On generalized q-multiplicative functions

By J. FEHÉR

Dedicated to the 60th birthday of Professors Zoltán Daróczy and Imre Kátai

Abstract

The R-multiplicative functions are defined as a generalization of q multiplicative functions. Those \mathcal{R}-multiplicative functions are investigated for which a linear recurrence holds.

1. Introduction

The letters $\mathbb{N}, \mathbb{N}_{0}, \mathbb{R}, \mathbb{C}$ denote the sets of the natural numbers, nonnegative integers, real numbers, complex numbers, respectively. For $A \subseteq \mathbb{N}_{0}$ let $|A|$ be the number of the elements of A.

Definition 1.1. Let $\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \ldots$ be a sequence of subsets of \mathbb{N}_{0}. We say that it is an \mathcal{R}-system, if the following conditions hold:
a) $0 \in \mathcal{R}_{i}$ and $1<\left|\mathcal{R}_{i}\right|<\infty(i=0,1,2, \ldots)$;
b) for $(0 \leqq) i<j$, the smallest positive element of \mathcal{R}_{i} is smaller than the smallest positive element of \mathcal{R}_{j};
c) each $n \in \mathbb{N}_{0}$ can be uniquely written as

$$
\begin{equation*}
n=\sum_{j=0}^{s} r_{j} \quad\left(r_{j} \in \mathcal{R}_{j}, s \geqq 0\right) \tag{1.1}
\end{equation*}
$$

[^0]Key words and phrases: q-multiplicative functions, \mathcal{R}-multiplicative functions, britannic number systems.
The research was financially supported by the fund of the Applied Number Theory Research Group.

We say that an \mathcal{R}-system is monotonic, if in addition (d), and that it is bounded if in addition (e) holds, where:
d) for each $(0 \leqq) i<j$, the largest element of \mathcal{R}_{i} is smaller than the smallest positive element of \mathcal{R}_{j},
e) $\left|\mathcal{R}_{j}\right|$ is bounded.

Examples 1.2. Let $k_{i}(i=0,1, \ldots)$ be a sequence of integers, $k_{i} \geqq 2$, furthermore let $d_{0}=1, d_{i}=d_{i-1} k_{i-1}(i>0), \mathcal{N}_{i}=\left\{0,1, \ldots, k_{i}-1\right\}$, $\mathcal{R}=d_{i} \mathcal{N}_{i}=\left\{0, d_{i}, \ldots,\left(k_{i}-1\right) d_{i}\right\}(i=0,1, \ldots)$. Then $\mathcal{R}_{i}(i=0,1, \ldots)$ is an \mathcal{R}-system. Such \mathcal{R}-systems are called "britannic number systems" by N. G. De Bruijn [1].

Especially, if $k_{i}=q \geqq 2(i=0,1, \ldots)$ then we obtain the q-ary number system. It is easy to see that the monotonic \mathcal{R}-systems are exactly the "britannic number systems".

Definition 1.3. The function $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$ is called \mathcal{R}-multiplicative (wich respect to a given \mathcal{R}-system), if

$$
\begin{equation*}
f(0)=1 \text { and } f(n)=\prod_{j=0}^{s} f\left(r_{j}\right) . \tag{1.2}
\end{equation*}
$$

It is clear that $f(n)=c^{n}(0 \neq c \in \mathbb{C})$ is \mathcal{R}-multiplicative for every \mathcal{R} system.

2. \mathcal{R}-multiplicative functions with regular behaviour

Let an \mathcal{R}-sysytem be given, $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$ be an \mathcal{R}-multiplicative function, $P(z)=a_{k} z^{k}+\cdots+a_{1} z+a_{0} \in \mathbb{C}[z]$, and

$$
P(E) f(N):=a_{k} f(n+k)+\cdots+a_{1} f(n+1)+a_{0} f(n) .
$$

Let us consider the following conditions:

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqq x}|P(E) f(n)|=0, \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{n \leqq x}|P(E) f(n)|=o(x) \quad(x \rightarrow \infty), \tag{2.2}\\
P(E) f(n)=0 \quad\left(\forall n \in \mathbb{N}_{0}\right), \tag{2.3}\\
\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqq x}|f(n)|=0, \tag{2.4}\\
\sum_{n \leqq x}|f(n)|=o(x) \quad(x \rightarrow \infty) . \tag{2.5}
\end{gather*}
$$

