A note on positive integer solutions of the equation $x y+y z+z x=n$

By MAOHUA LE (Zhanjiang)

Abstract

Let n be a positive integer. In this note we prove that if $n>10^{13}$, then there exist at most seven exceptional values n for which the equation $x y+y z+z x=n$ has no positive integers (x, y, z). Moreover, under the assumption of the generalized Riemann conjecture, the above-mentioned exceptional values do not exist.

1. Introduction

Let \mathbb{Z}, \mathbb{N} be the sets of integers and positive integers respectively. For a fixed positive integer n, let $S(n)$ denote the number of solutions (x, y, z) of the equation

$$
\begin{equation*}
x y+y z+z x=n, \quad x, y, z \in \mathbb{N}, \quad x \leq y \leq z \tag{1}
\end{equation*}
$$

In [6], KovÁcs examined that if $n \leq 10^{7}$, then $S(n)>0$ except $n=1$, $2,4,22,30,42,58,70,78,102,130,190,210,330$ and 462 . Let $E(X)$ denote the number of $n \leq X$ for which $S(n)=0$. Cai [1] proved that $E(X)=O\left(X \cdot 2^{-(1-\varepsilon)(\log X) / \log \log X}\right)$ for any $\varepsilon>0$. Recently, HASSAN, Brindza and Pintér [2] showed that if $S(n)=0$, then the squarefree part of n belongs to a finite set which can be effectively determined up to at most one element. While $S(n)=0, n$ is called an exceptional value. In this note we prove the following result.

Mathematics Subject Classification: 11D09, 11D85.
Supported by the National Natural Science Foundation of China and Guangdong Provincial Natural Science Foundation.

Theorem. If $n>10^{13}$, then there exist at most seven exceptional values n. Moreover, under the assumption of the generalized Riemann conjecture, the above-mentioned exceptional values do not exist.

2. Preliminaries

Lemma 1. If $n>1$ and $2 \nmid n$ or $n>4$ and $4 \mid n$, then $S(n)>0$.
Proof. If $n>1$ and $2 \nmid n$, then (1) has a solution $(x, y, z)=$ $(1,1,(n-1) / 2)$. If $n>4$ and $4 \mid n$, then (1) has a solution $(x, y, z)=$ $(2,2, n / 4-1)$. The lemma is proved.

Lemma 2 ([7]). For any positive integer t, let p_{t} denote the t-th odd prime. Then $p_{t} \geq \max (3,(t+1) \log (t+1))$.

Lemma 3. For any positive integer k,

$$
p_{1} p_{2} \cdots p_{k}>\frac{5}{2}\left(\frac{k+1}{e}\right)^{k+3 / 2} \prod_{t=3}^{k+1} \log t
$$

Proof. Using Lemma 2, we get

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{k}>\frac{3}{2}(k+1)!(\log 3) \prod_{t=3}^{k+1} \log t . \tag{2}
\end{equation*}
$$

By Stirling's theorem, we have

$$
\begin{equation*}
(k+1)!>\sqrt{2 \pi(k+1)}\left(\frac{k+1}{e}\right)^{k+1} \tag{3}
\end{equation*}
$$

Substituting (3) into (2), we obtain the lemma immediately.
Lemma 4. For any positive integer k, let $P(k)=\sqrt{8 p_{1} p_{2} \cdots p_{k}} /$ $\log 8 p_{1} p_{2} \cdots p_{k}$. If $k \geq 5$, then $P(k+1)>2 P(k)$.

Proof. Since $p_{i}(i=1,2, \ldots, k)$ are all odd primes for which do not exceed p_{k}, every prime factor q of $8 p_{1} p_{2} \cdots p_{k}-1$ satisfies $q \geq p_{k+1}$. It implies that $8 p_{1} p_{2} \cdots p_{k}-1 \geq p_{k+1}$. Hence, if $k \geq 5$, then we have

$$
\frac{P(k+1)}{P(k)}=\sqrt{p_{k+1}} \frac{\log 8 p_{1} p_{2} \cdots p_{k}}{\log 8 p_{1} p_{2} \cdots p_{k}+\log p_{k+1}}>\frac{1}{2} \sqrt{p_{k+1}} \geq \frac{1}{2} \sqrt{17}>2
$$

The lemma is proved.

