i + L^2 s^i - s_0 y^i,$$

which implies

$$F_0{}^i{}_0y^j - F_0{}^j{}_0y^i = 2(G^iy^j - G^jy^i) + L^2(g^{ir}y^j - g^{jr}y^i)s_r.$$

Therefore from the definition of Wagner space we obtain

Proposition 3. For a Wagner space with $W\Gamma(s)$,

$$2(G^{i}y^{j} - G^{j}y^{i}) + L^{2}(g^{ir}y^{j} - g^{jr}y^{i})s_{r}$$

are homogeneous polynomials in (y^i) of degree three.

From the definition of Douglas type and Proposition 3 it follows

Theorem 7. Let F^n be a Wagner space with a Wagner connection $W\Gamma(s)$. F^n is of Douglas type, if and only if

$$W^{ij} = L^2 (g^{ir} y^j - g^{jr} y^i) s_r$$

are homogeneous polynomials in (y^i) of degree three.

Example 2. We consider a Kropina space $F^n = (M^n, L = \alpha^2/\beta)$, $\alpha^2 = a_{ij}(x)y^iy^j$, $\beta = b_i(x)y^i$ ([13], p. 107). The fundamental tensor g_{ij} and g^{ij} of F^n are given on account of the formulae (30.4) and (30.7) of [13] as follows:

$$g_{ij} = \frac{2\alpha^2}{\beta^2} a_{ij} + \frac{3\alpha^4}{\beta^4} b_i b_j - \frac{4\alpha^2}{\beta^3} (b_i Y_j + b_j Y_i) + \frac{4}{\beta^2} Y_i Y_j,$$

$$g^{ij} = \frac{\beta^2}{2\alpha^2} a^{ij} - \frac{\beta^2}{2b^2\alpha^2} B^i B^j + \frac{\beta^3}{b^2\alpha^2} (B^i y^j + B^j y^i) + \frac{\beta^2}{\alpha^4} \left(1 - \frac{2\beta^2}{b^2\alpha^2}\right) y^i y^j,$$

where $Y_i = a_{ir}y^r$, $B^i = a^{ir}b_r$ and $b^2 = b_rB^r$. Consequently we get

$$W^{ij} = \frac{1}{2b^2} (b^2 \alpha^2 a^{ir} - \alpha^2 B^i B^r + 2\beta B^i y^r) s_r y^j - [i, j].$$

It is obvious that W^{ij} above are homogeneous polynomials in (y^i) of degree three. Therefore F^n is of Douglas type, provided that it is a Wagner space. In particular, a Kropina space F^2 is a Wagner space, as shown by the second author of the present paper [12] (cf. [2], [19]). Therefore we have the

Theorem 8. Let F^n be a Kropina space. (1) If F^n (n > 2) is a Wagner space, then it is a Douglas space. (2) F^2 is a Douglas space.

Remark. The second author is so sorry to correct the equation (30.7') of his monograph [13] as follows:

$$s_{-1} = \frac{1}{\tau p} \{ pp_{-1} - (p_0 p_{-2} - p_{-1}^2)\beta \}.$$

We shall continue to consider Wagner spaces of Douglas type, according to Theorem 5. For a Wagner space F^n with $W\Gamma(s)$ we have from (4.2)

$$F_{j\,0}^{\ i} + F_{0\,j}^{\ i} = 2G_{j}^{i} + 2Ls^{i}l_{j} - 2L^{2}C_{j\,r}^{\ i}s^{r} - y^{i}s_{j} - s_{0}\delta_{j}^{i}.$$