Theorem 2.1. The following assertions are valid:
a) If (2.1) holds then either (2.3) or (2.4) hold
b) (2.2) is satisfied if and only if either (2.3) or (2.5) holds.
c) There exists such an f for which (2.4) holds, and (2.5) does not holds.
d) Assuming that the \mathcal{R}-system is monotonic and bounded, the fulfilment of (2.4) and that of $|f(n)| \leqq 1\left(n \in \mathbb{N}_{0}\right)$ imply (2.5).
Proof. Assume that the \mathcal{R}-system is given: $\mathcal{R}=\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots\right\}$. Let the sets $\mathcal{A}_{s}, \mathcal{T}_{s}$ be defined as follows: $\mathcal{A}_{0}=\emptyset, \mathcal{A}=\mathcal{R}_{0} \oplus \mathcal{R}_{1} \oplus \cdots \oplus \mathcal{R}_{s-1}$ $(s \geqq 1), \mathcal{T}_{s}=\bigcup_{\ell=0}^{\infty}\left(\mathcal{R}_{s} \oplus \cdots \oplus \mathcal{R}_{s+\ell}\right)$, i.e. \mathcal{T}_{s} consists of those integers n which can be written as $n=r_{s}+\cdots+r_{s+\ell}$ for some integer ℓ, and $r_{j} \in \mathcal{R}_{j}$ $(j=s, \ldots, s+\ell)$.

It is clear that $f(n+m)=f(n) f(m)$ is satisfied if $n \in \mathcal{A}_{s}, m \in \mathcal{T}_{s}$ and f is \mathcal{R}-multiplicative.
a) Let f be \mathcal{R}-multiplicative, assume that (2.1) holds, and that for some $\alpha \in \mathbb{N}_{0} P(E) f(\alpha) \neq 0$. Let i_{0} be so large that $\alpha+j \in \mathcal{A}_{i_{0}}$ for $j=0,1, \ldots, k$, where $k=\operatorname{deg} P$. Let $\mathcal{A}_{i_{0}}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{A}\right\}$. Then for every large x,

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leqq x}|P(E) f(n)| \geqq \frac{x-\alpha}{x}|P(E) f(\alpha)| \frac{1}{x-\alpha} \sum_{\substack{n \leqq x-\alpha \\ n \in \mathcal{T}_{i_{0}}}}|f(n)| \geqq 0 . \tag{2.6}
\end{equation*}
$$

The relation (2.1) and (2.6) imply that for an appropriate sequence $y_{t} \rightarrow \infty(t \rightarrow \infty)$ we get

$$
\begin{equation*}
\frac{1}{y_{t}} \sum_{\substack{n \leq y_{t} \\ n \in \tau_{i_{0}}}}|f(n)| \rightarrow 0 \quad(t \rightarrow \infty) . \tag{2.7}
\end{equation*}
$$

Furthermore, for large y,

$$
\sum_{n \leqq y}|f(n)|=\sum_{j=1}^{A}\left|f\left(\beta_{j}\right)\right|\left(\sum_{\substack{n+\beta_{j} \leqq y \\ n \in \tau_{i_{0}}}}|f(n)|\right) \leqq A \cdot H \sum_{\substack{n \leqq y \\ n \in \tau_{i_{0}}}}|f(n)|,
$$

where $H=\max _{1 \leq j \leq A}\left|f\left(\beta_{j}\right)\right|$. Hence, and from (2.7),

$$
\begin{equation*}
\frac{1}{y_{t}} \sum_{n \leq y_{t}}|f(n)| \rightarrow 0 \quad(t \rightarrow \infty) \tag{2.8}
\end{equation*}
$$

b) Assume that for some \mathcal{R}-multiplicative function f (2.2) holds, and that there exists an $\alpha \in \mathbb{N}_{0}$ such that $P(E) f(\alpha) \neq 0$. We can choose x_{t} to run over the whole set \mathbb{N}_{0} and reason as above.
c) We shall give an \mathcal{R}-system and an \mathcal{R}-multiplicative function for which (2.4) holds and (2.5) does not hold. Let f be a q-multiplicative function taking on positive values. Let

$$
H(s):=\frac{1}{q^{s}} \sum_{n=0}^{q^{s}-1} f(n)=\prod_{i=0}^{s-1}\left(\frac{1}{q} \sum_{j=0}^{q-1} f\left(j q^{i}\right)\right) .
$$

