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§ 1. Introduction.

In the present paper we determine all simply ordered real vector spa-
ces of countable dimension (Theorem 3.5), and we give a total description
of them (Corollary 3.6). This result is an extension of the well-known struc-
ture theorem of real vector lattices of finite dimension ([1] Ch. XV., Theorem
1) to the case of simply ordered real vector spaces of countable dimension.")
Our Theorem 3.5 ceases to be valid already in the case of simply ordered real
vector spaces of dimension 2 ¢; nor can it be carried over to real vector
lattices of countable dimension (in a suitably modified form which is adapt-
able to this case). From Theorem 3.5 one immediately deduces the existence
of a simply ordered real vector space of countable dimension in which any
other such space can be embedded (Corollary 3. 7).

Moreover, we give a construction, by which every possible simple orde-
ring of any real vector space can be uniquely obtained (Theorem 4.4). This
gives some insight into the structure of these ordered spaces.

The restriction that the operator domain of the vector space be the real
number system, is essential throughout.

-

§ 2. Preliminaries.

In what follows, we shall investigate vector spaces over the field of real
numbers. Only operator domains different from this will be mentioned
explicitly.

We shall use the following notations. Sets are denoted by Latin capitals,
their elements by small letters. V always stands for a vector space, R for the
real number system; a, b, h, x, y denote vectors, i/, n natural numbers, 4, u
real numbers.

1) The numbers in brackets refer to the bibliography at the end of the paper.
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I. By an ordered vector space we mean a vector space for the elements
of which there is defined a (linear) order relation > with the properties

1. x>0, y>0 imply x+y>0,
2. x>0, 2>0 imply ix >0,
3. x>y if and only if x—y>0.
For the set V* of all positive elements of an ordered vector space, i.e. for

the so called domain of positivity of the space the. following requirements
always hold:

I'. x€V*, yeV* imply x+ye V™,

2. x¢V*, A>0 imply ix€ V7,

3. 0¢VH,

4. x=£0, x¢gV* imply —xeV*.
Conversely, if a subset V* of a vector space has the properties 1.—4’., then
it is the domain of positivity of the space for one and only one ordering.

II. An element x >0 of an ordered vector space is incomparably smaller
than y >0 (denoted by x < y) if and only if Ax =y holds for any 4. If, for
x>0 and y >0 neither x <y nor y < x holds, then x and y are said to be
equivalent: x~y. It is clear that < defines a quasi-ordering of the set of
positive elements, and that ~ is an equivalence relation. The corresponding
equivalence classes are termed archimedean classes. The set of archimedean
classes becomes simply ordered, if we define the class containing x to be
greater than the class containing y, if and only if x < y.

IlI. Let us consider the real valued functions defined on an ordered set
7, taking on nonzero values at most on a finite subset of 7. If f(f) and g(¢)
are functions having this property, then so are their sum f(f)+4 g(f) and the
product 2f(f). Such a function f(f) is considered positive if and only if in
the first place #, where the value of the function is different from zero,
f(t) >0 holds. The ordered vector space thus obtained will be called the
discrete lexicographically ordered function space over T.

It is easy to determine the archimedean classes of this ordered vector
space. The functions f(f) assuming positive values for a fixed {, € 7 but satis-
fying f(f)=0 for all <, form an archimedean class, and all archimedean
classes can be obtained thus. Accordingly, the ordered set of the archimedean
classes is similar to 7. In view of this fact, the following lemma can be
established without difficulty.

Lemma 2.1. There exists (up to an isomorphism) a one-to-one cor-
respondence between the order types e and the discrete lexicographically orde-
red vector spaces V. The « belonging to V is the order type of the ordered
set of its archimedean classes; the V belonging to « is the discrete lexicogra-
phically ordered function space over an arbitrary ordered set of type e.
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This uniquely determined order type « will be called the type of the
function space.

IV. A subspace / of an ordered vector space V will be called an ideal
of V, if the following condition is satisfied: a€ J, x€ V and |x| = |a| imply
x € J. (By the absolute value |x| of an element x==0 of V we mean the
positive one of the two elements x, —x; |0|=0.) in proving Theorem 4.4,
we shall make use of the important fact that of all ordered vector spaces
only R fails to have non-trivial ideals. In the sequel we shall need the follow-
ing simple properties of ideals. Let / be an ideal of V; the subspace J*</
_is an ideal of / if and only if it is an ideal of V too. The ideals of V form
a chain of sets. Union and intersection of ideals are also ideals.

