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The weak topology for SG-primitive ideals

By TIANZHOU XU (Beijing)

Abstract. Let A be a C∗-algebra and M a left-cancellative semigroup with unit e,
and (A, M, α) a C∗-dynamical system. We define the concept of SG-primitive ideals
SG-Prim(A) of A for a semigroup action α. The restriction to SG-Prim(A) of the weak
topology which has been previously defined on the ideal space Id(A) is investigated.
A necessary and sufficient condition for SG-Prim(A) to be a Hausdorff space is given.
The classical Dauns-Hofmann’s theorem is extended to a more general setting.

0. Introduction

The theory of crossed products of C∗-algebras by groups of automor-
phisms is a well-developed area of the theory of operator algebras. Given
the importance and the success of that theory, it is natural to attempt to
extend it to a more general situation by, for example, developing a theory
of crossed products of C∗-algebras by semigroups of automorphisms, or
even of endomorphisms. Indeed, in recent years a number of papers have
appeared that are concerned with such non-classical theories of covariance
algebras, see, for instance [6], [7], [8], [9], [10], [11].

In recent papers [10] and [11] Murphy introduced one such non-
classical theory. There are many aspects of the extended theory developed
by Murphy which are analogous to results of the original classical theory.
Nevertheless, there are significant differences, in fact, perhaps rather more
than one might at first expect. These differences manifest themselves not
only in the kind of results that can be obtained, but also in proofs and
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methods: the analogue of a classical result may turn out to be false, or if
true, may require a new proof (and often, one that is rather more difficult).
For further details see [10] and [11].

Let A be a C∗-algebra. Recently, some subsets of the set Id(A) of
all ideals in A (ideal will always mean closed two-sided ideal) were in-
vestigated, for example, the concepts of primal and minimal ideals were
introduced for C∗-algebras ([1], [3]), and topologies on these ideal spaces
were systematically studied in [1]. A particularly nice class of C∗-algebras
is the class of quasi-standard ones ([1], [4]) which can be characterized
by the fact that their minimal primal ideal spaces and their Glimm ideal
spaces, arising from the complete regularization of the primitive ideals, co-
incide as topological spaces. The quasi-standard C∗-algebras turned out
to be precisely the maximal algebras of cross sections in the sense of ([1],
[4]) over the minimal primal ideal spaces.

Motivated mainly by the works ([1], [3], [5], [10], [11], [12]), in this
paper we shall consider the restriction to SG-Prim(A) (see Section 2 for
the definition) of the weak topology which has been previously defined
on the ideal space Id(A). The weak topology τw is in some sense more
natural and the restriction of τw to the primitive ideal space SG-Prim(A)
is precisely the Jacobson (hull-kernel) topology.

This paper is organized as follows. In Section 1, we recall the basic
definition and properties of the covariance algebra of the C∗-dynamical
system (A, M, α) relative to a 2-cocycle θ. In Section 2 we introduce
notation and some definitions, in particular, of SG-primitive ideals, and
some properties of these are considered. In Section 3 we shall consider
the weak topology τw on SG-Prim(A). Finally, in Section 4 we prove
that the fixed point algebra of the center of a unital C∗-algebra for a left-
cancellative semigroup M with unit e is isomorphic to the algebra of all
the continuous functions on the SG-Prim(A). If M is trivial, this result is
nothing but the classical Dauns-Hofmann’s theorem.

1. Covariance algebras

In this section, we shall collect from [10, 11] basic definitions and
properties of the covariance algebra of the C∗-dynamical system (A,M, α)
relative to a 2-cocycle θ.
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Let M be a semigroup, with unit denoted by e, and let A be a unital
∗-algebra. We say that a map

W : M → A, x → Wx,

is an isometric projective homomorphism from M to A if all the elements
of Wx are isometries, if We = 1, and if

Wxy = θx,yWxWy, x, y ∈ M,

where the θx,y are complex numbers of modulus 1. It follows from the
equations

We = Wee = θe,eWeWe,

W(xy)z = θxy,zWxyWz = θx,yθxy,zWxWyWz,

and
Wx(yz) = θx,yzWxWyz = θx,yzθy,zWxWyWz,

that we have

(1.1) θe,e = 1, θx,yθxy,z = θx,yzθy,z.

We say that a function θ : M2 → T, (x, y) → θx,y (T is the unit circle in C)
is a 2-cocycle of M if the equation (1.1) holds. If A = B(H) for a Hilbert
space H then we call (H, W ) an isometric projective representation of M
on H.

