On a generalized Lagrange's identity characterizing inner product spaces

By CLAUDI ALSINA (Barcelona)
Dedicated to Professor Zoltán Daróczy

Abstract

In a real normed space $(E,\|\cdot\|)$ of dimension 3 we show that the existence of a bi-additive function F from $E \times E$ into E, satisfying the generalized Lagrange's identity $$
\rho_{+}^{\prime}(F(x, y), F(z, v))=\rho_{+}^{\prime}(x, z) \rho_{+}^{\prime}(y, v)-\rho_{+}^{\prime}(x, v) \rho_{+}^{\prime}(y, z)
$$ where $\rho_{+}^{\prime}(a, b)$ is $\|a\|$ multiplied by the right derivative of the norm, implies that the norm must be induced by an inner product.

In three dimensional inner product space $\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$ one has the cross product \times satisfying, among others, the bi-additive conditions

$$
x \times(y+z)=x \times y+x \times z \quad \text { and } \quad(x+y) \times z=x \times z+y \times z
$$

and the well-known Lagrange's identity

$$
\langle x \times y, z \times v\rangle=\langle x, z\rangle \cdot\langle y, v\rangle-\langle x, v\rangle\langle y, z\rangle
$$

Let us assume that we have a real normed linear space $(E,\|\cdot\|)$ and the right derivative of the norm $\rho_{+}^{\prime}(x, y)=\lim _{t \rightarrow 0^{+}}\left(\|x+t y\|^{2}-\|x\|^{2}\right) / 2 t$ (functional that coincides with the inner product when the norm is induced by it). The norm derivatives play a crucial role in characterizations of inner
product spaces (see, for example [1], [2], [3], [4]). Our main concern in this paper is to study when it is possible to have in a real normed space $(E,\|\cdot\|)$ an operation F satisfying the bi-additivity conditions and the generalized Lagrange's identity

$$
\rho_{+}^{\prime}(F(x, y), F(z, v))=\rho_{+}^{\prime}(x, z) \rho_{+}^{\prime}(y, v)-\rho_{+}^{\prime}(x, v) \rho_{+}^{\prime}(y, z) .
$$

The surprising result is that for dimension 3 the existence of such operations F forces the space to be an inner product space.

Precisely, let $(E,\|\cdot\|)$ be a real normed linear space and consider the norm derivatives defined by

$$
\rho_{ \pm}^{\prime}(x, y)=\lim _{t \rightarrow 0^{ \pm}} \frac{\|x+t y\|^{2}-\|x\|^{2}}{2 t}
$$

for every pair $x, y \in E$. The following properties of $\rho_{ \pm}^{\prime}$ are well-known (see [1]) and will be used in this paper:
(i) $\rho_{ \pm}^{\prime}(x, x)=\|x\|^{2}$ for all $x \in E$;
(ii) $\rho_{ \pm}^{\prime}(a x, b y)=a b \rho_{ \pm}^{\prime}(x, y)$ if $a \cdot b \geq 0$ and $x, y \in E$;
(iii) $\left|\rho_{ \pm}^{\prime}(x, y)\right| \leq\|x\| \cdot\|y\|$ for all $x, y \in E$;
(iv) $\rho_{ \pm}^{\prime}(x, a x+y)=a\|x\|^{2}+\rho_{ \pm}^{\prime}(x, y)$ if a is any real and $x, y \in E$;
(v) $\rho_{+}^{\prime}(\cdot, \cdot)$ is continuous and subadditive in the second variable and $\rho_{-}^{\prime}(\cdot, \cdot)$ is continuous and superadditive in the second variable and, moreover $\rho_{-}^{\prime}(x, y) \leq \rho_{+}^{\prime}(x, y)$, for all x, y in E;
(vi) If the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot, \cdot\rangle$, then $\rho_{+}^{\prime}(x, y)=$ $\rho_{-}^{\prime}(x, y)=\langle x, y\rangle$, for all x, y in E.

Let us mention that $\rho_{+}^{\prime}(x, y)=\rho_{+}^{\prime}(y, x)$ for all x, y in normed space $(E,\|\cdot\|)$ if and only if the norm derives from an inner product, i.e., very weak conditions on $\rho_{ \pm}^{\prime}$ may characterize inner products.