V. A vector space V can be partitioned into three disjoint subsets with
the aid of any of its maximal proper subspaces H, and of an element a not
contained in A.?) One of these subsets coincides with /, another is formed
by the elements h42a (h€ H; A>0), and the third by the elements
h—4ia (h€ H; 2>0). It is not hard to see that this partition of V is inde-
pendent of the particular choice of the element a. Therefore, the two subsets
different from H in this partition can be termed the two halfspaces of V
determined by H. Each of these is obtained from the other by multiplication
by —1. ' '

§ 3. Ordered vector spaces of countable dimension.

In this § we are going to determine all ordered vector spaces of count-
able dimension (Theorem 3.5). The proof of this theorem will be based on
Lemmas 3.1-3.4.

Lemma 3.1.°) Any two linearly independent, positive and equivalent
elements of an ordered vector space have a linear combination incomparably
smaller than any of them.

PROOF. Let x and y be two linearly independent, positive and equiva-
lent elements of an ordered vector space. Then there exists a 4 for which
y < 4x holds. Now, if Z, denotes the g. I. b. of the set of all real numbers
4 having this property (it is obvious that O is a lower bound) then we evi-
dently have for any u >0

'(&—%)x<y<(zo+%]x,

) Here and in the sequel it will be convenient to consider 0 as a proper subspace.
) This is essentially Lemma 2.4 of [2].
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i. e. u|y—4,x|<x. In view of the linear independence of x and y we have
y—4A,x==0, and thus either y—4,x or —(y—4,x) is a linear combination
required.

Lemma 3. 2. If an element x- of an ordered vector space is linearly
independent of the system x,,..., x. consisting of positive elements no two of
which are equivalent, then there exists an element x.., >0, not equivalent to
any of the elements x,,...,Xs, for which {X\,...,Xn, Xn41} == {X1, . .., Xu, X}
holds.

PrROOF. If |x| is not equivalent to any of the elements x,,..., x,, then
X+1 = | x| obviously fulfils our requirements.

If |x| is equivalent to one of x,, ..., x,, then 'we can suppose that x, is
the least one of these elements for which an equivalent of the form
Xyt o+ Adaxy+24x >0 (A0) still exists. Since x, and this 4,x,4 --- 4
+A.x.+4x are linearly independent, there exists by Lemma 3.1 a
linear combination u,x, 4 (4%, 4 -+ +4uxa+4x) of them, incomparably
smaller than any of the two components. Clearly, x==0 must hold. Thus, in
view of the minimality of x,, the element («, 4+ p,) x, + (udg) X, + -+ - 4 (i) X +
+(u4)x >0 cannot be equivalent to any of the x,,...,x.. We see therefore
that

(0 + )X+ (RAg) X + - - - + (wdn) X + (ud) X

can be chosen for x,.;.

Lemma 3.3. Any ordered vector épace of countable dimension has a
basis consisting of positive elements no two of which are equivalent.

PROOF. Let b,,...,b,,... be a basis of the ordered vector space V of
countable dimension. We inductively define a sequence b}, ..., b;,... of pair-
wise inequivalent positive elements satisfying {b1,...,86%}={b,,..., b.} for
any natural number n = dim V. By this equality &1,...,b5,... is an indepen-
dent generating system of V.

Let b1=|b1|. Suppose that the elements &%,...,5% (n <dim V) are al-
ready defined, and are pairwise inequivalent positive elements satisfying
the relation {b1,...,b6%}=1{b,,...,b,}. Then b, is independent also of the
system bi,...,b%, and thus, by Lemma 3.2, there exists an element 854, >0
— which we choose for the n+ 1-st term of our sequence — equivalent to
none of the elements i, ..., 6%, and satisfying {bi,...,0%,00+1}==1{01,..., %, bn11}.
Hence, by our induction hypothesis, {b1,..., b, b1} ==1{bi,..., ba, bus1} fol-
lows. This completes the proof of the lemma.

Lemma 3.4. A linear combination 2,%,+ ---+ i.x. of the elements
X, >---> X, of an ordered vector space is >0 if and only if the first coeffi-
cient different from zero is > 0.
D2
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PrROOF. Suppose that the first nonzero coefficient 4; of the linear com-
bination 4,x,+---+44.x. is positive. For i=n our statement is obviously
true, so we may suppose i <n. In view of x; > Xi1,..., Xi > X, we have the
inequalities

X; > [(i—n) %1] Xisdyssaile > [(l'—n)%‘:] Xns

and by adding these, we obtain

(n—:)x;>(i—n)(é%xul+--- +ﬁx,,).
i Ai
From this, by our hypotheses, 4,x,4 --- +4.x, >0 immediately follows.
Conversely, if in the linear combination 4,x,+ --- 4 4.x, the first non-
zero coefficient is negative, multiplication by —1 leads back to the case just
treated: —4,x,—---—4.x, >0, and consequently 4,x,-+4 -+ +4.x, <O0.
The identity Ox, -+ +40x,=0 completes the proof of the lemma.

