On quasi-inner automorphisms of a finite p-group

By IZABELA MALINOWSKA* (Bialystok)

In [3] Jonah and Konvisser constructed a p-group of order p^{8}, whose the automorphism group is elementary abelian of order p^{16}. Later a lot of p-groups satisfying similar properties have been found. The most interesting one was presented in [1] by Heineken. In fact it has been found a class of finite p-groups all of whose normal subgroups are characteristic. All these groups are of nilpotency class 2, they have exponent p^{2} and their automorphism groups are p-groups. Each automorphism φ of the p-group G of this class satisfies the following condition: for every g in G there exists h in G such that $\varphi(g)=g^{h}$. We call it a quasi-inner automorphism.

Until recently there were no examples of p-groups of class larger then 2 with all automorphisms quasi-inner. In this paper we present an example of a p-group of class 3 and order $p^{6}(p>3)$ with such a property. We also show that for every $r>2$ there exists a p-group P of class r with a quasi-inner automorphism (which is not inner).

Throughout the paper terminology and notation will follow [2,4].
Let G be a group generated by a, b, c, d with the following relations

$$
\begin{array}{lll}
{[a, b]=a^{p}} & {[a, c]=d} & {[a, d]=b^{p}} \\
{[b, c]=a^{p m} b^{p k}} & {[b, d]=1} & {[d, c]=a^{p l}}
\end{array}
$$

$a^{p^{2}}=b^{p^{2}}=c^{p}=d^{p}=1$, where $p>3$ and $k, l, m \not \equiv 0(\bmod p)$.
It is easily seen that G is a p-group of order p^{6} and of nilpotency class 3. Moreover

$$
\begin{equation*}
Z(G)=\left\langle a^{p}, b^{p}\right\rangle \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& G^{\prime}=\left\langle a^{p}, b^{p}, d\right\rangle \tag{2}\\
& \Omega_{1}(G)=\langle c, d, Z(G)\rangle \tag{3}\\
& \Omega_{1}(G)^{\prime}=\left\langle a^{p}\right\rangle \tag{4}
\end{align*}
$$
\]

Theorem 1. All automorphisms of G are quasi-inner if and only if $A=m^{2}+4 k l$ is a quadratic non-residue for p.

Proof. Let A be a quadratic non-residue for p. The commutator relations imply that

$$
\begin{equation*}
C_{G}\left(G^{\prime}\right)=\left\langle b, G^{\prime}\right\rangle \tag{5}
\end{equation*}
$$

Of course $C_{G}\left(G^{\prime}\right)$ is characteristic in G.
Let φ be an automorphism of G. Then by (2), (3) and (5) φ maps b to $b^{\alpha} d^{\beta}(\bmod Z(G)), c$ to $c^{\gamma} d^{\delta}(\bmod Z(G))$ and d to $d^{\varepsilon}(\bmod Z(G))$ $(\alpha, \beta, \gamma, \delta, \varepsilon \in \mathbf{Z})$. Furthermore by (4) φ takes a to $a^{\zeta} c^{\eta} d^{\vartheta}(\bmod Z(G))$ $(\zeta, \eta, \vartheta \in \mathbf{Z})$. Applying φ to the third and the first relations gives $\eta \equiv 0$ $(\bmod p), \alpha \equiv 1(\bmod p), \beta \equiv 0(\bmod p)$ and

$$
\begin{equation*}
\zeta \cdot \varepsilon \equiv 1(\bmod p) \tag{6}
\end{equation*}
$$

Applying it to the fourth relation gives $\gamma \equiv 1(\bmod p)$ and $\zeta \equiv 1(\bmod p)$. Then $\varepsilon \equiv 1(\bmod p)$ by (6). So each automorphism φ of G has the form:

$$
\begin{array}{ll}
\varphi(a) \equiv a d^{r}, & \varphi(b) \equiv b \\
\varphi(c) \equiv c d^{s}, & \varphi(d) \equiv d(\bmod Z(G))
\end{array}
$$

where $r, s \in \mathbf{Z}$.
This means that φ is the p-automorphism of G which induces the identity on $G / \Phi(G)$. Moreover for $g=a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} \quad(\alpha, \beta, \gamma, \delta \in \mathbf{Z})$ we have

$$
\varphi(g)=g \cdot d^{r \alpha+s \gamma} \cdot a^{p \kappa} b^{p \lambda}
$$

for some $\kappa, \lambda \in \mathbf{Z}$. We show that φ maps each element g to one of its conjugates. To do this we need to find integers t, x, y, z such that for $h=a^{t} b^{x} c^{y} d^{z}$

