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Abstract. In a real normed space (E, ‖ · ‖) of dimension 3 we show that the
existence of a bi-additive function F from E × E into E, satisfying the generalized
Lagrange’s identity

ρ′+ (F (x, y), F (z, v)) = ρ′+(x, z)ρ′+(y, v)− ρ′+(x, v)ρ′+(y, z),

where ρ′+(a, b) is ‖a‖ multiplied by the right derivative of the norm, implies that the
norm must be induced by an inner product.

In three dimensional inner product space (R3, 〈· , ·〉) one has the cross
product × satisfying, among others, the bi-additive conditions

x× (y + z) = x× y + x× z and (x + y)× z = x× z + y × z

and the well-known Lagrange’s identity

〈x× y, z × v〉 = 〈x, z〉 · 〈y, v〉 − 〈x, v〉 〈y, z〉.

Let us assume that we have a real normed linear space (E, ‖ · ‖) and
the right derivative of the norm ρ′+(x, y) = limt→0+(‖x + ty‖2 − ‖x‖2)/2t

(functional that coincides with the inner product when the norm is induced
by it). The norm derivatives play a crucial role in characterizations of inner
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product spaces (see, for example [1], [2], [3], [4]). Our main concern in this
paper is to study when it is possible to have in a real normed space (E, ‖·‖)
an operation F satisfying the bi-additivity conditions and the generalized
Lagrange’s identity

ρ′+(F (x, y), F (z, v)) = ρ′+(x, z)ρ′+(y, v)− ρ′+(x, v)ρ′+(y, z).

The surprising result is that for dimension 3 the existence of such opera-
tions F forces the space to be an inner product space.

Precisely, let (E, ‖ · ‖) be a real normed linear space and consider the
norm derivatives defined by

ρ′±(x, y) = lim
t→0±

‖x + ty‖2 − ‖x‖2
2t

,

for every pair x, y ∈ E. The following properties of ρ′± are well-known
(see [1]) and will be used in this paper:

(i) ρ′±(x, x) = ‖x‖2 for all x ∈ E;

(ii) ρ′±(ax, by) = abρ′±(x, y) if a · b ≥ 0 and x, y ∈ E;

(iii) |ρ′±(x, y)| ≤ ‖x‖ · ‖y‖ for all x, y ∈ E;

(iv) ρ′±(x, ax + y) = a‖x‖2 + ρ′±(x, y) if a is any real and x, y ∈ E;

(v) ρ′+(· , ·) is continuous and subadditive in the second variable and
ρ′−(· , ·) is continuous and superadditive in the second variable and,
moreover ρ′−(x, y) ≤ ρ′+(x, y), for all x, y in E;

(vi) If the norm ‖ · ‖ is induced by an inner product 〈· , ·〉, then ρ′+(x, y) =
ρ′−(x, y) = 〈x, y〉, for all x, y in E.

Let us mention that ρ′+(x, y) = ρ′+(y, x) for all x, y in normed space
(E, ‖ · ‖) if and only if the norm derives from an inner product, i.e., very
weak conditions on ρ′± may characterize inner products.

Our aim in this paper is to determine in a real normed linear space
(E, ‖ ·‖) functions F from E×E into E satisfying the following conditions
for all x, y, z, v in E:

F (x, y + z) = F (x, y) + F (x, z),(1)

F (x + y, z) = F (x, z) + F (y, z),(2)
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and

(3) ρ′+(F (x, y), F (z, v)) = ρ′+(x, z)ρ′+(y, v)− ρ′+(x, v)ρ′+(y, z).

Note that, in particular, (3) implies taking z = x and v = y that

(4) ‖F (x, y)‖2 = ‖x‖2‖y‖2 − ρ′+(x, y)ρ′+(y, x)

Lemma 1. If F satisfies (1), (2) and (4) then

(i) F (x, x) = 0, for all x in E;(6)

(ii) F (y, x) = −F (x, y), for all x, y in E;(7)

(iii) F (x, ay + bz) = aF (x, y) + bF (x, z), for all real a, b(8)

and for all x, y, z in E.

Proof. The substitution y = x into (4) yields (i). Next by (i) F (x+y,
x+y) = 0 and by (1) and (2) one gets (ii). Finally by (4) and the properties
of ρ′+, F (x, ·) is continuous at y = 0 and by (1) condition (iii) follows.

Lemma 2. If F satisfies (1), (2) and (3) then:

(9) ρ′+(x, y) = ρ′−(x, y) for all x, y in E.

Proof. By (3) and Lemma 1 we have

0 = ρ′+(F (x,−y), F (y,−y)) = ρ′+(x, y)ρ′+(−y,−y)− ρ′+(x,−y)ρ′+(−y, y)

= ρ′+(x, y)‖y‖2 − (−ρ′−(x, y))(−ρ′−(y, y)) = (ρ′+(x, y)− ρ′−(x, y))‖y‖2,

whence for y 6= 0, ρ′+(x, y) = ρ′−(x, y) and since this last equality is obvious
for y = 0 we can conclude (9).

Now we prove our main result

Theorem 1. If (E, ‖ · ‖) is a real normed linear space of dimension 3
and there exists a function F from E × E into E satisfying (1), (2) and
(3) then necessarily the norm ‖ · ‖ is induced by an inner product.

