Publ. Math. Debrecen 41 / 1–2 (1992), 73–77

On quasi-inner automorphisms of a finite *p*-group

By IZABELA MALINOWSKA* (Bialystok)

In [3] JONAH and KONVISSER constructed a *p*-group of order p^8 , whose the automorphism group is elementary abelian of order p^{16} . Later a lot of *p*-groups satisfying similar properties have been found. The most interesting one was presented in [1] by HEINEKEN. In fact it has been found a class of finite *p*-groups all of whose normal subgroups are characteristic. All these groups are of nilpotency class 2, they have exponent p^2 and their automorphism groups are *p*-groups. Each automorphism φ of the *p*-group *G* of this class satisfies the following condition: for every *g* in *G* there exists *h* in *G* such that $\varphi(g) = g^h$. We call it a quasi-inner automorphism.

Until recently there were no examples of p-groups of class larger then 2 with all automorphisms quasi-inner. In this paper we present an example of a p-group of class 3 and order p^6 (p > 3) with such a property. We also show that for every r > 2 there exists a p-group P of class r with a quasi-inner automorphism (which is not inner).

Throughout the paper terminology and notation will follow [2,4].

Let G be a group generated by a, b, c, d with the following relations

$$[a,b] = a^{p} [a,c] = d [a,d] = b^{p} [b,c] = a^{pm}b^{pk} [b,d] = 1 [d,c] = a^{pl} ,$$

 $a^{p^2} = b^{p^2} = c^p = d^p = 1$, where p > 3 and $k, l, m \not\equiv 0 \pmod{p}$.

It is easily seen that G is a p-group of order p^6 and of nilpotency class 3. Moreover

(1)
$$Z(G) = \langle a^p, b^p \rangle$$

^{*}Supported by Polish scientific grant R.P.I.10

Izabela Malinowska

(2)
$$G' = \langle a^p, b^p, d \rangle$$

(3)
$$\Omega_1(G) = \langle c, d, Z(G) \rangle$$

(4)
$$\Omega_1(G)' = \langle a^p \rangle.$$

Theorem 1. All automorphisms of G are quasi-inner if and only if $A = m^2 + 4kl$ is a quadratic non-residue for p.

PROOF. Let A be a quadratic non-residue for p. The commutator relations imply that

(5)
$$C_G(G') = \langle b, G' \rangle.$$

Of course $C_G(G')$ is characteristic in G.

Let φ be an automorphism of G. Then by (2), (3) and (5) φ maps b to $b^{\alpha}d^{\beta} \pmod{Z(G)}$, c to $c^{\gamma}d^{\delta} \pmod{Z(G)}$ and d to $d^{\varepsilon} \pmod{Z(G)}$ $(\alpha, \beta, \gamma, \delta, \varepsilon \in \mathbf{Z})$. Furthermore by (4) φ takes a to $a^{\zeta}c^{\eta}d^{\vartheta} \pmod{Z(G)}$ $(\zeta, \eta, \vartheta \in \mathbf{Z})$. Applying φ to the third and the first relations gives $\eta \equiv 0 \pmod{p}$, $\alpha \equiv 1 \pmod{p}$, $\beta \equiv 0 \pmod{p}$ and

(6)
$$\zeta \cdot \varepsilon \equiv 1 \pmod{p}.$$

Applying it to the fourth relation gives $\gamma \equiv 1 \pmod{p}$ and $\zeta \equiv 1 \pmod{p}$. Then $\varepsilon \equiv 1 \pmod{p}$ by (6). So each automorphism φ of G has the form:

$$\begin{split} \varphi(a) &\equiv ad^r, \quad \varphi(b) \equiv b, \\ \varphi(c) &\equiv cd^s, \quad \varphi(d) \equiv d \pmod{Z(G)} \\ \text{where } r, s \in \mathbf{Z}. \end{split}$$

This means that φ is the *p*-automorphism of *G* which induces the identity on $G/\Phi(G)$. Moreover for $g = a^{\alpha}b^{\beta}c^{\gamma}d^{\delta}$ $(\alpha, \beta, \gamma, \delta \in \mathbb{Z})$ we have

$$\varphi(g) = g \cdot d^{r\alpha + s\gamma} \cdot a^{p\kappa} b^{p\lambda}$$

for some $\kappa, \lambda \in \mathbb{Z}$. We show that φ maps each element g to one of its conjugates. To do this we need to find integers t, x, y, z such that for $h = a^t b^x c^y d^z$