$$
\begin{equation*}
\varphi(g)=g^{h} . \tag{7}
\end{equation*}
$$

A strightforward computation gives

$$
g^{h}=g \cdot d^{\alpha y-\gamma t} a^{p(\mu+(\alpha-m \gamma) x-l \gamma z)} \cdot b^{p(\nu-k \gamma x+\alpha z)}
$$

where μ, ν are expressed in terms of $t, y, \alpha, \beta, \gamma, \delta$. Thus the equality (7) implies

$$
\begin{equation*}
\alpha y-\gamma t \equiv r \alpha+s \gamma(\bmod p) \tag{8}
\end{equation*}
$$

If $\alpha \not \equiv 0$ or $\gamma \not \equiv 0$, then there is y and t satisfying the equation (8). Hence for $L_{1}=\kappa-\mu, L_{2}=\lambda-\nu$

$$
\left\{\begin{array}{l}
(\alpha-m \gamma) x-l \gamma z \equiv L_{1}(\bmod p) \tag{9}\\
-k \gamma x+\alpha z \equiv L_{2}(\bmod p)
\end{array}\right.
$$

For $\alpha \not \equiv 0$ the system of equations (9) has a unique solution (x, z) if and only if

$$
\operatorname{det}\left[\begin{array}{cc}
\alpha-m \gamma & -l \gamma \\
-k \gamma & \alpha
\end{array}\right] \not \equiv 0(\bmod p)
$$

which is equivalent to

$$
\alpha^{2}-m \gamma \alpha-k l \gamma^{2} \not \equiv 0(\bmod p)
$$

i.e. if and only if $A=m^{2}+4 k l$ is a quadratic non-residue for p.

Now assume $\alpha \equiv 0(\bmod p)$. Thus the system (9) has the form

$$
\begin{cases}-m \gamma x-l \gamma z & \equiv L_{1} \\ -k \gamma x & \equiv L_{2}\end{cases}
$$

It has a unique solution (x, z) if and only if $l \not \equiv 0, k \not \equiv 0(\bmod p)$ which are satisfied by the assumptions.

Suppose that $\alpha \equiv 0$ and $\gamma \equiv 0$. Then we take $x \equiv 0, z \equiv 0$ and have

$$
\begin{cases}-\beta t+(m \beta+l \delta) y & \equiv M_{1}(\bmod p) \tag{10}\\ -\delta t+k \beta y & \equiv M_{2}(\bmod p)\end{cases}
$$

for some $M_{1}, M_{2} \in \mathbf{Z}$ which are expressed in terms of β, δ.
Similarly it can be found (t, y) being the solution of (10).
Now let φ be the automorphism of G such that

$$
\varphi(a)=a d, \varphi(b)=b a^{p m} b^{p k}, \varphi(c)=c d, \varphi(d)=d a^{p l} b^{p} .
$$

Assume that φ is quasi-inner and A is a quadratic residue for p. Consider an element $b^{\beta} d^{\delta} \in G$ such that $\beta, \delta \in \mathbf{Z}$. It follows from the definition of a quasi-inner automorphism of G that there is an element $h=a^{t} b^{x} c^{y} d^{z}$ such that

$$
\varphi(g)=g^{h} \quad(t, x, y, z \in \mathbf{Z})
$$

Notice that

$$
\begin{gather*}
\varphi(g)=g \cdot a^{p(m \beta+l \delta)} b^{p(k \beta+\delta)} \text { and } \\
g^{h}=g \cdot a^{p(m \beta y+l \delta y-\beta t)} b^{p(k \beta y-\delta t)}, \text { so } \\
\begin{cases}-\beta t+(m \beta+l \delta) y & \equiv m \beta+l \delta(\bmod p) \\
-\delta t+k \beta y & \equiv k \beta+\delta(\bmod p)\end{cases} \tag{11}
\end{gather*}
$$

and this system of equations has a solution (t, y) i.e.

$$
r\left[\begin{array}{cc}
-\beta & m \beta+l \delta \\
-\delta & k \beta
\end{array}\right]=r\left[\begin{array}{ccc}
-\beta & m \beta+l \delta & m \beta+l \delta \\
-\delta & k \beta & k \beta+\delta
\end{array}\right]
$$

Let \mathfrak{A} be the coefficient matrix of the system (10) and \mathfrak{B} be the augmented matrix of this system.