We now recall some basic properties on class numbers of binary quadratic forms (see [3]). For any positive integer m, let $h(m)$ and $h_{0}(m)$ denote the class number of binary quadratic forms and binary quadratic primitive forms with discriminant $-m$, respectively. Then we have

$$
\begin{equation*}
h(m)=\sum_{d^{2} \mid m} h_{0}\left(\frac{m}{d^{2}}\right), \tag{4}
\end{equation*}
$$

where d^{2} runs through all square divisors of m. If $m \equiv 0 \operatorname{or} 3(\bmod 4)$, then the negative discriminant $-m$ can be written as

$$
\begin{equation*}
-m=-f g^{2} \tag{5}
\end{equation*}
$$

where $-f$ is a fundamental discriminant, g is a positive integer. Further, we have

$$
\begin{equation*}
h_{0}(m)=h_{0}\left(f g^{2}\right)=h_{0}(f) \prod_{p \mid g}\left(1-\left(\frac{-f}{p}\right) \frac{1}{p}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{0}(f)=\frac{\sqrt{f}}{\pi} L(1, \chi), \quad \text { if } f>4, \tag{7}
\end{equation*}
$$

where p runs through all prime factors of $g,(-f / p)$ is Kronecker's symbol, χ is a real primitive character modulo $f, L(s, \chi)$ is the Dirichlet L-function associated with χ. Furthermore, let $\omega(f)$ denote the number of distinct prime factors of f, then we have

$$
\begin{equation*}
2^{\omega(f)-1} \mid h_{0}(f) \tag{8}
\end{equation*}
$$

Lemma $5([4,5])$. Let χ be a real primitive character modulo q. For any positive number ε with $\varepsilon \leq 0.0723$, if $q>e^{1 / \varepsilon}$, then

$$
L(1, \chi)>\min \left(\frac{1}{7.735 \log q}, \frac{2.865 \varepsilon}{q^{\varepsilon}}\right),
$$

except at most one exceptional modulo q. Moreover, under the assumption of the generalized Riemann conjecture, the exceptional modulo does not exist.

3. Proof of Theorem

Let n be an exceptional value with $n>10^{13}$. By Lemma 1 , we have $2 \| n$. Then n can be written in the form

$$
\begin{equation*}
n=2 \ell_{1} \ell_{2} \cdots \ell_{k} u_{1}^{2 \alpha_{1}} u_{2}^{2 \alpha_{2}} \cdots u_{r}^{2 \alpha_{r}} v_{1}^{2 \beta_{1}+1} v_{2}^{2 \beta_{2}+1} \cdots v_{s}^{2 \beta_{s}+1} \tag{9}
\end{equation*}
$$

where $\ell_{1}, \ell_{2}, \ldots, \ell_{k}, u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}$ are distinct odd primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \beta_{1}, \beta_{2}, \ldots, \beta_{s}$ are positive integers. We may assume that $\ell_{1}<\ell_{2}<\ldots<\ell_{k}, u_{1}<u_{2}<\ldots<u_{r}$ and $v_{1}<v_{2}<\ldots<v_{s}$. Notice that $3!S(n) \geq 3 h(4 n)-3 d(n)$ by $[2$, page 201], where $d(n)$ is the number of positive divisors of n. Then we have

$$
\begin{equation*}
d(n) \geq h(4 n) . \tag{10}
\end{equation*}
$$

By (5) and (9), we have

$$
\begin{equation*}
-4 n=-f g^{2} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
f=8 \ell_{1} \ell_{2} \cdots \ell_{k} v_{1} v_{2} \cdots v_{s}, \quad g=u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \cdots u_{r}^{\alpha_{r}} v_{1}^{\beta_{1}} v_{2}^{\beta_{2}} \cdots v_{s}^{\beta_{s}} . \tag{12}
\end{equation*}
$$

and $-f$ is a fundamental discriminant. Further, by (4), (6), (11) and (12), we get