Let $s_{1}<s_{2}<\ldots$ be a rare sequence of integers, let $f\left(j q^{t}\right)=\frac{1}{2 q^{2}}$ if $j=1,2, \ldots, q-1 ; t \in \mathbb{N}_{0}$ except for $j=1$, when $t \in\left\{s_{1}, s_{2}, \ldots\right\}$. Let $f\left(1 \cdot q^{s^{\ell}}\right)=q^{s_{\ell}}+1$. Then obviously,

$$
\frac{1}{q^{s_{\ell}}+1} \sum_{n=0}^{q^{s_{\ell}}} f(n)>1,
$$

on the other hand

$$
\frac{1}{q} \sum_{j=0}^{q-1} f\left(j q^{\ell}\right)= \begin{cases}\frac{1}{q}+\frac{q-1}{2 q} & \text { if } \ell \notin\left\{s_{1}, s_{2}, \ldots\right\} \\ q^{\ell}+\frac{2}{q}+\frac{q-1}{2 q^{2}}<q^{m}+1 & \text { if } \ell \in\left\{s_{1}, s_{2} \ldots\right\}\end{cases}
$$

Thus

$$
H(s) \leqq\left(\frac{3}{2 q}\right)^{s} \prod_{s_{\nu} \leqq s}\left(q^{s_{\nu}}+1\right)\left(\frac{2 q}{3}\right) .
$$

If we choose $s_{\nu}=2^{2^{\nu}}$, and $t_{\nu}=s_{\nu+1}-1$, then

$$
H\left(t_{\nu}\right) \leqq\left(\frac{3}{2 q}\right)^{t_{\nu}-1-\nu} q^{2 s_{\nu}+1} \rightarrow 0 \quad(\nu \rightarrow \infty) .
$$

d) To prove it, we may assume that f takes on nonnegative values, $0 \leqq$ $f(n) \leqq 1$. Let n_{s} be a strictly monotonic sequence of positive integers, and $n_{s}-1=A d_{j_{s}}+n_{s}^{\prime}$, where $1 \leqq A<k_{j_{s}}, 0 \leqq n_{s}^{\prime}<d_{j_{s}}$. Then

$$
\begin{equation*}
\frac{1}{n_{s}} \sum_{m=0}^{n_{s}-1} f(m) \geqq \frac{d_{j_{s}}}{n_{s}} \cdot \frac{1}{d_{j_{s}}} \sum_{m=0}^{d_{j_{s}}-1} f(m) \geqq 0 \tag{2.9}
\end{equation*}
$$

Let n_{s} be such a sequence for which the right hand side of (2.9) tends to zero. Since the sequence k_{i} in the definition of the \mathcal{R}-system is assumed to be bounded, $k_{i} \leqq M$, therefore

$$
\frac{d_{j_{s}}}{n_{s}} \geqq \frac{d_{j_{s}}}{d_{j_{s}+1}}=\frac{1}{k_{j_{s}}} \geqq \frac{1}{M}
$$

consequently from (2.9)

$$
\begin{equation*}
\frac{1}{d_{j_{s}}} \sum_{m=0}^{d_{j_{s}}-1} f(m) \rightarrow 0 \quad(s \rightarrow \infty) \tag{2.10}
\end{equation*}
$$

It is obvious that for every $h \geqq 1$,

$$
\begin{equation*}
\frac{1}{d_{h}} \sum_{m=0}^{d_{h}-1} f(m)=\prod_{i=0}^{h-1}\left(\frac{1}{k_{i}} \sum_{t \in \mathcal{R}_{i}} f(r)\right)=: A(h) \tag{2.11}
\end{equation*}
$$

Since $0<\frac{1}{k_{i}} \sum_{t \in \mathcal{R}_{i}} f(r) \leqq 1$, the sequence $A(h)$ is decreasing monotonically, and by (2.10) we obtain that $A(h) \rightarrow 0(h \rightarrow \infty)$.
Let $n>1, n-1=A d_{i(n)}+n^{\prime}\left(0 \leqq A<k_{i(n)}, 0 \leqq n^{\prime}<d_{i(n)}\right)$. Then

$$
\begin{align*}
0 & \leqq \frac{1}{n} \sum_{m=0}^{n-1} f(m) \leqq \frac{1}{n} \sum_{j=0}^{A} f\left(j d_{i(n)}\right) \sum_{m=0}^{d_{i(n)}-1} f(m) \leqq \tag{2.12}\\
& \leqq(A+1) \frac{d_{i(n)}}{n} A(i(n)) \leqq 2 A(i(n)) .
\end{align*}
$$

