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On generalized q-multiplicative functions

By J. FEHÉR

Dedicated to the 60th birthday
of Professors Zoltán Daróczy and Imre Kátai

Abstract. The R-multiplicative functions are defined as a generalization of q-
multiplicative functions. Those R-multiplicative functions are investigated for which a
linear recurrence holds.

1. Introduction

The letters N, N0, R, C denote the sets of the natural numbers,
nonnegative integers, real numbers, complex numbers, respectively. For
A j N0 let |A| be the number of the elements of A.

Definition 1.1. Let R0,R1, . . . , . . . be a sequence of subsets of N0.
We say that it is an R-system, if the following conditions hold:
a) 0 ∈ Ri and 1 < |Ri| < ∞ (i = 0, 1, 2, . . . );
b) for (0 5)i < j, the smallest positive element of Ri is smaller than the

smallest positive element of Rj ;
c) each n ∈ N0 can be uniquely written as

n =
s∑

j=0

rj (rj ∈ Rj , s = 0).(1.1)
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We say that an R-system is monotonic, if in addition (d), and that it
is bounded if in addition (e) holds, where:

d) for each (0 5)i < j, the largest element of Ri is smaller than the
smallest positive element of Rj ,

e) |Rj | is bounded.

Examples 1.2. Let ki (i = 0, 1, . . . ) be a sequence of integers, ki = 2,
furthermore let d0 = 1, di = di−1ki−1 (i > 0), Ni = {0, 1, . . . , ki − 1},
R = diNi = {0, di, . . . , (ki − 1)di} (i = 0, 1, . . . ). Then Ri (i = 0, 1, . . . ) is
an R-system. Such R-systems are called “britannic number systems” by
N. G. De Bruijn [1].

Especially, if ki = q = 2 (i = 0, 1, . . . ) then we obtain the q-ary
number system. It is easy to see that the monotonic R-systems are exactly
the “britannic number systems”.

Definition 1.3. The function f : N0 → C is called R-multiplicative
(wich respect to a given R-system), if

f(0) = 1 and f(n) =
s∏

j=0

f(rj).(1.2)

It is clear that f(n) = cn (0 6= c ∈ C) is R-multiplicative for every R-
system.

2. R-multiplicative functions with regular behaviour

Let an R-sysytem be given, f : N0 → C be an R-multiplicative func-
tion, P (z) = akzk + · · ·+ a1z + a0 ∈ C[z], and

P (E)f(N) := akf(n + k) + · · ·+ a1f(n + 1) + a0f(n).

Let us consider the following conditions:

lim inf
x→∞

1
x

∑

n5x

|P (E)f(n)| = 0,(2.1)
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∑

n5x

|P (E)f(n)| = o(x) (x →∞),(2.2)

P (E)f(n) = 0 (∀n ∈ N0),(2.3)

lim inf
x→∞

1
x

∑

n5x

|f(n)| = 0,(2.4)

∑

n5x

|f(n)| = o(x) (x →∞).(2.5)

Theorem 2.1. The following assertions are valid:

a) If (2.1) holds then either (2.3) or (2.4) hold

b) (2.2) is satisfied if and only if either (2.3) or (2.5) holds.

c) There exists such an f for which (2.4) holds, and (2.5) does not holds.

d) Assuming that theR-system is monotonic and bounded, the fulfilment
of (2.4) and that of |f(n)| 5 1 (n ∈ N0) imply (2.5).

Proof. Assume that the R-system is given: R = {R0,R1, . . . }. Let
the sets As, Ts be defined as follows: A0 = ∅, A = R0 ⊕R1 ⊕ · · · ⊕ Rs−1

(s = 1), Ts =
∞⋃

`=0

(Rs ⊕ · · · ⊕ Rs+`), i.e. Ts consists of those integers n

which can be written as n = rs + · · ·+rs+` for some integer `, and rj ∈ Rj

(j = s, . . . , s + `).
It is clear that f(n + m) = f(n)f(m) is satisfied if n ∈ As, m ∈ Ts

and f is R-multiplicative.
a) Let f be R-multiplicative, assume that (2.1) holds, and that for some

α ∈ N0 P (E)f(α) 6= 0. Let i0 be so large that α + j ∈ Ai0 for
j = 0, 1, . . . , k, where k = deg P . Let Ai0 = {β1, β2, . . . , βA}. Then
for every large x,

(2.6)
1
x

∑

n5x

|P (E)f(n)| = x− α

x
|P (E)f(α)| 1

x− α

∑

n5x−α
n∈Ti0

|f(n)| = 0.