The second axiom $F_j{}^i{}_k - F_h{}^i{}_j = \delta^i_j s_k - \delta^i_k s_j$ yields

$$F_0{}^i{}_j = G^i_j - L^2 C_j{}^i{}_r s^r - s_0 \delta^i_j + s^i y_j,$$

which implies

$$F_0^r = G_r^r - L^2 C^r s_r - (n-1)s_0, \qquad C^r = g^{ij} C_i^r C_i^r.$$

Consequently Q^i of (3.4) is written as

(4.3)
$$Q^{i} = \left\{ \frac{1}{2} F_{0}{}^{i}{}_{0} - \frac{1}{n+1} F_{0}{}^{r}{}_{r}y^{i} + \left(\frac{1}{2} - \frac{n-1}{n+1}\right) s_{0}y^{i} \right\} + L^{2} \left(\frac{1}{2} s^{i} + \frac{1}{n+1} C^{r} s_{r}y^{i}\right).$$

The terms in the first parentheses of (4.3) are homogeneous polynomials in (y^i) of degree two, and hence we have

Theorem 9. Let F^n be a Wagner space with a Wagner connection $W\Gamma(s)$. F^n is a Douglas space, if and only if

$$V^{i} = L^{2} \{ (n+1)g^{ir} + 2y^{i}C^{r} \} s_{r}$$

are homogeneous polynomials in (y^i) of degree two.

Similarly as in the case of (3.7), W^{ij} of Theorem 7 are in relation to V^i as

(4.4)
$$(n+1)W^{ij} = V^i y^j - V^j y^i.$$

5. Two-dimensional Douglas spaces

We consider two-dimensional Douglas spaces based on the Berwald frame and the main scalar I(x, y) ([13], §28; [1], 3.5; [4]).

In a two-dimensional Finsler space F^2 we have an orthonormal frame field, called the Berwald frame (l, m); the vector fields are defined by

(5.1)
$$\begin{cases} l^i = \frac{1}{L} y^i, \quad l_i = L_{(i)}, \ h_{ij} = \varepsilon m_i m_j, \ \varepsilon = \pm 1, \\ l_i m^i = 0, \quad m_i m^i = \varepsilon, \end{cases}$$

where h_{ij} is the angular metric tensor $h_{ij} = LL_{(i)(j)}$ and the sign ε is the signature of F^2 . Then we get

(5.2)
$$\begin{cases} g_{ij} = l_i l_j + \varepsilon m_i m_j, \\ (m_i) = h(-l^2, l^1), \quad (m^i) = k(-l_2, l_1), \ hk = \varepsilon, \\ g(= \det(g_{ij})) = \varepsilon h^2. \end{cases}$$

As is shown in [17], we have

(5.3)
$$2G^{i} = L_{0}l^{i} + \frac{L^{2}M}{h}m^{i},$$

(5.3a)
$$L_0 = L_r y^r, \qquad M = L_{1(2)} - L_{2(1)},$$

where $L_r = \partial_r L$ and $L_{(i)} = \dot{\partial}_i L$.

For an F^2 we can introduce the Weierstrass invariant

(5.4)
$$W = \frac{L_{(1)(1)}}{(y^2)^2} = \frac{-L_{(1)(2)}}{y^1 y^2} = \frac{L_{(2)(2)}}{(y^1)^2}.$$

Hence we have

$$h_{11} = LL_{(1)(1)} = LW(y^2)^2, \qquad h_{11} = \varepsilon (m_1)^2 = \varepsilon h^2 (l^2)^2,$$

which implies

(5.5)
$$L^3W = \varepsilon h^2 = g.$$

Consequently (5.3) is rewritten in a simpler form as

(5.3')
$$2G^1 = \frac{1}{L} \left(L_0 y^1 - \frac{M}{W} L_{(2)} \right), \qquad 2G^2 = \frac{1}{L} \left(L_0 y^2 + \frac{M}{W} L_{(1)} \right).$$

Therefore D^{12} of (1.3) is written in the remarkable form

(5.6)
$$2D^{12} = -\frac{1}{W}(L_{1(2)} - L_{2(1)}).$$

Theorem 10. A two-dimensional Finsler space is a Douglas space, if and only if $(L_{1(2)} - L_{2(1)})/W$ is a homogeneous polynomial in (y^1, y^2) of degree three, where W is the Weierstrass invariant.