Theorem 3.5. Any ordered vector space of countable dimension is
isomorphic to a discrete lexicographically ordered function space.

PROOF. Let 81,...,05,... be a basis, consisting of pairwise inequiva-
lent positive elements of the ordered vector space V of countable dimension;
the existence of such a basis is stated in Lemma 3.3. Let 7 denote the set
of the elements &i,...,b%,... with an ordering inverse to that in V. To any
element x of V we assigr a uniquely determined real valued function f defi-
ned on 7: Let f(b)) be the coefficient of &% in the decomposition of x in
terms of the basis bi,...,bs,.... Clearly, the mapping x— f is an isomor-
phism of V onto the discrete lexicographically ordered function space defined
over 7; the monotonity of this mapping is a consequence of Lemma 3.4.

Corollary 3. 6. There exists (up to an isomorphism) a one-to-one cor-
respondence between the countable order types @ and the ordered vector spaces
V' of countable dimension. The « corresponding to V is the order type of the
ordered set of its archimedean classes; the V corresponding to « is the dis-
crete lexicographically ordered function space of type e.

This follows immediately from Theorem 3.5 and Lemma 2. 1.

Corollary 3.7. There exists an ordered vector space of countable dimen-
sion in which any other such space can be imbedded. The discrete lexicogra-
phically ordered function space defined over the ordered sct of the rational
numbers has this property.

This is a simple consequence of Theorem 3.5, in view of the fact that
any countable ordered set is similar to some subset of the ordered set of all
rationals.
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§ 4. Ordered vector spaces of arbitrary dimension.

We shall see in § 5 that for ordered vector spaces of non-countable
dimension Theorem 3.5 does not hold in general. Our Theorem 4.4 gives
however some insight into the structure of these spaces.

First of all we present the method by which, as we shall show, any
ordering (more exactly: the corresponding domain of positivity) of a vector
space of arbitrary dimension can uniquely be constructed.

Let us consider a maximal chain of subspaces of an arbitrary vector
space. If Hc H' are two members of this chain and one is contained as a
maximal proper subspace in the other, then we single out one and only one
of the two halfspaces of H' determined by H, and form the union of all
such halfspaces. The procedure which leads us to this union will be called
for the sake of brevity construction (A).

Lemma 4. 1. Any subset of a vector space obtained by the construction
(A) is the domain of positivity belonging to an ordering of the vector space.

PrROOF. Let us suppose that the subset V* of the vector space V has
been obtained by the construction (A). The maximal chain of subspaces yiel-
ded by the first step in this procedure will be denoted by K.

1. Let x€ V*, y€ V*. We show that in this case x-+y € V* also holds.
§t has members H,, Hi, H2, H: such that H, is a maximal proper subspace
in Hi, and similarly A in H:, and x¢ H,, x€ H{, y§H:, y € H.

If H,= H, then H{= Hi. In this case x belongs to the same halfspace
of Hi determined by H, as y, i. e. x=h-+4y (h€ H,; 2>0). This implies
x+y=h+(A+1)y and this proves that x -+ y belongs to the same halfspace
of Hi as y, and thus x+y€ V™.

Now, if H,== H,, then we can suppose H, < H,. From this H] € H; fol-
lows, and by x € Hi this implies that x-y belongs to the same halfspace
determined by H. of H3, as y, and therefore x4y € V™*.

2. Let x€ V* and 4>0. We show that in this case Ax€ V*. & has
members H, H’, such that H is a maximal proper subspace in H' and x¢ H,
X € H'. Ax evidently belongs to the same halfspace of H’ determined by H
as x, and thus Ax¢€ V™.

3. Clearly 0¢ V*.

4. Let x==0 be an element of V not contained in V*. We show that
in this case —x € V*. Let H denote the union of those members of the chain
& which do not contain x (the O is such a subspace), and let H" denote the
intersection of those members of the chain & which contain x (such is the
whole space V). & is a maximal chain of subspaces, and thus it contains
together with any subspaces their union and their intersection too; thus HeR
and H' € R. Clearly Hc H'. Moreover, if H* €& is a subspace for which
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HS H*'S H', then H*= H or H*=H’ according as x& H" or x€ H* holds.
Thus & has no member lying between H and H’, and by the maximality of
& this implies that H is a maximal proper subspace in H’. Of the two half-
spaces of H" determined by H the one containing x cannot be marked out
because of x@ V", therefore the other, namely the one containing —x is a
subset of V*. Thus —x¢€ V*.