If M is left-cancellative, then isometric projective representations ex-
ist. To be specific, let H be an arbitrary non-zero Hilbert space and put
H̃ = l2(M, H), the Hilbert space of all norm square-summable maps f
from M to H (that is,

∑
x∈M ‖f(x)‖2 < +∞) with the norm and scalar

product given by

‖f‖ =
( ∑

x∈M

‖f(x)‖2
)1/2

, 〈f, g〉 =
∑

x∈M

〈f(x), g(x)〉.

For each x ∈ M we define an isometry Wx on H̃ by setting for each element
f ∈ H̃,

Wxf(z) =
{

θx,y, if z = xy, for some y ∈ M,

0, if z /∈ xM.
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The map W : M → B(H̃), x → Wx, is an isometric projective representa-
tion.

In the sequel, M will always denote a left-cancellative semigroup with
unit e and θ will denote a fixed 2-cocycle of M . All isometric projective ho-
momorphisms of M considered will be understood to have θ as associated
2-cocycle, unless the contrary is indicated in a particular context.

We call a triple (A,M,α) a C∗-dynamical system if A is a C∗-algebra
and α is a homomorphism from M into the group Aut(A) of automor-
phisms of A. If B is a unital C∗-algebra, a covariant projective homomor-
phism (relative to θ) from (A,M,α) to B is a pair (φ,W ), where φ : A → B

is a ∗-homomorphism and W : M → B is an isometric projective homo-
morphism, and φ, W interact via the following equation:

φαx(a)Wx = φ(a)W ∗
x , a ∈ A, x ∈ M.

If B = B(H) for a Hilbert space H, then we call (H, φ, W ) a covariant
projective representation of (A, M, α). Murphy has shown the following
theorem:

Theorem 1.1. If (A,M,α) is a C∗-dynamical system, then there ex-

ists a C∗-algebra C∗θ (A, M, α) and a covariant projective homomorphism

(ψ, V ) (relative to θ) from (A, M, α) to M(C∗θ (A,M, α)) having the follow-

ing universal property: For each unital C∗-algebra B and covariant pro-

jective homomorphism (φ,W ) (relative to θ) from (A,M, α) to B, there

exists a unique ∗-homomorphism φ×W : C∗θ (A,M, α) → B such that

φ×W (ψ(a)Vx) = φ(a)Wx, a ∈ A, x ∈ M.

Moreover, C∗θ (A,M, α) is generated by the elements ψ(a)Vx, ∀a ∈ A, x ∈
M . Up to isomorphism, these conditions uniquely determine C∗θ (A,M,α).

We call the C∗-algebra C∗θ (A,M,α) constructed in Theorem 1.1 the
crossed product of A by the semigroup M under the action α (relative
to the cocycle θ), or the covariance algebra of the C∗-dynamical system
(A,M, α) relative to the 2-cocycle θ.
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2. SG-Primitive ideals

Let A be a C∗-algebra. The set Id(A) of all ideals in A (ideal will
always mean closed two-sided ideal) carries two important topologies, the
weak topology τw, and the strong topology τs. A base for τw is given by
the sets of the form

U(F ) = {I ∈ Id(A) : J 6⊆ I for all J ∈ F},

where F is a finite subset of Id(A). When restricted to Prim(A), the
primitive ideal space of A, τw coincides with the Jacobson or hull-kernel
topology. For I ∈ Id(A) and F ⊆ Id(A), h(I) will denote the hull of I in
Prim(A) and k(F ) the kernel of F , i.e.,

h(I) = {P ∈ Prim(A) : P ⊇ I}, k(F ) =
⋂{J : J ∈ F}.

Recall that F ⊆ Prim(A) is closed in Prim(A) if and only if F = h(k(F )).
As for the strong topology, a net (Iλ)λ∈Λ is τs-convergent to I in Id(A) if
and only if ‖a + Iλ‖ → ‖a + I‖ for all a ∈ A. For more details see [1].