We have, particularly in an F^2 , a simple form of the equation of geodesics, called the *Weierstrass form* ([1], (1.1.3.2); [16], p. 296; [17], (1.4)):

(5.7)
$$p\dot{q} - \dot{p}q + \frac{1}{W}(L_{xq} - L_{yp}) = 0,$$

where $(x^i) = (x, y)$ and $(y^i) = (p, q)$. Thus Theorem 10 is shown directly from the definition of Douglas space.

Example 3. We consider a two-dimensional Finsler space with the metric

$$L(x, y; p, q) = q \tan^{-1} \frac{q}{p} - p \log \sqrt{1 + \left(\frac{q}{p}\right)^2 - xq}$$

The differential equation of the geodesics of F^2 is given by

$$y'' = (y')^2 + 1,$$

which shows that F^2 is a Douglas space ([16], Example 4). The finite equation of geodesics is

$$y = c_1 - \log |\cos(x + c_2)|,$$

where the c's are arbitrary constants. We have

$$L_{xq} - L_{yp} = -1, \quad L_0 = -pq, \quad L_{pp} = \frac{q^2}{p(p^2 + q^2)}, \quad W = \frac{1}{p(p^2 + q^2)}.$$

Thus (5.3') leads to

$$2LG^{1} = -p^{2}q + p(p^{2} + q^{2})\left(\tan^{-1}\frac{q}{p} - x\right),$$
$$2LG^{2} = -pq^{2} + p(p^{2} + q^{2})\log\sqrt{1 + \left(\frac{q}{p}\right)^{2}}.$$

Consequently F^2 is certainly not a Berwald space, but we have $2(G^1q - G^2p) = p(p^2 + q^2)$, which implies again that F^2 is a Douglas space.

The main scalar I(x, y; p, q) of F^2 is a scalar, positively homogeneous in (p, q) of degree zero, defined from the C-tensor as

$$LC_{ijk} = Im_i m_j m_k.$$

Then the *hv*-curvature tensor $G_i{}^h{}_{jk}$ of $B\Gamma$ is written ([13], §28; [1], 3.5; [4]) as

$$LG_i{}^h{}_{jk} = (-2I_{,1}l^h + I_2m^h)m_im_jm_k, \qquad I_2 = I_{,1;2} + I_{,2}$$

The scalar derivatives $(S_{,1}, S_{,2})$ and $(S_{;1}, S_{;2})$ of a scalar field S are defined by

$$S_{|i|} = S_{,1}l_i + S_{,2}m_i, \qquad LS_{|i|} = S_{,1}l_i + S_{,2}m_i,$$

where $S_{|i} = \partial_i S - (\dot{\partial}_r S) G_i^r$ and $S_{|i} = \dot{\partial}_i S$. We have $S_{;1} = 0$ if S is of degree zero in (p, q). Then (2.3) leads to the expression of the Douglas tensor as follows:

(5.8)
$$3LD_i{}^{h}{}_{jk} = -(6I_{,1} + \varepsilon I_{2;2} + 2II_2)m_i l^h m_j m_k.$$

Theorem 11. A two-dimensional Finsler space is a Douglas space, if and only if the main scalar I satisfies the equation

$$D^2 = 6I_{,1} + \varepsilon I_{2;2} + 2II_2 = 0, \qquad I_2 = I_{,1;2} + I_{,2}.$$

We first deal with a Douglas space F^2 with vanishing *T*-tensor. This tensor is defined by

$$T_{hijk} = LC_{hij}|_k + l_h C_{ijk} + l_i C_{jkh} + l_j C_{khi} + l_k C_{hij},$$

where |k| denotes the *v*-covariant differentiation in $C\Gamma$. In terms of the Berwald frame we have ([13], §28; [1], 3.5.3.)