$$
\begin{align*}
h(4 n) & =\sum_{d^{2} \mid 4 n} h_{0}\left(\frac{4 n}{d^{2}}\right)=\sum_{d^{2} \mid g^{2}} h_{0}\left(f \frac{g^{2}}{d^{2}}\right) \\
& =\sum_{d^{2} \mid g^{2}} h_{0}(f)\left(\prod_{p \mid g / d}\left(1-\left(\frac{-f}{p}\right) \frac{1}{p}\right)\right) \tag{13}\\
& =h_{0}(f) \sum_{d \mid g}\left(\prod_{p \mid g / d}\left(1-\left(\frac{-f}{p}\right) \frac{1}{p}\right)\right) .
\end{align*}
$$

Since $(-f / p) \leq 1$, we deduce from (12) and (13) that

$$
\begin{align*}
& h(4 n) \geq h_{0}(f) \sum_{d \mid g}\left(\prod_{p \mid g / d}\left(1-\frac{1}{p}\right)\right) \tag{14}\\
= & h_{0}(f)\left(\prod_{i=1}^{r}\left(u_{i}^{\alpha_{i}}-1\right)\right)\left(\prod_{j=1}^{s}\left(v_{j}^{\beta_{j}}-1\right)\right) .
\end{align*}
$$

On the other hand, by (9), we have

$$
\begin{equation*}
d(n)=2^{k+1}\left(\prod_{i=1}^{r}\left(2 \alpha_{i}+1\right)\right)\left(\prod_{j=1}^{s}\left(2 \beta_{j}+2\right)\right) . \tag{15}
\end{equation*}
$$

The combination of (10), (14) and (15) yields

$$
\begin{equation*}
2^{k+s+1} \geq h_{0}(f)\left(\prod_{i=1}^{r} \frac{u_{i}^{\alpha_{i}}-1}{2 \alpha_{i}+1}\right)\left(\prod_{j=1}^{s} \frac{v_{j}^{\beta_{j}}-1}{\beta_{j}+1}\right) . \tag{16}
\end{equation*}
$$

We first consider the case of $g=1$. Then we have $r=s=0$, and by (16), we get

$$
\begin{equation*}
2^{k+1} \geq h_{0}(f) \tag{17}
\end{equation*}
$$

Using Lemma 5 , by (7), we have

$$
h_{0}(f)=\frac{\sqrt{f}}{\pi} L(1, \chi)> \begin{cases}\frac{\sqrt{f}}{7.735 \pi \log f}, & \text { if } 4 \cdot 10^{13}<f \leq 10^{28} \tag{18}\\ \frac{0.2071 f^{0.4277}}{\pi}, & \text { if } f>10^{28}\end{cases}
$$

except at most one exceptional value. Let p_{t} denote the t-th odd prime. We see from (12) that $f \geq 8 p_{1} p_{2} \cdots p_{k}$. Therefore, by Lemma 3, we get

$$
\begin{equation*}
f>20\left(\frac{k+1}{e}\right)^{k+3 / 2} \prod_{t=3}^{k+1} \log t . \tag{19}
\end{equation*}
$$

Substituting (19) into (18), if $f>10^{28}$, then from (17) and (18) we get

$$
\begin{equation*}
654(12.77)^{k}>(k+1)^{k+3 / 2} \prod_{t=3}^{k+1} \log t \tag{20}
\end{equation*}
$$

We calculate from (20) that $k \leq 10$. Since $f>10^{28}$, by (17) and (18), we get $8 \cdot 10^{3}>2^{k+1} \pi>0.2071 f^{0.4277}>10^{10}$, a contradiction.