Hence the assertion follows.
The proof of Theorem 2.1 is complete.
Theorem 2.2. Assume that the \mathcal{R}-system is monotonic, and that F : $\mathbb{N}_{0} \rightarrow \mathbb{R}$ is such an \mathcal{R}-multiplicative function for which $0 \leqq F(n) \leqq 1$ $\left(\forall n \in \mathbb{N}_{0}\right)$. Then

$$
\begin{equation*}
\sum_{n \leqq x} F(n)=o(x) \quad(x \rightarrow \infty) \tag{2.13}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{1}{k_{j}}\left(k_{j}-\sum_{r \in \mathcal{R}_{j}} F(r)\right)=\infty . \tag{2.14}
\end{equation*}
$$

Proof. From (2.11), (2.12) it follows that (2.13) holds if and only if

$$
\begin{equation*}
\prod_{j=0}^{\infty}\left(\frac{1}{k_{j}} \sum_{r \in \mathcal{R}_{j}} F(r)\right) \rightarrow 0 . \tag{2.15}
\end{equation*}
$$

Since

$$
\frac{1}{k_{j}} \sum_{r \in \mathcal{R}_{j}} F(r)=1-\frac{1}{k_{j}}\left(k_{j}-\sum_{r \in \mathcal{R}_{j}} F(r)\right),
$$

and

$$
k_{j}-\sum_{r \in \mathcal{R}_{j}} F(r) \geqq 0,
$$

(2.15) holds if and only if (2.14) is satisfied.

3. The \mathcal{R}-multiplicative solutions of the recursion

$$
P(E) f(n)=0
$$

Theorem 3.1. Let $\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots$ be such an \mathcal{R}-system for which $\mathcal{R}_{0}=$ $\{0,1, \ldots, d-1\}, d \geqq 2$. Assume that $P(z) \in \mathbb{C}[z]$ is of degree $k, 1 \leqq k \leqq d$,
and that $P(0) \neq 0$. Then the recursion

$$
\begin{equation*}
P(E) f(n)=0 \quad\left(n \in \mathbb{N}_{0}\right) \tag{3.1}
\end{equation*}
$$

holds for an \mathcal{R}-multiplicative function if and only if

$$
\begin{equation*}
f(n)=\sum_{j=1}^{s} \alpha_{j} \rho_{j}^{n} \tag{3.2}
\end{equation*}
$$

where $\sum_{j=1}^{s} \alpha_{j}=1$, and $\rho_{j}(j=1,2, \ldots, s)$ are distinct roots for P for which

$$
\begin{equation*}
\rho_{1}^{d}=\rho_{2}^{d}=\cdots=\rho_{s}^{d} \quad(=c) . \tag{3.3}
\end{equation*}
$$

Proof. First we prove that the function f defined by (3.2) is \mathcal{R} multiplicative. $f(0)=\alpha_{1}+\cdots+\alpha_{s}=1$. Let $N, r \in \mathbb{N}_{0}$. From (3.2), (3.3) we obtain that $f(N d+r)=C^{N}\left(\alpha_{1} \rho_{1}^{r}+\cdots+\alpha_{s} \rho_{s}^{r}\right)=C^{N} f(r)=f(N d) f(r)$, from which the \mathcal{R}-multiplicativity of f is clear. The fulfilment of (3.1) is obious.

Assume now that f is an R-multiplicative function and that (3.1) holds. Then

$$
\begin{aligned}
0 & =P(E) f(N d+d-k) \\
& =a_{k}(f((N+1) d)-f(N d) f(d))+f(N d) P(E) f(d-k) .
\end{aligned}
$$

Hence, by (3.2) and from $a_{k} \neq 0$ we have that

$$
\begin{equation*}
f((N+1) d)=f(N d) f(d) . \tag{3.4}
\end{equation*}
$$

From $f(d)=0$ it would follow that $f(0)=0$, which cannot be. Thus

$$
\begin{equation*}
f(N d)=C^{N} \quad\left(\forall N \in \mathbb{N}_{0}\right), \quad 0 \neq C \in \mathbb{C} . \tag{3.5}
\end{equation*}
$$

The general solution of (3.1) can be written as

$$
\begin{equation*}
f(n)=p_{1}(n) \rho_{1}^{n}+\cdots+p_{h}(n) \rho_{h}^{n}, \tag{3.6}
\end{equation*}
$$

where ρ_{j} are the roots of $P(z)$ and p_{j} are polynomials.
(3.5), (3.6) and the \mathcal{R}-multiplicativity of f imply that

$$
\begin{equation*}
\sum_{i=1}^{h} p_{i}(N d+r) \sigma_{i}^{N} \rho_{i}^{r}-f(r) c^{N}=0 \tag{3.7}
\end{equation*}
$$

holds for every $N \in \mathbb{N}_{0}$ and $r=0,1, \ldots, d-1$. Here $\sigma_{j}:=\rho_{j}^{d}(j=1, \ldots, h)$. Since $f(0)=1$, from (3.7) by $r=0$ we obtain that $\sigma_{i}=C$ holds for at least one i.