$$LT_{hijk} = I_{;2}m_hm_im_jm_k.$$

Consequently the conditions for F^2 under consideration are as follows:

(5.9) (1)
$$D^2 = 6I_{,1} + \varepsilon I_{2;2} + 2II_2 = 0,$$
 (2) $I_{,2} = 0.$

We have to pay attention to two of the Ricci identities for the scalar derivatives;

(5.10) (1)
$$S_{,1;2} - S_{;2,1} = S_{,2},$$

(2) $S_{,2;2} - S_{;2,2} = -\varepsilon(S_{,1} + IS_{,2} + I_{,2}S_{;2}).$

Consequently we observe for F^2 that

$$I_{,1;2} = I_{,2}, \qquad I_{,2;2} = -\varepsilon(I_{,1} + II_{,2}).$$

Hence we get $I_2 = 2I_{,2}$ and (1) of (5.9) is reduced to

$$(5.11) 2I_{,1} + II_{,2} = 0.$$

Differentiating (;) we get from (5.11) an equation, which is rewritten as

$$-\varepsilon II_{,1} + (2 - \varepsilon I^2)I_{,2} = 0.$$

This together with (5.11) yields $4 - \varepsilon I^2 = 0$, if $I_{,1} = I_{,2} = 0$ do not hold. Even if they hold, we get I = const from (2) of (5.9). Consequently I is reduced to a constant, and hence F^2 is a Berwald space ([1], Theorem 3.5.3.1; [13]).

Theorem 12. If a two-dimensional Douglas space has vanishing T-tensor, then it is a Berwald space with constant main scalar.

Next we consider Wagner spaces F^2 of dimension two. In terms of the Berwald frame, W^{ij} of Theorem 7 is written as

$$W^{ij} = L^3 \varepsilon (m^i l^j - m^j l^i) m^r s_r$$

Putting $s_i = s_1 l_i + s_2 m_i$, we get $m^r s_r = \varepsilon s_2$, and hence $W^{12} = L^3 (m^1 l^2 - m^2 l^1) s_2 = -L^3 k s_2$, $k^2 = \varepsilon/g$. Therefore we have from Theorem 7 the following

Theorem 13. Let F^2 be a two-dimensional Wagner space with $W\Gamma(s)$. F^2 is a Douglas space, if and only if $(L^3/\sqrt{|g|})s_2$ is a homogeneous polynomial in (y^1, y^2) of degree three, where $s_i = s_1 l_i + s_2 m_i$.

Remark. This is an interesting result, compared with the following fact from the theory of Berwald spaces of dimension two ([5]; [13], p. 189; [1], p. 139); $I_{;2} = 0$, that is, I is a function of postition alone, if and only if $L^2/\sqrt{|g|}$ is a homogeneous polynomial in (y^1, y^2) of degree two.

We have a remarkable theorem on two-dimensional Wagner spaces, shown by Wagner ([22], [12]): F^2 is a Wagner space, if and only if $I_{;2}$ can be written as a function f(I) of I, provided that $I_{;2} \neq 0$, that is, the T-tensor $\neq 0$. Since Theorem 12 has been shown, we may consider only two-dimensional Wagner space with $I_{;2} \neq 0$, and hence $I_{;2} = f(I)$ may be supposed in the following.

Now we deal with a Wagner space F^2 of Douglas type with $I_{;2} = f(I) \neq 0$. Then (5.10) shows that

$$I_{,1;2} = f'I_{,1} + I_{,2}, \quad I_{,2;2} = -\varepsilon(1+f)I_{,1} + (f' - \varepsilon I)I_{,2},$$

which implies

$$I_2 = f'I_{,1} + 2I_{,2},$$

$$I_{2;2} = \{ff'' + (f')^2 - 2\varepsilon(1+f)\}I_{,1} + (3f' - 2\varepsilon I)I_{,2}$$

Consequently D^2 of Theorem 11 is written in the form

$$(5.12) D_1 I_{,1} + D_2 I_{,2} = 0,$$

(5.12a)
$$\begin{cases} D_1 = \varepsilon \{ ff'' + (f')^2 \} + 2(f'I - f + 2) \}, \\ D_2 = 3\varepsilon f' + 2I. \end{cases}$$

Proposition 4. Let F^2 be a two-dimensional Wagner space with nonzero $I_{:2}$. F^2 is a Douglas space, if and only if $I_{:2} = f(I)$ satisfies (5.12).