(7)
$$\varphi(g) = g^h.$$

A strightforward computation gives

$$g^{h} = g \cdot d^{\alpha y - \gamma t} a^{p(\mu + (\alpha - m\gamma)x - l\gamma z)} \cdot b^{p(\nu - k\gamma x + \alpha z)}$$

where μ, ν are expressed in terms of $t, y, \alpha, \beta, \gamma, \delta$. Thus the equality (7) implies

(8)
$$\alpha y - \gamma t \equiv r\alpha + s\gamma \pmod{p}.$$

74

If $\alpha \neq 0$ or $\gamma \neq 0$, then there is y and t satisfying the equation (8). Hence for $L_1 = \kappa - \mu$, $L_2 = \lambda - \nu$

(9)
$$\begin{cases} (\alpha - m\gamma)x - l\gamma z \equiv L_1 \pmod{p} \\ -k\gamma x + \alpha z \equiv L_2 \pmod{p}. \end{cases}$$

For $\alpha \neq 0$ the system of equations (9) has a unique solution (x, z) if and only if

det
$$\begin{bmatrix} \alpha - m\gamma & -l\gamma \\ -k\gamma & \alpha \end{bmatrix} \not\equiv 0 \pmod{p}$$
,

which is equivalent to

$$\alpha^2 - m\gamma\alpha - kl\gamma^2 \not\equiv 0 \pmod{p}$$

i.e. if and only if $A = m^2 + 4kl$ is a quadratic non-residue for p.

Now assume $\alpha \equiv 0 \pmod{p}$. Thus the system (9) has the form

$$\begin{cases} -m\gamma x - l\gamma z \equiv L_1 \\ -k\gamma x \equiv L_2. \end{cases}$$

It has a unique solution (x, z) if and only if $l \not\equiv 0, k \not\equiv 0 \pmod{p}$ which are satisfied by the assumptions.

Suppose that $\alpha \equiv 0$ and $\gamma \equiv 0$. Then we take $x \equiv 0, z \equiv 0$ and have

(10)
$$\begin{cases} -\beta t + (m\beta + l\delta)y \equiv M_1 \pmod{p} \\ -\delta t + k\beta y \equiv M_2 \pmod{p} \end{cases}$$

for some $M_1, M_2 \in \mathbf{Z}$ which are expressed in terms of β, δ .

Similarly it can be found (t, y) being the solution of (10).

Now let φ be the automorphism of G such that

$$\varphi(a) = ad, \ \varphi(b) = ba^{pm}b^{pk}, \ \varphi(c) = cd, \ \varphi(d) = da^{pl}b^{p}.$$

Assume that φ is quasi-inner and A is a quadratic residue for p. Consider an element $b^{\beta}d^{\delta} \in G$ such that $\beta, \delta \in \mathbb{Z}$. It follows from the definition of a quasi-inner automorphism of G that there is an element $h = a^t b^x c^y d^z$ such that

$$\varphi(g) = g^h \quad (t, x, y, z \in \mathbf{Z}).$$

Notice that

$$\varphi(g) = g \cdot a^{p(m\beta+l\delta)} b^{p(k\beta+\delta)} \text{ and}$$
$$g^{h} = g \cdot a^{p(m\beta y+l\delta y-\beta t)} b^{p(k\beta y-\delta t)}, \text{ so}$$

(11)
$$\begin{cases} -\beta t + (m\beta + l\delta)y \equiv m\beta + l\delta \pmod{p} \\ -\delta t + k\beta y \equiv k\beta + \delta \pmod{p} \end{cases}$$

Izabela Malinowska

and this system of equations has a solution (t, y) i.e.

$$r \begin{bmatrix} -\beta & m\beta + l\delta \\ -\delta & k\beta \end{bmatrix} = r \begin{bmatrix} -\beta & m\beta + l\delta & m\beta + l\delta \\ -\delta & k\beta & k\beta + \delta \end{bmatrix}$$

Let \mathfrak{A} be the coefficient matrix of the system (10) and \mathfrak{B} be the augmented matrix of this system.

