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Some remarks on a lemma of A.E. Ingham

By R. BALASUBRAMANIAN (Madras) and K. RAMACHANDRA (Bangalore)

To the 60th birthday of Professor Imre Kátai

Abstract. A mean-value lower bound over “short intervals” is given for the abso-
lute value of the logarithmic derivative of the Riemann zeta-function and more general
Dirichlet series.

1. Introduction

First we wish to give a rough idea of how we prove our Theorems 1,
2 and 4 using a certain important lemma of A.E. Ingham. A well-known
principle (called the argument principle) is the result

1
2πi

∫

C

F ′0(z)(F0(z))−1dz = N0

which is stated precisely in the remark immediately following Theorem 2.
We will be interested in the case where C is the anticlockwise boundary
of the rectangle (we call this “The Ingham rectangle”) obtained by joining
the points

σ0 + iT1, β + i T1, β + i T2, σ0 + i T2, σ0 + i T1

in this order. Here σ0 < β (where β is a large positive constant), T1 =
T + ∆1, T2 = T + H −∆2, (100 ≤ H ≤ T ). The numbers ∆1 and ∆2 are
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certain positive real numbers which are bounded. It is of importance to
have H as small a function of T as possible in Theorems 1, 2 and 4 (since
their truth for any H implies their truth for a bigger value of H). The fact
that (on the horizontal sides of the Ingham rectangle with suitable ∆1, ∆2)
we have F ′0(z)(F0(z))−1 = O((log T )2), for a wide class of functions F0(z)
is essentially due to Ingham. (See Section 2. He considered only the
case F0(z) = ζ(z)). Hence for such functions the difference between “The
arguments” in log F0(z) (got by continuous variation) at the points z1 =
σ0+iT1 and z2 = σ0+iT2 is equal to 2πN0+O((log T )2), provided that on
the right vertical boundary the contribution is O((log T )2). This is easily
the case if F0(z) is a non-trivial generalised Dirichlet series with constant
term 1 (in fact it is O(1)). However it is a different story to obtain a
non-trivial lower bound for N0, the number of zeros inside the Ingham
rectangle (such results are fairly involved and treated (for the first time)
for some class of generalised Dirichlet series in a series of papers by R.
Balasubramanian and K. Ramachandra. One may refer to the first
five references listed in the end). This leads to Theorems 1 and 2 (As is
clear from our proof it actually shows that the real part of

1
2πi(T2 − T1)

∫ σ0+iT2

σ0+iT1

F ′0(z)(F0(z))−1dz

is bounded below if 1 − δ ≥ σ0 ≥ 1
2 − δ (with 0 < δ < 1

2 ) and greater
than a positive constant multiple of log T if −δ−1 ≤ σ ≤ 1

2 − δ provided H

exceeds a certain positive constant multiple of T ε, the constant depending
on ε). The next kind of result is a simple one but tricky. It consists in
integrating thigs like

ζ ′(z)
ζ(z)− 2

and
2zζ ′(z)
ζ(z)− 2

on the Ingham rectangle and comparing the results. This leads to The-
orem 4 which is more general and covers things like zeta and L-functions
associated with number fields and also things like the Hurwitz zeta-
functions. Theorem 4 is proved in Section 3 in some generality. It is
somewhat surprising that in Theorm 4 we can take f0(z) = ζ(z). (The
letter C in Theorem 4 denotes a certain positive constant and should not
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be confused with the boundary C which appears in the begining of the
introduction). It should be stated that we are unable to prove things like

1
H

∫ T+H

T

∣∣∣∣
ζ ′( 3

4 + it)
ζ( 3

4 + it)− 1

∣∣∣∣ dt > D1,

with H = C1(log T )2 for suitable constants C1 > 0, D1 > 0. See Remark 2
and the conjecture in the end.