We treat only of the sufficient conditions $D_1 = D_2 = 0$ in Proposition 4. $D_2 = 0$ yields $f = c - \varepsilon I^2/3$ with a constant c and then $D_1 = 0$ gives c = 3/2. Consequently F^2 has $I_{;2} = 3/2 - \varepsilon I^2/3$, which implies that F^2 is nothing but a Kropina space ([12], [2]).

Up to now we have only two kinds of two-dimensional Wagner spaces whose metrics are known concretely. That is, Kropina metric and cubic metric. A *cubic metric* L(x, y) [18] is defined as

$$L^3(x,y) = a_{ijk}(x)y^i y^j y^k$$

where a_{ijk} are assumed to be symmetric. A two-dimensional Finsler space F^2 with cubic metric has $I_{;2} = f(I) = -3/2 - 3\varepsilon I^2$ [2], provided that $I_{;2} \neq 0$, which yields $D_1 = 16(3\varepsilon I^2 + 1)$ and $D_2 = -16I$. Thus $D^2 = 0$ is written in the form

(5.13)
$$(3\varepsilon I^2 + 1)I_{,1} - II_{,2} = 0.$$

Differentiating (;) this, a procedure similar to (5.11) yields

$$\left(-\frac{31}{2}\varepsilon I - 39I^3\right)I_{,1} + \left(\frac{5}{2} + 13\varepsilon I^2\right)I_{,2} = 0$$

This together with (5.13) shows that $1 + 2\varepsilon I^2 = 0$, if $I_{,1} = I_{,2} = 0$ do not hold. But $1 + 2\varepsilon I^2 = 0$ leads to $I_{;2} = 0$, a contradiction, and hence we obtain $I_{,1} = I_{,2} = 0$. Then one of the Ricci identities [4]: $S_{,1,2} - S_{,2,1} =$ $-RS_{;2}$, gives rise to R = 0, that is, F^2 is a locally Minkowski space, because R is the curvature.

On the other hand, if $I_{;2} = 0$, then Theorem 12 shows that F^2 is a Berwald space with constant main scalar I [18]. Therefore we have the

Theorem 14. Let F^2 be a two-dimensional Douglas space with cubic metric. Then F^2 is (1) a locally Minkowski space, or (2) a Berwald space with $\varepsilon = -1$, $I^2 = 1/2$ and $L^3 = \beta \gamma^2$, where β and γ are 1-forms.

S. Bácsó and M. Matsumoto

6. Douglas spaces with special metric

First we consider the Randers spaces. They, with the Kropina spaces which appeared in Example 1 etc., have played a central role in the theory of (α, β) -metrics, where $\alpha^2 = a_{ij}(x)y^iy^j$ and $\beta = b_i(x)y^i$ (cf. [1], 1.3 and 1.4; [13]; [19]).