Definition 2.1. Let (A,M,α) be a C∗-dynamical system. We say that
a subset S of A is M -invariant if α−1

x (S) ⊆ S for all x ∈ M . We say
that (A, M, α) is simple if the only M -invariant closed ideals of A are the
trivial ideals 0 and A. We say that an ideal I of A is doubly M -invariant if
αx(I) = I for all x ∈ M , that is, I is invariant under all the automorphisms
αx and their inverses α−1

x . We say that an M -invariant ideal I of A is M -
primal if whenever n ≥ 2 and J1, J2, . . . , Jn are M -invariant ideals of A

with zero product, then Ji ⊆ I for at least one value of i.We say that
an M -invariant ideal I of A is weakly M -primal if whenever n ≥ 2 and
J1, J2, . . . , Jn are doubly M -invariant ideals of A with zero product, then
Ji ⊆ I for at least one value of i. We say that an M -invariant ideal I of
A is M -prime (respectively weakly M -prime) if I ⊇ I1I2 implies I ⊇ I1 or
I ⊇ I2 for any two M -invariant (respectively doubly M -invariant) ideals
I1 and I2 of A.

Definition 2.2. Let (A,M, α) be a C∗-dynamical system. Then the
set of SG-primitive ideals SG-Prim(A) of a C∗-algebra A is the set of the
kernels (i.e., ker(φ)) of the covariant projective representations (H, φ, W )
of (A,M,α) (relative to θ) with irreducible representations (H,φ×W ) of
the (twisted) crossed product C∗θ (A,M, α).
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Proposition 2.3. Let (A,M, α) be a C∗-dynamical system where M

is an abelian semigroup, and let I be an doubly M -invariant closed ideal

of A. Then

(i) I is weakly M -primal if and only if it is M -primal.

(ii) I is weakly M -prime if and only if it is M -prime.

Proof. (i) Obviously, we need only to show the forward implica-
tion, as the reverse is trivial. Suppose that I is weakly M -primal. Let
J1, J2, . . . , Jn be M -invariant ideals of A with trivial intersection. For
k ∈ {1, 2, . . . , n}, setting

Jk0 =
⋃

x∈M

αx(Jk),

it is trivially verified that Jk0 is an ideal of A such that αx(Jk0) = Jk0 for
all x ∈ M . Hence, the closure Jk of Jk0 is a doubly M -invariant ideal of A.
Then J1, J2, . . . , Jn have trivial intersection, whence I ⊇ Jk for some k,
since I is weakly M -primal. Therefore we get Jk0 ⊆ I, and hence Jk ⊆ I

using M -invariance of I.
(ii) It is analogous to (i), we omit its proof. ¤

Remark 2.4. In Proposition 2.3, the special case of (ii) when I = 0 is
proved in [11, p. 440], from which we have borrowed this proof.

Proposition 2.5. Let (A, M, α) be a C∗-dynamical system, and sup-

pose that (H, φ, W ) is a covariant projective representation of (A,M, α)
with an irreducible representation (H, φ×W ) of C∗θ (A,M,α). Then

(i) Ker(φ), kernel of φ, is an M -primal ideal of A.

(ii) Ker(φ) is an M -prime ideal of A.

Proof. For every a in Ker(φ) and x in M , by the covariant equation
we know

Wxφα−1
x (a) = φ(a)Wx = 0.

This shows α−1
x (a) ∈ Ker(φ), and hence α−1

x (Ker(φ)) ⊆ Ker(φ). Suppose
now that J1, J2, . . . , Jn are M -invariant ideals in A with trivial intersection.
We must show that Jk ⊆ Ker(φ) for some k. Assume that J ′1, J

′
2, . . . , J

′
n are

ideals in C∗θ (A,M, α) generated by J1, J2, . . . , Jn, respectively. By Theo-
rem 1.1, it is readily verified that the J ′k’s are generated by all elements of
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the form aVx for a ∈ Jk and x ∈ M . Since J1, J2, . . . , Jn are M -invariant
ideals, it immediately follows that

φ×W (J ′1J
′
2 . . . J ′n) = {0}.

Indeed, let a1 ∈ J1, a2 ∈ J2, . . . , an ∈ Jn and x1, x2, . . . , xn ∈ M .
Then, by the M -invariance of J1, J2, . . . , Jn, there exist elements a′1 ∈ J1,
a′2 ∈ J1 ∩ J2, . . . , a′n−1 ∈

⋂n−1
i=1 Ji such that

αx1(a
′
1) = a1, αx2(a

′
2) = a′1a2, . . . , αxn−1(a

′
n−1) = a′n−2an−1.

Thus, we obtain

φ×W (a1Vx1a2Vx2 . . . anVxn) = φ×W (a1Vx1)φ×W (a2Vx2) . . .

