Publicationes Mathematicae Debrecen | Year: 2023 | Vol.: 103 | Fasc.: 3-4

Title: A class of critical surfaces in a Finsler space under the volume preserving variation

Author(s): Ningwei Cui, Xinxin Sun and Linfeng Zhou

Let $(\mathbb{R}^3, \tilde{F}_b)$ be the 3-dimensional Randers space with the metric

$$\tilde{F}_b = \sqrt{(dx^1)^2 + (dx^2)^2 + (dx^3)^2} + bdx^3,$$

where $0 \leq b < 1$ is a constant. In this paper, we study the critical surfaces under the volume preserving variation in $(\mathbb{R}^3, \tilde{F}_b)$ under the Busemann–Hausdorff measure. We introduce a quantity $H_{\sigma} = \text{const.}$ to characterize such surfaces which are called the constant mean curvature surfaces. Similar to Delaunay's famous work [10], we give a complete classification of CMC surfaces rotating around the x^3 -axis in the 3-dimensional Randers space with the Busemann–Hausdorff measure, which reduces to the classification of Delaunay's CMC surfaces in \mathbb{R}^3 when b = 0. The method developed in this paper may be applied to find the CMC surfaces under the Holmes–Thompson measure in the (α, β) -spaces.

Address:

Ningwei Cui School of Mathematics Southwest Jiaotong University Chengdu 610031 P. R. China

Address:

Xinxin Sun School of Mathematics Southwest Jiaotong University Chengdu, 610031 P. R. China

Address:

Linfeng Zhou School of Mathematics East China Normal University Shanghai, 200241 P. R. China