Assume that $\sigma_{1}=\cdots=\sigma_{i_{1}}, \sigma_{i_{1}+1}=\cdots=\sigma_{i_{2}}, \ldots, \sigma_{i_{t-1}+1}=\cdots=$ $\sigma_{i_{t}}, \sigma_{i_{t}+1}=\cdots=\sigma_{h}=C$, and that $\sigma_{i_{\nu}} \neq \sigma_{i_{\mu}}$ if $\nu \neq \mu$. Assume that $i_{1}<h$.

Let

$$
\begin{aligned}
& Q_{i_{j}}^{(r)}(N):=p_{i_{j-1}+1}(N d+r) \rho_{i_{j-1}+1}^{r}+\cdots+p_{i_{j}}(N d+r) \rho_{i_{j}}^{r} \\
& \quad\left(j=1, \ldots, t ; i_{0}:=0\right), \\
& Q^{(r)}(N):=p_{i_{t}+1}(N d+r) \rho_{i_{t}+1}^{r}+\cdots+p_{h}(N d+r) \rho_{h}^{r}-f(r) .
\end{aligned}
$$

By using these notations (3.7) can be rewritten as

$$
\begin{equation*}
Q_{i_{1}}^{(r)}(N) \sigma_{i_{1}}^{N}+\cdots+Q_{i_{t}}^{(r)}(N) \sigma_{i_{t}}^{N}+Q^{(r)}(N) C^{N}=0 \quad\left(N \in \mathbb{N}_{0}\right) . \tag{3.8}
\end{equation*}
$$

Consequently the polynomials $Q_{i_{\nu}}^{(r)}(x), Q^{(r)}(x)$ are zero identically, i.e.

$$
\begin{gather*}
p_{i_{j-1}+1}(z) \rho_{i_{j-1}+1}^{r}+\cdots+p_{i_{j}}(z) \rho_{i_{j}}^{r}=0 \\
\left(r=0,1, \ldots, i_{j}-i_{j-1}-1<d\right) \tag{3.9}
\end{gather*}
$$

for $z \in \mathbb{C}$, since $\rho_{i_{j-1}+1}, \ldots, \rho_{i_{j}}$ are distinct complex numbers, the determinant of the system, being a Vandermonde determinant, is nonzero, hence $p_{\nu}(z)=0$ identically, and consequently

$$
\begin{equation*}
f(n)=q_{1}(n) \rho_{1}^{n}+\cdots+q_{s}(n) \rho_{s}^{n}, \tag{3.10}
\end{equation*}
$$

where $1 \leqq s \leqq h, \rho_{1}^{d}=\cdots=\rho_{s}^{d}=C, q_{1}, \ldots, q_{s} \in \mathbb{C}[x]$.
From (3.5) and from the \mathcal{R}-multiplicativity of f,

$$
f(r)=q_{1}(N d+r) \rho_{1}^{r}+\cdots+q_{s}(N d+r) \rho_{s}^{r} \quad\left(N \in \mathbb{N}_{0}, 0 \leqq r<d\right) .
$$

Hence we obtain easily that the coeffitients $q_{j}(N d+r)$ do not depend on N, consequently $q_{j}(N d+r)=\alpha_{j}(j=1, \ldots, s)$.

Finally, from $f(0)=1$ we obtain that $\alpha_{1}+\cdots+\alpha_{s}=1$. The proof of Theorem 3.1 is complete.

4. Remark to the Theorem 3.1

To prove (3.1) the assumption of the condition $\operatorname{deg} P \leqq d$ is inportant. If $\operatorname{deg} P>d$, then in general there exists such an \mathcal{R}-multiplicative function for which (3.1), (3.2) are satisfied, but (3.3) does not hold.

References

[1] N. G. De Bruijn, On number systems, Niew Arch. Wisk. (3) 4 (1956), 15-17.

```
J. FEHÉR
JANUS PANNONIUS UNIVERSITY
IFJUSÁG U. 6.
7624 PÉCS
HUNGARY
E-mail: feher@math.jpte.hu
```

(Received November 24, 1997; revised February 6, 1998)

[^0]: Mathematics Subject Classification: Primary 11K65, Secondary 11N64.