φ×W (anVxn)

= φ(a1)Wx1φ(a2)Wx2 . . . φ(an)Wxn

= φαx1(a
′
1)Wx1φ(a2)Wx2 . . . φ(an)Wxn

= Wx1φ(a′1)φ(a2)Wx2 . . . φ(an)Wxn

= Wx1φ(a′1a2)Wx2 . . . φ(an)Wxn

= Wx1φ(αx2(a
′
2))Wx2φ(a3)Wx3 . . . φ(an)Wxn

= Wx1Wx2φ(a′2)φ(a3)Wx3 . . . φ(an)Wxn

= Wx1Wx2 . . . Wxn−1φ(a′n−1an)Wxn = 0.

Since φ×W is irreducible, Ker(φ×W ) is prime by [12, Proposition 3.13.10].
Therefore, we know that J ′k ⊆ Ker(φ×W ) for some k. On the other hand,
for a ∈ Jk and x ∈ M , by [10] and [11] we have

φ(a) = φ×W (aV ∗
x Vx).

Now J ′k contain {aV ∗
x Vx}x∈M , and thus φ × W (J ′k) = {0}. This shows

φ(Jk) = 0, and hence Jk ⊆ Ker(φ) for some k. (ii) is analogous to (i), we
omit its proof. ¤

Lemma 2.6. If (A,M, α) is a C∗-dynamical system and π denotes

a ∗-homomorphism from C∗θ (A,M,α) onto a C∗-algebra B, then there

exists a unique covariant projective homomorphism (φ, W ) from (A,M, α)
to M(B) such that π = φ×W .
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Proof. Uniqueness is easily checked. To see the existence, let φ be
the restriction of π to A and define Wx ∈ M(B) by putting

Wxπ(a) = π(Vxa), π(a)Wx = π(aVx),

for all a ∈ C∗θ (A, M, α). For every a ∈ C∗θ (A,M,α), if π(a) = 0 and (ui)
is an approximate unit for C∗θ (A,M, α), then

π(Vxa) = lim
i

π(Vxuia) = lim
i

π(Vxui)π(a) = 0;

π(aVx) = lim
i

π(auiVx) = lim
i

π(a)π(uiVx) = 0.

This shows that Wx is well-defined. ¤

Proposition 2.7. Let I be an M -invariant ideal of A. Then there

exists a covariant projective representation (H,φ, W ) of (A,M, α) with an

irreducible representation (H,φ×W ) of C∗θ (A,M, α) such that I ⊆ Ker(φ).

Proof. Consider a quotient C∗-algebra A/I, and define the action
α on M by αt([x]) = [αt(x)] for [x] ∈ A/I and t ∈ M . Now we choose
a covariant projective representation (H, φ,W ) of (A/I, M, α) such that
(H,φ×W ) is an irreducible representation of C∗θ (A/I, M, α) by Lemma 2.6.
Define the representation φ of A by

φ(x) = φ([x]).

Then (H, φ,W ) is a covariant projective representation. In fact, for x ∈ M

and a ∈ A, we have

φαx(a)Wx = φ([αx(a)])Wx = φαx([a])Wx = Wxφ([a]) = Wxφ(a).

Since φ(A) = φ(A/I), we obtain

φ×W (C∗θ (A,M, α))′′ = φ×W (C∗θ (A/I, M, α))′′.

Hence (H,φ×W ) is irreducible. ¤
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3. The weak topology

Let (A,M,α) be a C∗-dynamical system. We define the Jacobson
topology on SG-Prim(A) as follows. For a subset F in SG-Prim(A), we
define an M -invariant ideal k(F ) in A by

k(F ) =
⋂{J : J ∈ F}.

We call this M -invariant ideal the kernel of F . For an M -invariant ideal I,
we define a set h(I) by

h(I) = {P ∈ SG-Prim(A) : P ⊇ I}.

We call this set the hull of I, which is not empty by Proposition 2.7.
Setting

F = h(k(F ))

we have the following

Theorem 3.1. Suppose that (A,M, α) is a C∗-dynamical system.

Then for a subset F in SG-Prim(A), the map F → F satisfies Kura-

towski’s axioms:

(i) φ = ∅ where ∅ denotes the empty set.

(ii) F ⊆ F .

(iii) F = F .

(iv) F1 ∪ F2 = F1 ∪ F2.

Proof. (i) It is trivial.

(ii) If I ∈ F , then by k(F ) ⊆ I we have I ∈ h(k(F )) = F , and hence
F ⊆ F .