Since A is a quadratic residue for p, there is $\beta \neq 0$, $\delta \neq 0$ such that the rank $r(\mathfrak{A}) = 1$. Therefore $r(\mathfrak{B}) = 1$, but it is easy to see that $r(\mathfrak{B}) = 2$. This gives a contradiction. \Box

Now let P be a group generated by a, b, c, d, x, y with the following relations:

$$\begin{aligned} a^{p^{r}} &= b^{p^{r}} = c^{p} = d^{p} = x^{p} = y^{p} = 1\\ [a, b] &= a^{p} \quad [a, c] = b^{p^{r-1}} \quad [b, c] = 1\\ [a, d] &= c \quad [b, d] = b^{p^{r-1}k} \quad [c, d] = a^{p^{r-1}m}b^{p^{r-1}n}\\ [a, x] &= [c, x] = [a, y] = [c, y] = 1\\ [x, y] &= a^{p^{r-1}m}b^{p^{r-1}n} \quad [b, y] = 1\\ [b, x] &= a^{p^{r-1}} \quad [d, y] = a^{p^{r-1}l}\\ [d, x] &= 1\end{aligned}$$

where p > 5, r > 2, $k, m, n, l \not\equiv 0 \pmod{p}$. One can easily show that G is regular and of nilpotency class r.

Theorem 2. *P* has a quasi-inner automorphism which is not inner.

PROOF. Let φ be an automorphism of P such that

$$\varphi(a) = a, \ \varphi(b) = b, \ \varphi(c) = c, \ \varphi(d) = da^{p^{r-1}}, \ \varphi(x) = x, \ \varphi(y) = y.$$

 φ is not inner since $C_P(x) \cap C_P(y) \cap C_P(c) = \langle a^p, b^p, c \rangle$. If $g = a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} x^{\lambda} y^{\mu}$ for $\alpha, \beta, \gamma, \delta, \lambda, \mu \in \mathbb{Z}$, then

(12)
$$\varphi(g) = g \cdot a^{p^{r-1}\delta}$$

We need to find an element h such that $\varphi(g) = g^h$. Of course if $\delta \equiv 0 \pmod{p}$ then $\varphi(g) = g$. Assume that $\delta \not\equiv 0 \pmod{p}$.

If $\alpha \not\equiv 0 \pmod{p}$, then we take $h = b^{p^{r-2}t}$. Hence we get $\alpha t \equiv \delta \pmod{p}$ by (12). Clearly there exists t satisfying this equation.

If $\beta \not\equiv 0 \pmod{p}$, then we take $h = a^{p^{r-2}t}$. Thus we get $-\beta t \equiv \delta \pmod{p}$ by (12).

Assume that $\alpha \equiv 0, \beta \equiv 0 \pmod{p}$. Now we take $h = c^t y^w$. Thus

$$g^{h} = g \cdot a^{p^{r-1}(-m\delta t + l\delta w + m\lambda w)} b^{p^{r-1}(-n\delta t + n\lambda w)}$$

Hence by (12)

$$\begin{cases} -m\delta t + (l\delta + m\lambda)w \equiv \delta \pmod{p} \\ -n\delta t + n\lambda w \equiv 0 \pmod{p}. \end{cases}$$

This equation has a unique solution (t, w) if and only if

det
$$\begin{bmatrix} -m\delta & l\delta + m\lambda \\ -n\delta & n\lambda \end{bmatrix} \not\equiv 0 \pmod{p},$$

i.e. if and only if $\delta \not\equiv 0 \pmod{p}$. \Box

References

- H. HEINEKEN, Nilpotente gruppen, deren sämtliche normalteiler charakteristish sind, Arch. Math. 33 (1979), 497–503.
- [2] B. HUPPERT, Endliche Gruppen I., Springer, Berlin, 1967.
- [3] D. JONAH and M. KONVISSER, Some non-abelian *p*-groups with abelian automorphism groups, *Arch. Math.* Vol. XXVI (1975), 131–133.
- [4] D. J. S. ROBINSON, A Course in the Theory of Groups, Springer-Verlag, New-York, 1982.

IZABELA MALINOWSKA INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY, BIALYSTOK DIVISION 15—267 BIALYSTOK AKADEMICKA 2

(Received December 27, 1990)

•