Lemma 4.2.") The domain of positivity of any ordered vector space
can be obtained by the construction (A).

PrOOF. First we show that the ideals of an oraered vector space v torm
a maximal chain of subspaces. Suppose the contrary, i. e. that V has a sub-
space S which is no ideal but can be compared with any ideal with respect
to the subset-relation. The union J of the ideals of V not containing S and the
intersection / of the ideals containing S are also ideals and evidently J=Sc /'
J is a maximal proper ideal in /', for if /S /*S /" holds for some ideal J*,
then in the case §OJ* we have J* =/ and for Sc/* we have J*=]" Thus,
by the isomorphism theorem the fact that of all ordered vector spaces
only the space R has no non-trivial ideals, implies that / is a maximal pro-
per subspace in /'. This contradicts however /cSc /.

Let now the ideal H be a maximal proper subspace in the ideal H'.
One of the two halfspaces of H’ determined by H contains a positive ele-
ment x, for any of these halfspaces is obtained from the other by multipli-
cation by —1. All elements of the halfspace containing x are positive. As a
matter of fact, in the case h+Ax=0(h€ H;4 > 0), |Ax|=4Ax = —h=|—Ah|
would imply 4x € H, for H is an ideal; this however is impossible because
of x§ H. One sees also that all elements of the other halfspace must be
negative.

Let us single out for any pair Hc H' ot consecutive ideals the half-
space consisting of positive elements; the union of these halfspaces will be
denoted by V*. V* contains all positive elements of V. Indeed, let 0<x€ V.
As V* has been obtained by the construction (A), in view of Lemma 4.1
either x or —x is contained in V*. —x € V* is however impossible, for V*
contains only positive elements of V, and thus x € V*. We see that V* is the
set of positive elements of V, and this completes the proof of our assertion.

Lemma 4.3. There is only one uniquely determined way of obtaining
the domain of positivity of an ordered vector space by the construction (A).

PROOF. Let us denote by & the maximal chain of subspaces obtained
in the course of constructing the domain of positivity of the ordered vector
space V.

%) This lemma can be proved in a simpler way by making use of the main embed-
ding theorem 3.1 of [2].
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First we show that any member H of this chain & is an ideal in V.
Let a € H and suppose that for an element x of V not contained in H the
inequality |x| = |a| holds. & has members H, and H{, such that H, is a
maximal proper subspace of Hi, and |x|¢ H,, |x|€ Hi. We see that HSH,
for, in view of x¢ H, Hi & H cannot hold. Therefore |x| and |a|—|x| belong
to the two different halfspaces of H; determined by H,, and thus |a|—|x| <0,
in contradiction to our hypothesis. So |x| = |a| can hold only for elements x
belonging to H, and this proves that H is an ideal in V.

From this it follows that & is the set of all ideals of V. Namely, all
ideals of V form a chain, of which the maximal chain of subspaces & can
form a part only if the two chains coincide. Thus & is uniquely determined
by V.

If HER, H'€R] and H is a maximal proper oubspace in H’, then of
the two halfspaces of H’ determined by H one anl only one is contained
by the construction in the domain of positivity of V. Thus V uniquely deter-
mines the marked out halfspaces too.

Theorem 4.4. The domain of positivity belonging to any ordering of
a vector space can be obtained by the construction (A), in one.and only one
way. The domains of positivity are the only sets obtainable by this construction.

The proof of this theorem is given by Lemmas 4.1—4.3.

§ 5. Remarks and examples.

I. Theorem 3.5 cannot be extended even to ordered vector spaces of
dimension 2%,

Example 5. 1. Let us consider the set of all sequences (4,,..., 4n,...)
of real numbers. The addition of sequences and their multiplication by a real
number shall be defined in the usual way, i. e. by termwise addition viz.
multiplication. A sequence will be termed positive if and only if its first non-
zero member is positive. The set of the archimedean classes of this ordered
vector space V of dimension 2% has countable cardinality (the archimedean
classes can be obtained in a similar way, as in § 2, IIl.). Thus if V were
isomorphic to a discrete lexicographically ordered function space, then, by
Lemma 2.1 V would be a vector space of countably infinite dimension; this,
however does not hold.