Our aim in this paper is to determine in a real normed linear space $(E,\|\cdot\|)$ functions F from $E \times E$ into E satisfying the following conditions for all x, y, z, v in E :

$$
\begin{align*}
& F(x, y+z)=F(x, y)+F(x, z), \tag{1}\\
& F(x+y, z)=F(x, z)+F(y, z), \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\rho_{+}^{\prime}(F(x, y), F(z, v))=\rho_{+}^{\prime}(x, z) \rho_{+}^{\prime}(y, v)-\rho_{+}^{\prime}(x, v) \rho_{+}^{\prime}(y, z) . \tag{3}
\end{equation*}
$$

Note that, in particular, (3) implies taking $z=x$ and $v=y$ that

$$
\begin{equation*}
\|F(x, y)\|^{2}=\|x\|^{2}\|y\|^{2}-\rho_{+}^{\prime}(x, y) \rho_{+}^{\prime}(y, x) \tag{4}
\end{equation*}
$$

Lemma 1. If F satisfies (1), (2) and (4) then
(i) $F(x, x)=0$, for all x in E;
(ii) $F(y, x)=-F(x, y)$, for all x, y in E;
(iii) $F(x, a y+b z)=a F(x, y)+b F(x, z)$, for all real a, b and for all x, y, z in E.

Proof. The substitution $y=x$ into (4) yields (i). Next by (i) $F(x+y$, $x+y)=0$ and by (1) and (2) one gets (ii). Finally by (4) and the properties of $\rho_{+}^{\prime}, F(x, \cdot)$ is continuous at $y=0$ and by (1) condition (iii) follows.

Lemma 2. If F satisfies (1), (2) and (3) then:

$$
\begin{equation*}
\rho_{+}^{\prime}(x, y)=\rho_{-}^{\prime}(x, y) \quad \text { for all } x, y \text { in } E . \tag{9}
\end{equation*}
$$

Proof. By (3) and Lemma 1 we have

$$
\begin{aligned}
0 & =\rho_{+}^{\prime}(F(x,-y), F(y,-y))=\rho_{+}^{\prime}(x, y) \rho_{+}^{\prime}(-y,-y)-\rho_{+}^{\prime}(x,-y) \rho_{+}^{\prime}(-y, y) \\
& =\rho_{+}^{\prime}(x, y)\|y\|^{2}-\left(-\rho_{-}^{\prime}(x, y)\right)\left(-\rho_{-}^{\prime}(y, y)\right)=\left(\rho_{+}^{\prime}(x, y)-\rho_{-}^{\prime}(x, y)\right)\|y\|^{2},
\end{aligned}
$$

whence for $y \neq 0, \rho_{+}^{\prime}(x, y)=\rho_{-}^{\prime}(x, y)$ and since this last equality is obvious for $y=0$ we can conclude (9).

Now we prove our main result
Theorem 1. If $(E,\|\cdot\|)$ is a real normed linear space of dimension 3 and there exists a function F from $E \times E$ into E satisfying (1), (2) and (3) then necessarily the norm $\|\cdot\|$ is induced by an inner product.

Proof. Assume that F from $E \times E$ into E satisfies (1), (2) and (3). By the previous lemmas for all x, z in E and a, b in \mathbb{R} we have

$$
\|F(z, x+b z)\|^{2}=\|F(z, x+a z+b z)\|^{2}
$$

i.e.,

$$
\begin{gather*}
\|z\|^{2}\|x+b z\|^{2}-\rho_{+}^{\prime}(z, x+b z) \rho_{+}^{\prime}(x+b z, z) \\
=\|z\|^{2}\|x+(a+b) z\|^{2}-\rho_{+}^{\prime}(z, x+(a+b) z) \rho_{+}^{\prime}(x+(a+b) z, z) \tag{10}
\end{gather*}
$$

We can rewrite (10) in the form

$$
\begin{gather*}
\|z\|^{2}\left[\|x+(a+b) z\|^{2}-\|x+b z\|^{2}\right]=\rho_{+}^{\prime}(z, x+(a+b) z) \\
\quad \times \rho_{+}^{\prime}(x+(a+b) z, z)-\rho_{+}^{\prime}(z, x+b z) \rho_{+}^{\prime}(x+b z, z) \tag{11}
\end{gather*}
$$