(iii) Without loss of generality, we may suppose F = h(J) for some
J ⊆ A. If I ∈ F , then we have k(F ) ⊆ I. Since F = h(J), it follows that
J ⊆ I ′ for any I ′ ∈ F . Then

k(F ) =
⋂{I ′ : I ′ ∈ F} ⊇ J,

hence I ⊇ J , which means that I ∈ h(J) = F . Therefore it follows that
F ⊂ F , and then (ii) shows F = F . This proves F = F .
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(iv) Assuming that I ∈ F1, we get k(F1) ⊆ I. Then,
since k(F1 ∪ F2)) ⊆ k(F1),

I ∈ h(k(F1 ∪ F2)) = F1 ∪ F2.

Conversely, let I ∈ F1 ∪ F2 and note that k(F1 ∪ F2) = k(F1)∩ k(F2)
and k(F1 ∪ F2) ⊆ I by the definitions. Therefore k(F1) ∩ k(F2) ⊆ I. ¤

It follows that there is a unique topology on SG-Prim(A) such that
for each F ⊆ SG-Prim(A), F is the closure of F in this topology. Now we
have the following definition:

Definition 3.2. This topology is called the weak topology on SG-
Prim(A). In the sequel, we shall denote by τw the weak topology on
SG-Prim(A).

Remark 3.3.. It is obvious that, in generally, SG-Prim(A) is not
homeomorphic to Prim(C∗θ (A,M, α)). For example, we may consider a
non-trivial C∗-dynamical system (A,M, α) where M is a partially ordered
group such that (A,M, α) is simple, and C∗θ (A,M, α) is not simple (see
[10], Proposition 3.3). On the other hand, SG-Prim(A) is not homeomor-
phic to Prim(A) either. For example, take C(T), the continuous functions
on the unit circle T as a C∗-algebra A, and consider Z+, the action by the
automorphism α given by rotation through the angle 2πθ where θ is an
irrational number in (0, 1). Then, by [11], (C(T),Z, α) is simple. Hence
SG-Prim(C(T)) consists of one point only. But Prim(C(T)) is an infinite
set.

Proposition 3.4. Let (A,M, α) be a C∗-dynamical system. Then the

space SG-Prim(A) is a T0-space.

Proof. Let I1, I2 be two distinct points of SG-Prim(A), so that,
without loss of generality, we may suppose I1 6⊆ I2. Thus the set of those
I ∈ SG-Prim(A) which contain I1 is a closed subset T , such that I1 ∈ T

and I2 /∈ T . ¤

Proposition 3.5. Let (A, M, α) be a C∗-dynamical system. If A is

unital, then SG-Prim(A) is compact.

Proof. Let {Ii} be a family of closed subsets of SG-Prim(A) with
empty intersection. If

∑
i k(Ii) 6= A, then there exists I in SG-Prim(A)

such that
∑

i k(Ii) ⊂ I. Thus we know that I ∈ h(k(Ii)) = Ii for all i.
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This implies that
⋂

Ii 6= ∅. Therefore we obtain
∑

k(Ii) = A. So there
exists a finite subset {ak}n

1 of A such that a1 ∈ k(Ii1), . . . , an ∈ k(Iin)
and a1 + a2 + . . . + an = 1. This implies that k(Ii1) + . . . + k(Iin) = A,
from which it follows that Ii1 ∩ Ii2 ∩ . . . Iin = ∅. ¤

In the case when a C∗-algebra is not unital, if M is trivial then
Prim(A) = SG-Prim(A), so SG-Prim(A) need not be compact. How-
ever, we shall see later that SG-Prim(A) is locally compact. Subsequently,
we consider a condition under which SG-Prim(A) is a Hausdorff space
(without SG-Prim(A) being necessarily Hausdorff in the general case).
First we realize each element in A as a lower semi-continuous function on
SG-Prim(A). Let x ∈ A, and define a function fx on SG-Prim(A) by

fx(I) = ‖x + I‖

for I ∈ SG-Prim(A). Then we have the following

Proposition 3.6. Let (A,M,α) be a C∗-dynamical system and x ∈ A.

Then fx is lower semi-continuous on (SG-Prim(A), τw).