Here we record a few results on the mean-value of functions like
|ζ ′(s)(ζ(s) − a)−1| (s = σ + it, a = any non-zero complex constant) and
|ζ ′′(s)(ζ ′(s)− a)−1| (a = any complex constant). Typical theorems are

Theorem 1. Let a be any non-zero complex constant,

G(s) = ζ ′(s)(ζ(s) − a)−1 and F (s) = G(s) or G(s) + log 2 according as

a 6= 1 or a = 1. Then for all σ such that 1
2 ≤ σ ≤ 1− δ we have uniformly

(for T ≥ T0 (δ, a))

1
H

∫ T+H

T

|F (σ + it)|dt Àδ,ε,a 1

where ε (0 < ε < 1) and δ (0 < δ ≤ 1
2 ) are arbitrary constants and H = T ε.

Next let 0 < δ ≤ 1
2 and − 1

δ ≤ σ ≤ 1
2 − δ. Then there holds

1
H

∫ T+H

T

|F (σ + it)|dt ≥ C(δ) log T + O(H−1(log T )2)

where H exceeds a positive constant depending on a and δ and C(δ)
(= C(δ, a) > 0), depends only on δ and a. (Here a may be zero and

in this case F (s) = ζ ′(s)(ζ(s))−1).

Theorem 2. Let j(≥ 1) be any integer constant, and a any com-

plex constant. Let G(s) = ζ(j+1)(s)(ζ(j)(s) − a)−1, and F (s) = G(s) or

G(s) + log 2 according as a 6= 0 or a = 0. Then there exists a constant η

(= η(j, a) > 0) such that for all σ satisfying 1
2 ≤ σ ≤ 1

2 + η, we have

1
H

∫ T+H

T

|F (σ + it)|dt Àε,j,a 1.

Here ε (0 < ε < 1) is any arbitrary constant and H = T ε.
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Next let 0 < δ ≤ 1
2 and − 1

δ ≤ σ ≤ 1
2 − δ. Then we have

1
H

∫ T+H

T

|F (σ + it)|dt ≥ C(δ) log T + O(H−1(log T )2)

where C(δ) (= C(δ, a, j) > 0) and H exceeds a positive constant depending
only on δ, a and j.

Remark. We can state many more general theorems, but these are
typical of a large class. All these are corollaries to the main results of
[RB,KR,2], [RB,KR,3] and [KR,1] (also [RB,KR,4] and [RB,KR,1]) which
follow on applying the following result. Let C be the smooth boundary
(oriented in the anti-clockwise direction) of a simply connected region in
the complex plane. Let z = x + iy, and F0(z) be analytic inside and on C
and 6= 0 on C. Then

1
2πi

∫

C

F ′0(z)(F0(z))−1 dz = N0

where N0 is the number of zeros of F0(z) inside C. This follows from
Cauchy’s Theorem of residues. However a certain procedure is necessary
to deduce theorems like 1 and 2. The procedure will be explained in
Section 2. It is due to (late) Professor A.E. Ingham, who explained it to
the second author in connection with explicit formula for the summatory
function of the coefficients of −ζ ′(s)(ζ(s))−1. His procedure is published
here for the first time.

Notation. The notation employed in this paper is all standard. O(. . . )
means less than a constant times . . . À . . . means greater than a constant
times (where the constant depends on . . . ). Some times when we do not
specify the constants we write À.

2. Procedure

We begin with

Theorem 3 (Bórel–Caratheódory). Suppose f(z)(z = x + iy) is ana-
lytic in |z − z0| ≤ R and on the circle z = z0 + Reiθ (0 ≤ θ ≤ 2π) we have
Ref(z) ≤ U . Then in |z − z0| ≤ r < R we have

|f(z)− f(z0)| ≤ 2r(U −Ref(z0))
R− r
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and for integers j ≥ 1 we have also

∣∣∣∣
f (j)(z)

j!

∣∣∣∣ ≤
2R(U −Ref(z0))

(R− r)(j+1)
.

Remark. For the proof of this theorem see page 26 of [KR,2].