Let us fix x and z two independent vectors in E and let us introduce the function f from \mathbb{R} into \mathbb{R} defined by

$$
\begin{equation*}
f(t)=\rho_{+}^{\prime}(x+t z, z)=\rho_{-}^{\prime}(x+t z, z) \tag{12}
\end{equation*}
$$

Thus by means of (11) and (12) we can write

$$
\begin{gather*}
\|z\|^{2}\left[\|x+(a+b) z\|^{2}-\|x+b z\|^{2}\right] \\
=\left[(a+b)\|z\|^{2}+\rho_{+}^{\prime}(z, x)\right] f(a+b)-\left[b\|z\|^{2}+\rho_{+}^{\prime}(z, x)\right] f(b) \tag{13}\\
=\left[b\|z\|^{2}+\rho_{+}^{\prime}(z, x)\right][f(a+b)-f(b)]+a\|z\|^{2} f(a+b) .
\end{gather*}
$$

Since the norm is continuous and $|f(a+b)| \leq\|x+(a+b) z\|\|z\|$, taking limits in (13) when $a \rightarrow 0 \pm$ we obtain

$$
\left[b\|z\|^{2}+\rho_{+}^{\prime}(z, x)\right] \lim _{a \rightarrow 0 \pm}(f(a+b)-f(b))=0
$$

i.e., for any real $b, b \neq b_{0}:=-\rho_{+}^{\prime}(z, x) /\|z\|^{2}$, we obtain

$$
\begin{equation*}
\lim _{a \rightarrow 0 \pm} f(b+a)=f(b) \tag{14}
\end{equation*}
$$

Note that by (13) at point b_{0} we have

$$
\begin{align*}
\lim _{a \rightarrow 0 \pm} f\left(b_{0}+a\right) & =\lim _{a \rightarrow 0^{ \pm}} \frac{\left\|x+b_{0} z+a z\right\|^{2}-\left\|x+b_{0} z\right\|^{2}}{a} \tag{15}\\
& =2 \rho_{ \pm}^{\prime}\left(x+b_{0} z, z\right)=2 f\left(b_{0}\right)
\end{align*}
$$

We claim that $f\left(b_{0}\right)=0$. To see this consider the following chain of equalities for any real λ and for our fixed x, z :

$$
\begin{aligned}
\lambda^{2} \| & F(x, z)\left\|^{2}=\right\| F(x, \lambda z)\left\|^{2}=\right\| F\left(x+b_{0} z, \lambda z\right) \|^{2} \\
= & \left\|F\left(x+b_{0} z, x+b_{0} z+\lambda z\right)\right\|^{2}=\left\|x+b_{0} z\right\|^{2} \cdot\left\|x+b_{0} z+\lambda z\right\|^{2} \\
& -\rho_{+}^{\prime}\left(x+b_{0} z, x+b_{0} z+\lambda z\right) \rho_{+}^{\prime}\left(x+b_{0} z+\lambda z, x+b_{0} z+\lambda z-\lambda z\right) \\
= & \left\|x+b_{0} z\right\|^{2}\left\|x+b_{0} z+\lambda z\right\|^{2} \\
& -\left[\left\|x+b_{0} z\right\|^{2}+\rho_{+}^{\prime}\left(x+b_{0} z, \lambda z\right)\right]\left[\left\|x+b_{0} z+\lambda z\right\|^{2}\right. \\
& \left.+\rho_{+}^{\prime}\left(x+b_{0} z+\lambda z,-\lambda z\right)\right] \\
= & -\left\|x+b_{0} z\right\|^{2} \rho_{+}^{\prime}\left(x+\left(b_{0}+\lambda\right) z,-\lambda z\right) \\
& -\left\|x+b_{0} z+\lambda z\right\|^{2} \rho_{+}^{\prime}\left(x+b_{0} z, \lambda z\right) \\
& \left.-\rho_{+}^{\prime}\left(x+b_{0} z, \lambda z\right) \rho_{+}^{\prime}\left(x+\left(b_{0}+\lambda\right) z,-\lambda z\right)\right) .
\end{aligned}
$$