Since A is a quadratic residue for p, there is $\beta \not \equiv 0, \delta \not \equiv 0$ such that the rank $r(\mathfrak{A})=1$. Therefore $r(\mathfrak{B})=1$, but it is easy to see that $r(\mathfrak{B})=2$. This gives a contradiction.

Now let P be a group generated by a, b, c, d, x, y with the following relations:

$$
\begin{array}{ll}
a^{p^{r}}=b^{p^{r}}=c^{p}=d^{p}=x^{p}=y^{p}=1 \\
{[a, b]=a^{p}} & {[a, c]=b^{p^{r-1}}} \\
{[a, d]=c} & {[b, c]=1} \\
{[a, x]=[c, x]=[a, y]=[c, y]=1} \\
{[x, y]=b^{p^{r-1} k}} & {[c, d]=a^{p^{r-1} m} b^{p^{r-1} m} b^{p^{r-1} n}} \\
{[b, x]=a^{p^{r-1}}} & {[b, y]=1} \\
{[d, x]=1} & {[d, y]=a^{p^{r-1} l}} \\
{[} &
\end{array}
$$

where $p>5, r>2, \quad k, m, n, l \not \equiv 0(\bmod p)$. One can easily show that G is regular and of nilpotency class r.

Theorem 2. P has a quasi-inner automorphism which is not inner.
Proof. Let φ be an automorphism of P such that

$$
\varphi(a)=a, \varphi(b)=b, \varphi(c)=c, \varphi(d)=d a^{p^{r-1}}, \varphi(x)=x, \varphi(y)=y
$$

φ is not inner since $C_{P}(x) \cap C_{P}(y) \cap C_{P}(c)=\left\langle a^{p}, b^{p}, c\right\rangle$.
If $g=a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} x^{\lambda} y^{\mu}$ for $\alpha, \beta, \gamma, \delta, \lambda, \mu \in \mathbf{Z}$, then

$$
\begin{equation*}
\varphi(g)=g \cdot a^{p^{r-1} \delta} \tag{12}
\end{equation*}
$$

We need to find an element h such that $\varphi(g)=g^{h}$. Of course if $\delta \equiv 0$ $(\bmod p)$ then $\varphi(g)=g$. Assume that $\delta \not \equiv 0(\bmod p)$.

If $\alpha \not \equiv 0(\bmod p)$, then we take $h=b^{p^{r-2} t}$. Hence we get $\alpha t \equiv$ $\delta(\bmod p)$ by (12). Clearly there exists t satisfying this equation.

If $\beta \not \equiv 0(\bmod p)$, then we take $h=a^{p^{r-2} t}$. Thus we get $-\beta t \equiv \delta$ $(\bmod p)$ by (12).

Assume that $\alpha \equiv 0, \beta \equiv 0(\bmod p)$. Now we take $h=c^{t} y^{w}$. Thus

$$
g^{h}=g \cdot a^{p^{r-1}(-m \delta t+l \delta w+m \lambda w)} b^{p^{r-1}(-n \delta t+n \lambda w)} .
$$

Hence by (12)

$$
\begin{cases}-m \delta t+(l \delta+m \lambda) w & \equiv \delta(\bmod p) \\ -n \delta t+n \lambda w & \equiv 0(\bmod p)\end{cases}
$$

This equation has a unique solution (t, w) if and only if

$$
\operatorname{det}\left[\begin{array}{cc}
-m \delta & l \delta+m \lambda \\
-n \delta & n \lambda
\end{array}\right] \not \equiv 0(\bmod p)
$$

i.e. if and only if $\delta \not \equiv 0(\bmod p)$.

References

[1] H. Heineken, Nilpotente gruppen, deren sämtliche normalteiler charakteristish sind, Arch. Math. 33 (1979), 497-503.
[2] B. Huppert, Endliche Gruppen I., Springer, Berlin, 1967.
[3] D. Jonah and M. Konvisser, Some non-abelian p-groups with abelian automorphism groups, Arch. Math. Vol. XXVI (1975), 131-133.
[4] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New-York, 1982.

IZABELA MALINOWSKA
INSTITUTE OF MATHEMATICS
WARSAW UNIVERSITY, BIALYSTOK DIVISION
15--267 BIALYSTOK
AKADEMICKA 2
(Received December 27, 1990)

[^0]: *Supported by Polish scientific grant R.P.I. 10