If $4 \cdot 10^{13}<f \leq 10^{28}$, then from (17) and (18) we get

$$
\begin{equation*}
2^{k+1}>\frac{\sqrt{f}}{7.735 \pi \log f} \tag{21}
\end{equation*}
$$

By Lemma 4 , if $k \geq 11$, then from (21) we get

$$
\begin{align*}
10^{5} \cdot 2^{k-11} & >2^{k+1} \cdot 7.735 \pi>\frac{\sqrt{f}}{\log f} \geq \frac{\sqrt{8 p_{1} p_{2} \cdots p_{k}}}{\log 8 p_{1} p_{2} \cdots p_{k}} \tag{22}\\
& >2^{k-11} \frac{\sqrt{8 p_{1} p_{2} \cdots p_{11}}}{\log 8 p_{1} p_{2} \cdots p_{11}}>1.6 \cdot 10^{5} \cdot 2^{k-11}
\end{align*}
$$

a contradiction. So we have $k \leq 10$, and by (21),

$$
\begin{equation*}
49767>\frac{\sqrt{f}}{\log f} \tag{23}
\end{equation*}
$$

Since $f>4 \cdot 10^{13},(23)$ is impossible. Thus, there exists at most one exceptional value n such that $n>10^{13}$ and $g=1$. Moreover, by Lemma 5 , under the assumption of the generalized Riemann conjecture, the abovementioned exceptional value does not exist.

We next consider the case of $g>1$. By (8) and (12), we have $h_{0}(f) \geq$ 2^{k+s}. Hence, by (16), we obtain

$$
\begin{equation*}
2 \geq\left(\prod_{i=1}^{r} \frac{u_{i}^{\alpha_{i}}-1}{2 \alpha_{i}+1}\right)\left(\prod_{j=1}^{s} \frac{v_{j}^{\beta_{j}}-1}{\beta_{j}+1}\right) \tag{24}
\end{equation*}
$$

Recall that $u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}$ are distinct odd primes satisfying $u_{1}<u_{2}<\cdots<u_{r}$ and $v_{1}<v_{2}<\cdots<v_{s}$. We find from (24) that

$$
\begin{align*}
& r=1, \quad s=0, \quad\left(u_{1}, \alpha_{1}\right)=(3,1),(3,2),(5,1),(7,1) \\
& r=2, \quad s=0, \quad\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right)=(3,5,1,1),(3,7,1,1) \\
& r=0, \tag{25}\\
& r=1, \quad\left(v_{1}, \beta_{1}\right)=(3,1),(5,1) \\
& \quad=\quad(3,5,1,1),(3,7,1,1),(5,3,1,1),(7,3,1,1)
\end{align*}
$$

From (12) and (25), we obtain

$$
\begin{equation*}
g \in\{3,5,7,9,15,21\} \tag{26}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left(\prod_{i=1}^{r} \frac{u_{i}^{\alpha_{i}}-1}{2 \alpha_{i}+1}\right)\left(\prod_{j=1}^{s} \frac{v_{j}^{\beta_{j}}-1}{\beta_{j}+1}\right)>\frac{2}{3} \tag{27}
\end{equation*}
$$

We get from (16) and (27) that

$$
\begin{equation*}
2^{k+s} \cdot 3 \geq h_{0}(f) . \tag{28}
\end{equation*}
$$

Using the same method as in the case of $g=1$, we can prove that there exists at most one f for which (28) holds. Moreover, under the assumption of the generalized Riemann conjecture, such f does not exist. Thus, by (26), there exist at most six exceptional values n with $g>1$. To sum up, the proof is complete.

References

[1] T.-X. Cai, On the diophantine equation $x y+y z+z x=m$, Publ. Math. Debrecen 45 (1994), 131-132.
[2] A.-Z. Hassan, B. Brindza and Á. Pintér, On positive integer solutions of the equation $x y+y z+x z=n$, Canad. Math. Bull. 39 (1996), 199-202.
[3] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Lepzig, 1923.
[4] J. Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980/1981), 167-174.
[5] H. K. Kim, A conjecture of S. Chowla and related topics in analytic number theory, Ph.D. thesis, Johns Hopkins University, 1988.
[6] K. Kovács, About some positive solutions of the diophantine equation $\sum_{1 \leq i<j \leq n} a_{i} a_{j}=m$, Publ. Math. Debrecen 40 (1992), 207-210.
[7] B. Rosser, The n-th prime is greater than $n \log n$, Proc. London Math. Soc. (2) 45 (1938), 21-44.

MAOHUA LE
DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHERS COLLEGE
POSTAL CODE 524048
ZHANJIANG, GUANGDONG
P.R. CHINA
(Received April 29, 1997)