Then taking into account that we have already proved that in our case $\rho_{+}^{\prime}=\rho_{-}^{\prime}$, division by $\lambda<0$ in (16) yields

$$
\begin{equation*}
\lambda\|F(x, z)\|^{2}=+\left\|x+b_{0} z\right\|^{2} \rho_{+}^{\prime}\left(x+\left(b_{0}+\lambda\right) z, z\right) \tag{17}
\end{equation*}
$$

$$
+\left\|x+b_{0} z+\lambda z\right\|^{2} \rho_{+}^{\prime}\left(x+b_{0} z, z\right)-\lambda \rho_{+}^{\prime}\left(x+b_{0} z, z\right) \rho_{+}^{\prime}\left(x+\left(b_{0}+\lambda\right) z, z\right)
$$

and taking limits when $\lambda \rightarrow 0$ - we obtain using (15)

$$
0=\left\|x+b_{0} z\right\|^{2} 2 f\left(b_{0}\right)+\left\|x+b_{0} z\right\|^{2} f\left(b_{0}\right)
$$

and since x and z are independent, $f\left(b_{0}\right)=0$. Therefore by (17), for any $\lambda<0$ it is

$$
\lambda\|F(x, z)\|^{2}=\left\|x+b_{0} z\right\|^{2} f\left(b_{0}+\lambda\right)
$$

i.e., for any $t<b_{0}$:

$$
f(t)=f\left(b_{0}+\left(t-b_{0}\right)\right)=\frac{\|F(x, z)\|^{2}}{\left\|x+b_{0} z\right\|^{2}}\left(t-b_{0}\right),
$$

so f is an affine function on $\left(-\infty, b_{0}\right.$]. Since $f\left(b_{0}\right)=0$ by (16) we also have for $\lambda>0$

$$
\lambda^{2}\|F(x, z)\|^{2}=\lambda\left\|x+b_{0} z\right\|^{2} f\left(b_{0}+\lambda\right)
$$

i.e., for any $t>b_{0}$:

$$
f(t)=f\left(b_{0}+\left(t-b_{0}\right)\right)=\frac{\|F(x, z)\|^{2}}{\left\|x+b_{0} z\right\|^{2}}\left(t-b_{0}\right),
$$

so f is an affine function on \mathbb{R} vanishing at b_{0}. Thus for all real t

$$
\rho_{+}^{\prime}(x+t z, z)=\frac{\|F(x, z)\|^{2}}{\left\|x-\frac{\rho_{+}^{\prime}(z, x)}{\|z\|^{2}} z\right\|^{2}}\left(t+\frac{\rho_{+}^{\prime}(z, x)}{\|z\|^{2}}\right),
$$

and for $t=0$ we obtain:

$$
\rho_{+}^{\prime}(x, z)=\frac{\|x\|^{2}\|z\|^{2}-\rho_{+}^{\prime}(x, z) \rho_{+}^{\prime}(z, x)}{\left\|x-\frac{\rho_{+}^{\prime}(z, x)}{\|z\|^{2}} z\right\|^{2}} \cdot \frac{\rho_{+}^{\prime}(z, x)}{\|z\|^{2}},
$$

i.e., $\rho_{+}^{\prime}(x, z)=0$ if and only if $\rho_{+}^{\prime}(z, x)=0$ and the symmetry of the orthogonality relation $\rho_{+}^{\prime}(x, z)=0$ yields that necessarily (in dimension 3) the norm derives from an inner product (see [1]). This completes the proof.

Acknowledgement. The author thanks Prof. J.L. Garcia-Roig, P. Guijarro and M. S. Tomás for their helpful remarks.

References

[1] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
[2] C. Alsina, P. Guijarro and M. S. Tomás, On heights in real normed spaces and characterizations of inner product structures, J. Inst. Math. Comput. Sci. Math. Ser. 6, 2, (1993), 151-159.
[3] C. Alsina and J.L. Garcia-Roig, On a functional equation characterizing inner product spaces, Publ. Math. Debrecen 39 (1991), 299-304.
[4] C. Alsina, P. Guijarro and M. S. Tomás, A characterization of inner product spaces based on orthogonal relations related to height's theorem, Rocky Mountain J. of Math. 25 (1992), 843-849.

CLAUDI ALSINA
UNIVERSITAT POLITÈCNICA DE CATALUNYA
ETSAB. DIAGONAL 649
E-08028 BARCELONA
SPAIN
(Received October 30, 1997)