For a Finsler space $F^n = (M^n, L(\alpha, \beta))$ with (α, β) -metric the Riemannian space $R^n = (M^n, \alpha)$ is said to associate with F^n . In R^n we have the Levi-Civita connection $(\gamma_j^i_k(x))$, in which we have the symbols as follows:

$$\begin{aligned} r_{ij} &= \frac{1}{2}(b_{i;j} + b_{j;i}), \quad s_{ij} &= \frac{1}{2}(b_{i;j} - b_{j;i}) = \frac{1}{2}(\partial_j b_i - \partial_i b_j), \\ s^i_j &= a^{ir} s_{rj}, \qquad \qquad s_i &= b_r s^r_i. \end{aligned}$$

Now we consider a Randers space $F^n = (M^n, L = \alpha + \beta)$. On account of the simplicity of its metric, the functions G^i of F^n are easily written [15] as

$$2G^{i} = \gamma_{0}{}^{i}{}_{0} + 2(Ay^{i} + \alpha s^{i}_{0}),$$

where $A = (r_{00} - 2\alpha s_0)/2(\alpha + \beta)$. Then we get

$$2D^{ij} = (\gamma_0{}^i{}_0y^j - \gamma_0{}^j{}_0y^i) + 2\alpha(s^i_0y^j - s^j_0y^i).$$

It is obvious that the terms in the first (..) of the right-hand side are homogeneous polynomials in (y^i) of degree three, while the Riemannian α is surely irrational in (y^i) . Therefore F^n is a Douglas space, if and only if $s_0^i y^j - s_0^j y^i = 0$; transvection by $Y_j = a_{jr} y^r$ gives $s_0^i = 0$, that is, $s_{ij} = 0$. Therefore

Theorem 15. A Randers space is of Douglas type, if and only if $\partial_j b_i - \partial_i b_j = 0$, that is, β is a closed form. Then

$$2G^{i} = \gamma_{0}{}^{i}{}_{0} + \frac{r_{00}}{\alpha + \beta}y^{i},$$

where r_{ij} is equal to $b_{i;j}$.

Remark. It is interesting for the authors to compare Theorem 15 with KIKUCHI's theorem ([10], [15]). A Randers space is a Berwald space if and only if $b_{i;j} = 0$, and then $2G^i = \gamma_0{}^i{}_0$.

We shall pay attention to another special metric, called the 1-form metric ([1], 1.5). A Finsler metric L is called a 1-form metric, if we have a typical Minkowski metric $L(v^{\alpha})$ on an *n*-dimensional vector space and $L = L(a^{\alpha}), a^{\alpha} = a_i^{\alpha}(x)y^i$ being *n* 1-forms. Of course, $a^{\alpha}, \alpha = 1, \ldots, n$, should be independent: $d = \det(a_i^{\alpha}) \neq 0$. Putting $L_{\alpha} = \partial L/\partial a^{\alpha}$, we have

$$L_{(i)} = L_{\alpha} a_i^{\alpha}, \qquad L_{(i)(j)} = L_{\alpha\beta} a_i^{\alpha} a_j^{\beta}.$$

We shall restrict our consideration to two-dimensional spaces F^2 with 1form metric $L(a^1, a^2)$. Analogously to the Weierstrass invariant W of (5.4), because of the homogeneity of $L(a^1, a^2)$ we can also define

(6.1)
$$w = \frac{L_{11}}{(a^2)^2} = \frac{-L_{12}}{a^1 a^2} = \frac{L_{22}}{(a^1)^2}$$

called the *intrinsic Weierstrass invariant*. It is easy to show

$$(6.2) W = wd^2.$$

In a general F^n with 1-form metric we have a linear non-symmetric connection $(\Gamma_j{}^i{}_k(x))$, which is called the 1-form connection ([1], 1.5.2) and is given by

$$\Gamma_j{}^i_k = b^i_\alpha \partial_k a^\alpha_j, \qquad (b^i_\alpha) = (a^\alpha_i)^{-1}$$

The definition is rewritten as $a_{i;j}^{\alpha} = \partial_j a_i^{\alpha} - a_r^{\alpha} \Gamma_i r_j = 0$, and hence, in the induced Finsler connection $(\Gamma_i r_k^i, \Gamma_0 r_j^i)$, we have

$$L_{(j);i} = (L_{\alpha}a_{j}^{\alpha})_{;i} = 0 = L_{(j)i} - L_{(j)(r)}\Gamma_{0}{}^{r}_{i} - L_{(r)}\Gamma_{j}{}^{r}_{i}.$$