I. It is known that the finite dimensional vector lattices can be built
up from R by forming direct and lexicographical products (see [1], Ch. XV.,
Theorem 1). In this connection (simply) ordered vector spaces and archime-
dean vector lattices are in a certain sense duals of each other, since they
are obtained by using only lexicographical product, viz. only direct product.
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Theorem 3.5 runs to the effect that any ordered vector space of countable
dimension is isomorphic to a discrete lexicographical product of R’s. Accor-
dingly, one would expect that any archimedean vector lattice of countable
dimension is isomorphic to a discrete direct product of R’s. (A discrete direct
product of R’s is defined in an analogous way as a discrete lexicographi-
cally ordered function space, with the only difference that the ordering of the
set 7T in § 2, IlII. is not taken into account, and a function f(f) is considered
to be =0 if and only if f(f)= O for any 1€ T.)

The following example disproves this conjecture: there exists an archi-
medean vector lattice of countably infinite dimension, not isomorphic to a
discrete direct product of R’s.

Example 5. 2. Consider the set of sequences (4,,...,4.,...) of real
numbers in which all terms are equal, except for a finite number of them,
Operations on these sequences will be defined in the usual way. Contrarily
to the convention adapted in Example 5. 1 we put that (4,,...,4.,..)=0
if and only if 4,=0,...,4,=0,.... Thus we obtain an archimedean vector
lattice V. V is a vector space of countably infinite dimension, namely the
sequences (1,...,1,...), (1,0,...), (0,1,0,...), (0,0,1,0,...) form a basis
of V.

Suppose V to be isomorphic to a discrete direct product of R’s over a
set 7. Then V must have a basis b,,..., b,,... such that x = 0 holds for an
element x € V if and only if all its components relative to this basis are =0
(such a basis is given by the images of those functions f(f), for which
f(®)=1 holds at a single point €T, and f(f)=0 otherwise). This basis
contains an element (we may suppose this to be the sequence b;=(4i,...,4x...))
with an infinity of nonzero members. Now, let 4} ==0, i.e. because of b, >0,
42> 0. In this case b;=(0,...,0,41,0,...)€V is a positive multiple of a
basis element b: b{=ub, as we infer without difficulty from our hypothesis.
Considering now the element @ = b,—ub, we get the following contradiction.
a >0, for the sequence b, has an infinity of nonzero members, whereas ub
has but one such member, which is equal to the member of corresponding
index in b,. On the other hand, b, and & are two distinct basis elements,
and therefore in the sequence of components of a relative to the basis
b,,..., ba,... there occurs also a negative number, namely — . This contra-
dicts our assumption.

IIl. If, in Theorems 3.5, 3.6, 4.4 we replace the ordered field of reals
by another nonisomorphic ordered field, then these theorems cease to remain
valid. This is an easy coasequence of the following assertion:

If all two-dimensional ordered vector spaces over an ordered field F are
isomorphic, then F is isomorphic to the ordered field of real numbers.
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PROOF. Let S be an arbitrary proper subset of F, containing with each
of its elements all smaller elements of F too. We define the set of positive
elements of the vector space formed by the pairs (e, @) (&€ F, e, € F) as
follows:

for @, >0 (@, @) >0 if and only if e;a;"'¢S;

for ¢, <0 (e, @) >0 if and only if &,e;'€ S;

(¢,0) > 0 if and only if «> 0.

It is not difficult to verify that this set satisfies the requirements 1'.—4’".
listed in § 2, L

The ordered vector space thus obtained is by hypothesis isomorphic to
the lexicographical product of F with itself. Thus it contains a 1-dimensional
subspace, any positive element of which is incomparably smaller than any
positive element not belonging to the subspace.

The set of pairs (e,0) (¢ € F) cannot be such a subspace. Namely in
the contrary case, if we make also the additional requirement (0,1) >0, we
have (1,0) < (0, 1), i. e. (—e, 1) >0 for any element « € F. This means that
—a @ S, which is impossible. If, on the other hand, (0, 1) <0, then a com-
parison with the pair (0,—1) >0 leads to the contradiction S=F.

Thus there exists either a pair (¢, 1) >0, or a pair (¢, —1) >0, incom-
parably smaller than (1,0). Let («, 1) > 0; then « ¢ S. Consider now any ele-
ment 8 of F, smaller than e. (&, 1)< (1,0) implies (e—8) (e, 1) <(1,0),
and from this #€ S follows. So « is a smallest one of the elements of F,
not belonging to S. In case of (¢,—1)>0 we see by a similar argument
that —e is a greatest one among the elements of S.

Thus we have proved that S possesses a l. u. b., and consequently F> R.
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