Proof. Assume that F from E ×E into E satisfies (1), (2) and (3).
By the previous lemmas for all x, z in E and a, b in R we have

‖F (z, x + bz)‖2 = ‖F (z, x + az + bz)‖2,
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i.e.,

(10)
‖z‖2‖x + bz‖2 − ρ′+(z, x + bz)ρ′+(x + bz, z)

= ‖z‖2‖x + (a + b)z‖2 − ρ′+(z, x + (a + b)z)ρ′+(x + (a + b)z, z)

We can rewrite (10) in the form

(11)
‖z‖2 [‖x + (a + b)z‖2 − ‖x + bz‖2] = ρ′+(z, x + (a + b)z)

×ρ′+(x + (a + b)z, z)− ρ′+(z, x + bz)ρ′+(x + bz, z).

Let us fix x and z two independent vectors in E and let us introduce
the function f from R into R defined by

(12) f(t) = ρ′+(x + tz, z) = ρ′−(x + tz, z).

Thus by means of (11) and (12) we can write

(13)

‖z‖2 [‖x + (a + b)z‖2 − ‖x + bz‖2]

=
[
(a + b)‖z‖2 + ρ′+(z, x)

]
f(a + b)− [

b‖z‖2 + ρ′+(z, x)
]
f(b)

=
[
b‖z‖2 + ρ′+(z, x)

]
[f(a + b)− f(b)] + a‖z‖2f(a + b).

Since the norm is continuous and |f(a+b)| ≤ ‖x+(a+b)z‖ ‖z‖, taking
limits in (13) when a → 0± we obtain

[
b‖z‖2 + ρ′+(z, x)

]
lim

a→0±
(f(a + b)− f(b)) = 0,

i.e., for any real b, b 6= b0 := −ρ′+(z, x)/‖z‖2, we obtain

(14) lim
a→0±

f(b + a) = f(b).

Note that by (13) at point b0 we have

(15)
lim

a→0±
f(b0 + a) = lim

a→0±

‖x + b0z + az‖2 − ‖x + b0z‖2
a

= 2ρ′±(x + b0z, z) = 2f(b0).
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We claim that f(b0) = 0. To see this consider the following chain of
equalities for any real λ and for our fixed x, z:

(16)

λ2‖F (x, z)‖2 = ‖F (x, λz)‖2 = ‖F (x + b0z, λz)‖2

= ‖F (x + b0z, x + b0z + λz)‖2 = ‖x + b0z‖2 · ‖x + b0z + λz‖2
− ρ′+(x + b0z, x+b0z + λz)ρ′+(x + b0z+λz, x+b0z+λz − λz)

= ‖x + b0z‖2‖x + b0z + λz‖2
− [‖x + b0z‖2 + ρ′+(x + b0z, λz)

] [‖x + b0z + λz‖2
+ ρ′+(x + b0z +λz,−λz)]

= −‖x + b0z‖2ρ′+(x + (b0 + λ)z,−λz)

− ‖x + b0z + λz‖2ρ′+(x + b0z, λz)

− ρ′+(x + b0z, λz)ρ′+(x + (b0 + λ)z,−λz)).

Then taking into account that we have already proved that in our case
ρ′+ = ρ′−, division by λ < 0 in (16) yields

λ‖F (x, z)‖2 = + ‖x + b0z‖2ρ′+(x + (b0 + λ)z, z)(17)

+ ‖x + b0z + λz‖2ρ′+(x + b0z, z)− λρ′+(x + b0z, z)ρ′+(x + (b0 + λ)z, z)

and taking limits when λ → 0− we obtain using (15)

0 = ‖x + b0z‖22f(b0) + ‖x + b0z‖2f(b0),

and since x and z are independent, f(b0) = 0. Therefore by (17), for any
λ < 0 it is

λ‖F (x, z)‖2 = ‖x + b0z‖2f(b0 + λ)

i.e., for any t < b0:

f(t) = f(b0 + (t− b0)) =
‖F (x, z)‖2
‖x + b0z‖2 (t− b0),

so f is an affine function on (−∞, b0]. Since f(b0) = 0 by (16) we also
have for λ > 0

λ2‖F (x, z)‖2 = λ‖x + b0z‖2f(b0 + λ),
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i.e., for any t > b0:

f(t) = f(b0 + (t− b0)) =
‖F (x, z)‖2
‖x + b0z‖2 (t− b0),

so f is an affine function on R vanishing at b0. Thus for all real t

ρ′+(x + tz, z) =
‖F (x, z)‖2

‖x− ρ′+(z,x)

‖z‖2 z‖2

(
t +

ρ′+(z, x)
‖z‖2

)
,

and for t = 0 we obtain:

ρ′+(x, z) =
‖x‖2‖z‖2 − ρ′+(x, z)ρ′+(z, x)

‖x− ρ′+(z,x)

‖z‖2 z‖2
· ρ′+(z, x)
‖z‖2 ,

i.e., ρ′+(x, z) = 0 if and only if ρ′+(z, x) = 0 and the symmetry of the
orthogonality relation ρ′+(x, z) = 0 yields that necessarily (in dimension 3)
the norm derives from an inner product (see [1]). This completes the proof.
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[2] C. Alsina, P. Guijarro and M. S. Tom�as, On heights in real normed spaces and
characterizations of inner product structures, J. Inst. Math. Comput. Sci. Math.
Ser. 6, 2, (1993), 151–159.

[3] C. Alsina and J.L. Garcia-Roig, On a functional equation characterizing inner
product spaces, Publ. Math. Debrecen 39 (1991), 299–304.

[4] C. Alsina, P. Guijarro and M. S. Tom�as, A characterization of inner product
spaces based on orthogonal relations related to height’s theorem, Rocky Mountain
J. of Math. 25 (1992), 843–849.

CLAUDI ALSINA
UNIVERSITAT POLITÈCNICA DE CATALUNYA
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