Now, let us return to F^2 with 1-form metric, and we have

$$M = L_{1(2)} - L_{2(1)} = L_{(2)(r)} \Gamma_0^{\ r_1} - L_{(1)(r)} \Gamma_0^{\ r_2} - L_{(r)} T_1^{\ (r)}_2$$

= $W(y^1 \Gamma_0^{\ 2}_0 - y^2 \Gamma_0^{\ 1}_0) - L_\alpha T^\alpha, \qquad \alpha = 1, 2,$

where $T_i^r{}_j = b^r_{\alpha} (\partial_j a^{\alpha}_i - \partial_i a^{\alpha}_j)$ is the torsion tensor of the 1-form connection and $T^{\alpha} = a^{\alpha}_r T_1^r{}_2 = \partial_2 a^{\alpha}_1 - \partial_1 a^{\alpha}_2$. It is noted that the terms in the parentheses are homogeneous polynomials in (y^1, y^2) of degree three. Therefore Theorem 10 together with (6.2) shows the

Theorem 16. Let F^2 be a two-dimensional Finsler space with 1-form metric $L(a^1, a^2)$. F^2 is a Douglas space, if and only if $L_{\alpha}T^{\alpha}/w$ is a homogeneous polynomial in (y^1, y^2) of degree three, where

$$L_{\alpha} = \partial L / \partial a^{\alpha}, \quad T^{\alpha} = \partial_2 a_1^{\alpha} - \partial_1 a_2^{\alpha}, \quad \alpha = 1, 2,$$

and w is the intrinsic Weierstrass invariant.

It is noted from (5.7) that for an F^2 with 1-form metric the Weierstrass form of geodesics equation is written in the form

(6.3)
$$p\dot{q} - \dot{p}q + p\Gamma_0^2{}_0^2 - q\Gamma_0^1{}_0^1 - \frac{1}{wd^2}L_{\alpha}T^{\alpha} = 0, \quad \alpha = 1, 2.$$

Example 4. As is well-known ([5]; [13], §28; [1], 3.5), any two-dimensional Berwald spaces with constant main scalar are with 1-form metric. Except those trivial spaces, let us here treat of an F^2 with the metric

$$L = a^2 \log \left| \frac{a^2}{a^1} \right|^r,$$

where r is a non-zero real number. We have

$$L_1 = -r\frac{a^2}{a^1}, \quad L_2 = r\left(1 + \log\left|\frac{a^2}{a^1}\right|\right), \quad L_{12} = -\frac{r}{a^1},$$
$$w = \frac{r}{(a^1)^2 a^2}, \quad \frac{1}{w}L_{\alpha}T^{\alpha} = -a^1(a^2)^2T^1 + (a^1)^2a^2\left(1 + \log\left|\frac{a^2}{a^1}\right|\right)T^2.$$

Since T^{α} do not contain (p,q), $L_{\alpha}T^{\alpha}/w$ is homogeneous polynomial in (p,q) of degree three, if and only if $T^2 = 0$; $(a_1^2)_y - (a_2^2)_x = 0$. Therefore this F^2 is a Douglas space, if and only if the form a^2 is closed, and then the equation of the geodesics is written from (6.3) as

$$p\dot{q} - \dot{p}q + p\Gamma_0{}^2_0 - q\Gamma_0{}^1_0 + a^1(a^2)^2 \frac{T^1}{(d)^2} = 0,$$

where $T^1 = (a_1^1)_y - (a_2^1)_x$.