Proof. For any ε > 0, we set

Z = {I ∈ SG-Prim(A) : fx(I) ≤ ε}
= {I ∈ SG-Prim(A) : Sp(x + I) ⊂ [0, ε]},

where Sp(x + I) denotes the spectrum of x + I in A/I. We must show
that Z is closed. Replacing x by x∗x, we are reduced to the case where
x ∈ A+, the set of all positive elements of A. Now let λ /∈ [0, ε], and let
f be a continuous function from R to R (R is the field of real numbers)
vanishing on [0, ε] with f(λ) 6= 0. Since f(x) + I = f(x + I) by [13, 1.8.4],
we have

Sp(f(x) + I) = Sp(f(x + I)) = f(Sp(x + I)) ⊂ f([0, ε]).

Thus we see that λ /∈ Sp(x + I), and then I ∈ Z. This means that Z is
closed. ¤
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Proposition 3.7. Let (A,M,α) be a C∗-dynamical system, and let I

be a proper M -invariant ideal of A. For every x ∈ A, there exists J ∈ h(I)
such that ‖x + J‖ = ‖x + I‖.

Proof. Consider a quotient C∗-algebra A/I and define the action α

on M by αJ(x + I) = αJ(x) + I for x + I ∈ A/I and J ∈ M . Regarding
x+I as an element of the multiplier algebra M(C∗θ (A/I, M, α)) of a covari-
ance algebra C∗θ (A/I,M,α), by [5, Lemma 3.3.6] we can choose an irre-
ducible representation (H, ρ) of M(C∗θ (A/I, M,α)) satisfying ‖ρ(x+I)‖ =
‖x + I‖. It follows that ρ|C∗θ (A/I,M,α) is an irreducible representation of
C∗θ (A/I, M, α), which is written as φ×W via some covariant projective rep-
resentation (H, φ,W ) of (A/I, M,α). If we define a representation (H, φ)
of A by φ(x) = φ(x+ I), it immediately follows that (H,φ, W ) is a covari-
ant projective representation of (A, M, α). Since

φ×W (C∗θ (A,M, α))′′ = φ×W (C∗θ (A/I, M, α))′′,

we have Ker(φ) ∈ SG-Prim(A) and I ⊂ Ker(φ). Furthermore, we have

‖x + I‖ = ‖φ(x)‖ = ‖φ(x + I)‖ = ‖ρ(x + I)‖ = ‖x + I‖.

¤

Proposition 3.8. Let (A,M, α) be a C∗-dynamical system, let a ∈ A

and ε > 0, and put

N = {I ∈ SG-Prim(A) : ‖a + I‖ ≥ ε}.

Then N is compact in (SG-Prim(A), τw).

Proof. Replacing a by a∗a, we are reduced to the case when a ∈ A+.
Let a ∈ A+. First we have

N = {I ∈ SG-Prim(A) : ‖x + I‖ ≥ ε}
= {I ∈ SG-Prim(A) : Sp(x + I) ∩ [ε,∞) 6== ∅}.

Consider a positive continuous function f on R with f(0) = 0 such that
f = 1 on [ε,∞) and 0 ≤ f < 1 on (−∞, ε). Then we have

N = {I ∈ SG-Prim(A) : ‖f(x + I)‖ = 1}.
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Let {Ni} be a decreasing filtering family of closed nonempty subsets of
SG-Prim(A) such that N ∩Ni 6= ∅ for each i, and then let Ii ∈ N ∩Ni. If
we put Ji = k(Ni), then we have

1 = ‖f(x + Ii‖ ≤ ‖f(x) + Ji‖ ≤ 1.

Since {Ji} is an increasing filtering family of M -invariant ideals of A, the
above implies that ‖f(x) + J‖ = 1 for J =

⋃
Ji. Since J is a proper

M -invariant ideal of A, it follows that there exists an element P in h(J)
such that ‖f(x)+P‖ = 1, which implies P ∈ N . On the other hand, since
P contains Ji for all i, we have P ∈ h(Ji) = h(k(Ni)) = Ni. Hence we see
that N ∩ (

⋂
Ni) 6= ∅. ¤

Theorem 3.9. Let (A,M, α) be a C∗-dynamical system. Then (SG-
Prim(A), τw) is a Hausdorff space if and only if the function I → ‖a + I‖
is continuous on (SG-Prim(A), τw) for every a ∈ A.

Proof. Suppose that (SG-Prim(A), τw) is a Hausdorff space. By
Proposition 3.6, we have only to show that the function I → ‖a + I‖ is
upper semi-continuous. In fact, since {I ∈ SG-Prim(A) : ‖a + I‖ < ε} is
the complement of {I ∈ SG-Prim(A) : ‖a+I‖ ≥ ε}, it is an open subset by
Proposition 3.8. Thus the function a → ‖a + I‖ is upper semi-continuous.