Suppose f(z) is analytic in Rez ≥ β (≥ 1) where β is a constant
and there |f(z) − 1| ≤ 1

10 . Suppose f(z) can be continued analytically in
|z − z0| ≤ 10R where R(≥ 2) is a constant and there |f(z)| ≤ TA (where
T ≥ 3) and A(≥ 1) is a constant. Suppose that ρ runs over all the zeros
of f(z) in |z − z0| ≤ R. Put

F (z) = f(z)πρ

(
1− z − z0

ρ− z0

)−1

.

By maximum modulus principle we have

(1) max
|z−z0|≤R

|F (z)| ≤ max
|z−z0|≤10R

|f(z)| ≤ TA.

Also

(2)
9
10
≤ |F (z0)| ≤ max

|z−z0|≤10R
|F (z)| ≤ TA3−N1

where N1 is the number of zeros ρ. From (2) we obtain

(3) N1 ≤ log(2TA) ≤ (A + 1) log T.

Now putting g(z) = log F (z0) in |z − z0| ≤ R we find that g(z) is analytic
in |z − z0| ≤ R and there we have

(4) Re g(z) ≤ A log T.

Now applying Theorem 3 (with j = 1, r = R
2 ) we obtain

∣∣∣∣
F ′(z)
F (z)

∣∣∣∣ ≤
4
R

(A log T + log 2)
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i.e.

(5)

∣∣∣∣
f ′(z)
f(z)

−
∑ 1

z − ρ

∣∣∣∣ ≤
4
R

(A log T + 1)

≤ 8A

R
log T

in |z − z0| ≤ 1
2R. Total number of zeros ρ(in|z − z0| ≤ R) is ≤ 2A log T .

Hence if we divide the y− range |y − y0| ≤ 1
4R into [20A log T ] equal in-

tervals, (by Dirichlets box principle) at least one of these intervals is free
from zeros ρ. We fix one such y− interval. Let y = y1 be the middle (hor-
izontal) line in this interval. Then we have (for z = x+ iy1, |z − z0| ≤ 1

2R,
|y1− y0| ≤ 1

4R, i.e. certainly for z = x+ iy1, |y1− y0| ≤ 1
4R, |x−β| ≤ 1

4R)

(6)
∣∣∣∣

1
z − ρ

∣∣∣∣ ≤ 1000A log T

and so

(7)
∑ 1

|z − ρ| ≤ 2000A2(log T )2.

Hence (for z = x + iy, |x− β| ≤ 1
4R, |y1 − y0| ≤ 1

4R) we have

(8)
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ ≤ 4000A2(log T )2.

We now come to a more specific application of (8). We revert back to the
notation s = σ + it. Let 1 = λ1 < λ2 < λ3 < . . . with λn+1 − λn À 1.
Suppose that

f(s) =
∞∑

n=1

anλ−s
n (an being complex numbers with a1 = 1)

converges absolutely in σ ≥ β (≥ 2) and there |f(s) − 1| ≤ 1
10 . Also

suppose that f(s) can be continued analytically in σ ≥ −10β and there
|f(s)| ≤ |t|A for all t such that |t| ≥ t0 (≥ 100), and for a suitable constant
A(≥ 1). (We assume β to be a constant). Let J be the boundary of the
rectangle with the corners β+ iT , β+ i(T +H), −2β+ i(T +H), −2β+ iT ,
β + iT oriented in this order where T ≥ T0 and T ≥ H ≥ H0. We can
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increase T and decrease H both with suitable bounded quantitites such
that on the horizontal portions of J we have |f ′(s)(f(s))−1| = O((log T )2)
uniformly. Also for the integral on the vertical line σ = β we have

∫
f ′(s)(f(s))−1ds = O(1).

Let K be the boundary of the rectangle with the corners β + iT , β + i(T +
H), σ + i(T + H), σ + iT , β + iT oriented in this order. As mentioned
already

1
2πi

∫

K

f ′(s)(f(s))−1ds

is the number N of zeros of f(s) inside K, provided that the left hand
vertical portion of K is free from zeros of f(s). Thus putting F (s) =
f ′(s)(f(s))−1, we have

1
H

∫ T+H

T

|F (σ + it)|dt À NH−1 + O(H−1(log T )2).