References

- P. L. ANTONELLI, R. S. INGARDEN and M. MATSUMOTO, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, *Kluwer Acad. Publ.*, *Dordrecht, Boston, London*, 1993.
- [2] S. BÁCSÓ, M. HASHIGUCHI and M. MATSUMOTO, Generalized Berwald spaces and Wagner spaces, *Rev. Roum. Math. (to appear)*.
- [3] S. BÁCSÓ, F. ILOSVAY and B. KIS, Landsberg spaces with common geodesics, Publ. Math. Debrecen 42 (1993), 139–144.
- [4] S. BÁCSÓ and M. MATSUMOTO, Reduction theorems of certain Landsberg spaces to Berwald spaces, *Publ. Math. Debrecen* 48 (1996), 357–366.
- [5] L. BERWALD, On Finsler and Cartan geometries, III. Two-dimensional Finsler spaces with rectilinear extremals, Ann. of Math. 42 (1941), 84–112.
- [6] L. BERWALD, Ueber Finslersche und Cartansche Geometrie, IV. Projektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung, Ann. of Math. 48 (1947), 755–781.
- [7] E. CARTAN, Leçons sur la théorie des espaces à connexion projective, Gauthier-Villars, 1937.
- [8] J. DOUGLAS, The general geometry of paths, Ann. of Math. 29 (1927-28), 143–168.
- [9] M. HASHIGUCHI, On Wagner's generalized Berwald space, J. Korean Math. Soc. 12 (1975), 51–61.
- [10] S. KIKUCHI, On the condition that a space with (α, β) -metric be locally Minkowskian, *Tensor*, N.S. **33** (1979), 242–246.
- [11] M. MATSUMOTO, Projective changes of Finsler metrics and projectively flat Finsler spaces, *Tensor*, N.S. 34 (1980), 303–315.
- [12] M. MATSUMOTO, On Wagner's generalized Berwald spaces of dimension two, Tensor, N.S. 36 (1982), 303–311.
- [13] M. MATSUMOTO, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Otsu, 1986.
- [14] M. MATSUMOTO, Theory of extended point transformations of Finsler spaces II. Fundamental theorems of projective motions, *Tensor*, N.S. 47 (1988), 203–214.
- [15] M. MATSUMOTO, The Berwald connection of a Finsler space with an (α, β) -metric, *Tensor*, N.S. **50** (1991), 18–21.
- [16] M. MATSUMOTO, Every path space of dimension two is projectively related to a Finsler space, Open Syst. & Inform Dynamics 3 (1995), 291–303.
- [17] M. MATSUMOTO, Two-dimensional Finsler spaces whose geodesics constitute a family of special conic sections, J. Math. Kyoto Univ. 35 (1995), 357–376.
- [18] M. MATSUMOTO, Theory of Finsler spaces with *m*-th root metric II, Publ. Math. Debrecen 49 (1996), 135–155.
- [19] M. MATSUMOTO and H.-S. PARK, Equations of geodesics in two-dimensional Finsler spaces with (α, β) -metric, *Rev. Roum. Math. (to appear).*
- [20] H. RUND, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1959.
- [21] Z. I. SZABÓ, Finslersche Projektivgeometrie, I. Eine globale Begründung der Finslerschen Projektivzusammenhänge, Acta Math. Acad. Sci. Hungar. 35 (1980), 79–96.
- [22] V. V. WAGNER, On generalized Berwald spaces, C. R. (Doklady), Acad. Sci. URSS, N.S. 39 (1943), 3–5.

- 406 S. Bácsó and M. Matsumoto : On Finsler spaces of Douglas type
- [23] K. YANO, The Theory of Lie Derivatives and its Applications, North-Holland Publ. Co., Amsterdam, P. Noordhoff LTD. Groningen, 1955.

SÁNDOR BÁCSÓ INSTITUTE OF MATHEMATICS AND INFORMATICS LAJOS KOSSUTH UNIVERSITY H-4010 DEBRECEN P.O.BOX 12 HUNGARY

MAKOTO MATSUMOTO 15 ZENBU-CHO, SHIMOGAMO SAKYO-KU, KYOTO 606 JAPAN

(Received August 11, 1997)