Conversely, suppose that the function a → ‖a + I‖ is continuous for
every a ∈ A. Let us take I1 and I2 from SG-Prim(A) with I1 6= I2. Then
we may assume that I2 6⊆ I1. So, we can choose a positive element a in I2

with a /∈ I1. Set ε = ‖a + I1‖/2. Then

{I ∈ SG-Prim(A) : ‖a + I‖ > ε}, and

{I ∈ SG-Prim(A) : ‖a + I‖ < ε}

are open subsets by continuity of the function a → ‖a + I‖. Since they
are disjoint neighbourhoods in SG-Prim(A) of I1 and I2 respectively,
SG-Prim(A) is a Hausdorff space. ¤

Theorem 3.10. Suppose that (A,M, α) is a C∗-dynamical system.
Then (SG-Prim(A), τw) is locally compact.

Proof. Let I ∈ SG-Prim(A) and let W be a neighbourhood of I in
SG-Prim(A). Set J = k(SG-Prim(A) W ). Since J 6⊆ I, we can choose a
positive element a in J with a /∈ I and ‖a + I‖ > 1. Let

N = {P ∈ SG-Prim(A) : ‖a + P‖ > 1}.



116 Tianzhou Xu

By Proposition 3.6, using the lower semi-continuity of the function a →
‖a + I‖, N is an open subset of (SG-Prim(A), τw). Since I ⊆ N , N is a
compact neighbourhood of I by Proposition 3.8. ¤

4. The Dauns-Hofmann type theorem

We finish this paper with a discussion of spaces of continuous func-
tions. Let us denote by Cb(X) the C∗-algebra of all bounded continuous
complex-valued functions on the topological space X.

Let (A,M, α) be a C∗-dynamical system. For I ∈ SG-Prim(A), there
is a covariant projective representation (H,φ, W ) of (A,M,α) with an
irreducible representation (H, φ×W ) of C∗θ (A,M, α) such that the kernel
of φ is I. We denote by φ′′ the normal extension of φ to the enveloping
von Neumann algebra A′′ of A (see [12, Theorem 3.7.7]). If α′′t denotes
the double transpose of αt for each t ∈ M , then the map t → α′′t is a
homomorphism of M into the automorphism group Aut(A′′) of A′′. Now
denote by Z the centre of A′′. Since φ′′(Z) ⊆ φ(A)′′ ∩ φ(A)′, we easily see
that

φ′′(Zα′′) ⊆ φ(A)′′ ∩ φ(A)′ ∩W ′
M ,

where W ′
M = {Wt : ∀t ∈ M}′, and Zα′′ is the fixed point algebra of Z for

α′′. Thus, we have

φ′′(Zα′′) ⊆ φ×W (C∗θ (A,M, α))′′
⋂

φ×W (C∗θ (A,M, α))′ = C · 1.

Therefore, for an element x ∈ Zα′′ there exists a bounded complex-
valued function fx on SG-Prim(A) such that φ′′(x) = fx(I) · 1 for φ ∈
SG-Prim(A). If x is also a positive element in A, then we have

fx(I) = ‖x + Ker φ‖ = ‖x + I‖.

Now we have the following

Proposition 4.1. Let A be a unital C∗-algebra with centre Z, let

(A,M, α) be a C∗-dynamical system and Zα a fixed point algebra of

Z for α. Then for each positive element x ∈ Zα, fx is continuous on

(SG-Prim(A), τw).

Proof. Choosing some positive number λ, we consider a positive
element y = −x + λ · 1 in Zα. Then, since φ(y) = −φ(x) + λ ◦ 1 for
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Ker(φ) = I ∈ SG-Prim(A), we see that ‖y + I‖ = −‖x + I‖ + λ · 1, that
is, fy(I) = −fx(I) + λ. On the other hand, since constant functions are
continuous on SG-Prim(A), we conclude by Proposition 3.6 that fy −λ · 1
is lower semi-continuous. This means that fx is upper semi-continuous.
Consequently, fx is continuous by Proposition 3.6. ¤

Notation 4.2. Let A be a C∗-algebra. We denote by Asa, (Asa)m,
and (Asa)m, the set of all self-adjoint elements of A the set of strong limits
(in A′′) of monotone increasing nets from Asa, and the set of strong limits
(in A′′) of monotone decreasing nets from Asa, respectively.