If however the left hand vertical portion of K contains a zero of f(s) the
mean-value is clearly infinite. This proves Theorems 1 and 2 on using
lower bounds for N given by the papers [RB,KR,2], [RB,KR,3], [KR,1],
[RB,KR,4], and [RB,KR,1].

3. Proof of Theorem 4 (to be stated)

Let as usual s = σ + it, 100 ≤ H ≤ T and let f(s) be as in Section 2
(after equation (8)). The only conditions on f(s) are

f(s) = 1 +
∞∑

n=2

anλ−s
n , (a2 6= 0)

where 1 < λ2 < λ3 < . . . , λn+1−λn À 1 and an are complex numbers with
absolute value bounded above by a positive constant power of λn. Further
in σ ≥ β(≥ 2), |f(s) − 1| ≤ 1

10 and f(s) can be continued analytically in
σ ≥ −10β, t ≥ 100 (100 is unimportant. We can replace it by any positive
constant) and there |f(s)| ≤ tA. Here β and A > 0 are constants. Then
we prove this following theorem.
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Theorem 4. For all σ0, T , H with 1
2β ≥ σ0 ≥ −β, 100 ≤ H ≤ T , we

have

(9)
1
H

∫ T+H

T

|f ′(σ0 + it)(f(σ0 + it))−1|dt ≥ C + O

(
(log T )

H

2
)

where C > 0 is a constant independent of σ0.

Proof. Let K be the boundary of the rectangle with corners β + iT ,
β + i(T + H), σ0 + i(T + H), σ0 + iT , β + iT oriented in this order. By
Cauchy’s Theorem we have

1
2πi

∫

K

f ′(s)(f(s))−1ds = N

where N is the number of zeros of f(s) in K (we may assume without loss
of generality that there are no zeros on the boundary of K. Also we can
change T and H by bounded quantities say to T , and H1, such that on
the horizontal sides the integral has absolute value O(log T )2)). Clearly
the right vertical side contributes O(1). Denoting the left vertical side by
L we have

(10) − 1
2πi

∫

L

f ′(s)(f(s))−1ds = N + O((log T )2)

also by a similar procedure we have

(11)

1
2πi

∫

L

λs
2f
′(s)(f(s))−1ds

= −
∑

ρ

λρ
2 +

H2

2π
+ O((log T )2) =

H2

2π
+ θλβ

2N + O((log T )2)

where H2 = H1a2 log λ2, ρ runs over all the zeros of f(s) in K, and θ is
real with absolute value ≤ 1. If N ≤ 1

4π λ−β
2 |H2|, then we are through by

(11). If on the other hand N ≥ 1
4π λ−β

2 |H2| then (10) gives the theorem.
Hence the theorem is completely proved.

Remark 1. Examples of functions like f(s) are to be found in papers
by us at several places (see for example [RB,KR,1]). Plainly we can take
f(s) = ζ(s) − a or f(s) = ζ(j)(s) − a where a is any complex number
including zero. But we need the condition a 6= 1 for ζ(s) − a. We have
only the result given by Theorem 4 for f(s) = 2s(ζ(s)− 1), if a = 1.
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Remark 2. Using mean square of |ζ(σ + it)| and |ζ ′(σ + it)| over T ,
T + T

1
3 it is not hard to prove in a simple way things like

T−
1
3

∫ T+T
1
3

T

∣∣∣ζ ′
(

3
4 + it

) (
ζ

(
3
4 + it

)− 1
)−1

∣∣∣ dt

are bounded below by a positive constant. But is is hard to extend this
proof to cover zeta and L-functions of algebraic number fields.

Conjecture. Prove (or disprove) that for all fixed σ > 1
2 , and for

H = C2(log T )2,

1
H

∫ T+H

T

∣∣ζ ′(σ + it)(ζ(σ + it)− 1)−1
∣∣ dt > D2

where C2 and D2 are certain positive constants independent of T .
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