Proposition 4.3. Let (A,M,α) be a C∗-dynamical system and Z the

centre of A′′. Then the map x → fx is injective from Zα′′ ∩ ((Asa)m ∪
(Asa)m) into the set of real bounded functions on SG-Prim(A).

Proof. We know by Lemma 2.6 that any irreducible representa-
tion of C∗θ (A,M,α) is of the form (H, φ × W ) with some covariant iso-
metric representation (H,φ, W ) of (A,M,α). Since (φ × W )′′|A = φ,
the map x → fx is the restriction to Zα′′ ⋂((Asa)m

⋃
(Asa)m) of the

atomic representation of C∗θ (A,M,α)′′. Since Asa is contained in the
multiplier algebra of C∗θ (A,M, α), we see from [12, Theorem 3.12.9] that
(Asa)m ⊆ ((C∗θ (A,M,α)sa)m and (Asa)m ⊂ ((C∗θ (A,M, α)sa)m. Here
we denote by C∗θ (A,M,α) the unital C∗algebra obtained by adjunction
of 1 to C∗θ (A,M,α). Since the set of universally measurable elements in
C∗θ (A,M, α)′′ is a vector space containing ((C∗θ (A,M, α)sa)m =
−((C∗θ (A,M, α)sa)m (see [12, Proposition 4.3.13]), (Asa)m∪(Asa)m is con-
tained in the set of universally measurable elements in (C∗θ (A,M, α))′′.
Since the atomic representation is faithful on the set of universally mea-
surable elements by [12, Theorem 4.3.15], we get the desired result. ¤

Proposition 4.4. Let A be a unital C∗-algebra with centre Z, let

(A,M, α) be a C∗-dynamical system and Zα a fixed point algebra of Z

for α. Then the map x → fx is surjective from Zα onto the algebra of

continuous complex-valued functions on SG-Prim(A).

Proof. To show that the map is surjective, let f be a continuous
function on SG-Prim(A). Without loss of generality, suppose first that
0 ≤ f ≤ 1. We set

fn =
2n∑

k=1

2−nχnk
,
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where χnk
denotes the characteristic function of the set {I ∈ SG-Prim(A):

f(I) > k2−n} for every k and n with 1 ≤ k ≤ 2−n. Since every such set is
open in SG-Prim(A), there is by the definition of the weak topology an M -
invariant closed ideal Ink

in A such that SG-Prim(A)\h(Ink
) corresponds

to the above open set. Let pnk
be the central open projection in A′′

corresponding to Ink
(see [12]). Then pnk

∈ Zα′′ ⋂(Asa)m and fpnk
= χnk

.
In fact, if I ∈ h(Ink

) then we have Ink
⊂ I. For φ with Ker(φ) = I, since

φ′′(I ′′nk
) = {0}, we have φ′′(pnk

) = 0. If I ∈ SG-Prim(A)\h(Ink
) then

we have Ink
6⊆ I. Thus we conclude that φ(Ink

) 6= {0} with Ker(φ) = I,
which means that φ′′(pnk

) 6= 0. Since φ′′(pnk
) is a projection, we obtain

that φ′′(pnk
) = 1. Define

xn = 2−n
2n∑

k=1

pnk
.

Then xn ∈ Zα′′ ⋂(Asa)m and fxn = fn. Since fn ↗ f , the sequence {xn}
must increase to an element x ∈ Zα′′ ⋂(Asa)m such that fx = f .

If f is not positive, we may have to modify it by adding a scalar. Now
we consider −f + 1 instead of f . Since 0 ≤ −f + 1 ≤ 1, it follows from
the above arguments that there exists an element y ∈ Zα′′ ⋂(Asa)m such
that fy = −f + 1. This implies that x = 1 − y. Therefore, by [12, 4.4.7],
we assert that

x ∈ Zα′′ ⋂(Asa)m
⋂

(Asa)m = Zα′′ ⋂ Asa,

which means x ∈ Zα. ¤
Theorem 4.5. Let (A, M, α) be a C∗-dynamical system, where A is

a unital C∗-algebra with centre Z and M is a monoid. Then there is a

∗-isomorphism φ of Zα onto Cb(SG-Prim(A), τw).

Proof. Since (φ × W )′′|A = φ, the map x → fx is the restriction
to Zα of the atomic representation of (C∗θ (A,M,α))′′. Since the atomic
representation is faithful on the multiplier algebra and A belongs to the
multiplier algebra of C∗θ (A,M, α), the homomorphism x → fx is injective.
The result is now immediate from Proposition 4.4. ¤
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