The relation (2.1) and (2.6) imply that for an appropriate sequence
yt →∞(t →∞) we get

(2.7)
1
yt

∑

n≤yt
n∈τi0

|f(n)| → 0 (t →∞).
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Furthermore, for large y,

∑

n5y

|f(n)| =
A∑

j=1

|f(βj)|
( ∑

n+βj5y
n∈τi0

|f(n)|
)

5 A ·H
∑

n5y
n∈τi0

|f(n)|,

where H = max
1≤j≤A

|f(βj)|. Hence, and from (2.7),

(2.8)
1
yt

∑

n≤yt

|f(n)| → 0 (t →∞).

b) Assume that for some R-multiplicative function f (2.2) holds, and
that there exists an α ∈ N0 such that P (E)f(α) 6= 0. We can choose
xt to run over the whole set N0 and reason as above.

c) We shall give an R-system and an R-multiplicative function for which
(2.4) holds and (2.5) does not hold. Let f be a q-multiplicative func-
tion taking on positive values. Let

H(s) :=
1
qs

qs−1∑
n=0

f(n) =
s−1∏

i=0


1

q

q−1∑

j=0

f(jqi)


 .

Let s1 < s2 < . . . be a rare sequence of integers, let f(jqt) = 1
2q2 if

j = 1, 2, . . . , q− 1; t ∈ N0 except for j = 1, when t ∈ {s1, s2, . . . }. Let
f(1 · qs`

) = qs` + 1. Then obviously,

1
qs` + 1

qs`∑
n=0

f(n) > 1,

on the other hand

1
q

q−1∑

j=0

f(jq`) =





1
q

+
q − 1
2q

if ` /∈ {s1, s2, . . . }

q` +
2
q

+
q − 1
2q2

< qm + 1 if ` ∈ {s1, s2 . . . }.

Thus

H(s) 5
(

3
2q

)s ∏

sν5s

(qsν + 1)
(

2q

3

)
.
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If we choose sν = 22ν

, and tν = sν+1 − 1, then

H(tν) 5
(

3
2q

)tν−1−ν

q2sν+1 → 0 (ν →∞).

d) To prove it, we may assume that f takes on nonnegative values, 0 5
f(n) 5 1. Let ns be a strictly monotonic sequence of positive integers,
and ns − 1 = Adjs + n′s, where 1 5 A < kjs , 0 5 n′s < djs . Then

(2.9)
1
ns

ns−1∑
m=0

f(m) = djs

ns
· 1
djs

djs−1∑
m=0

f(m) = 0.

Let ns be such a sequence for which the right hand side of (2.9) tends
to zero. Since the sequence ki in the definition of the R-system is
assumed to be bounded, ki 5 M , therefore

djs

ns
= djs

djs+1
=

1
kjs

= 1
M

,

consequently from (2.9)

(2.10)
1

djs

djs−1∑
m=0

f(m) → 0 (s →∞).

It is obvious that for every h = 1,

(2.11)
1
dh

dh−1∑
m=0

f(m) =
h−1∏

i=0

(
1
ki

∑

t∈Ri

f(r)

)
=: A(h).

Since 0 < 1
ki

∑
t∈Ri

f(r) 5 1, the sequence A(h) is decreasing monoton-

ically, and by (2.10) we obtain that A(h) → 0 (h →∞).
Let n > 1, n− 1 = Adi(n) + n′ (0 5 A < ki(n), 0 5 n′ < di(n)). Then

(2.12)
0 5 1

n

n−1∑
m=0

f(m) 5 1
n

A∑

j=0

f(jdi(n))
di(n)−1∑

m=0

f(m) 5

5 (A + 1)
di(n)

n
A(i(n)) 5 2A(i(n)).
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Hence the assertion follows.
The proof of Theorem 2.1 is complete.

Theorem 2.2. Assume that the R-system is monotonic, and that F :
N0 → R is such an R-multiplicative function for which 0 5 F (n) 5 1
(∀n ∈ N0). Then

∑

n5x

F (n) = o(x) (x →∞)(2.13)

holds if and only if

∞∑

j=0

1
kj


kj −

∑

r∈Rj

F (r)


 = ∞.(2.14)

Proof. From (2.11), (2.12) it follows that (2.13) holds if and only if

∞∏

j=0


 1

kj

∑

r∈Rj

F (r)


 → 0.(2.15)

Since

1
kj

∑

r∈Rj

F (r) = 1− 1
kj


kj −

∑

r∈Rj

F (r)


 ,

and

kj −
∑

r∈Rj

F (r) = 0,

(2.15) holds if and only if (2.14) is satisfied.

3. The R-multiplicative solutions of the recursion
P (E)f(n) = 0

Theorem 3.1. Let R0,R1, . . . be such an R-system for which R0 =
{0, 1, . . . , d−1}, d = 2. Assume that P (z) ∈ C[z] is of degree k, 1 5 k 5 d,
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and that P (0) 6= 0. Then the recursion

(3.1) P (E)f(n) = 0 (n ∈ N0)

holds for an R-multiplicative function if and only if

(3.2) f(n) =
s∑

j=1

αjρ
n
j ,

where
s∑

j=1

αj = 1, and ρj(j = 1, 2, . . . , s) are distinct roots for P for which

(3.3) ρd
1 = ρd

2 = · · · = ρd
s (= c).

Proof. First we prove that the function f defined by (3.2) is R-
multiplicative. f(0) = α1 + · · ·+ αs = 1. Let N , r ∈ N0. From (3.2), (3.3)
we obtain that f(Nd+r) = CN (α1ρ

r
1+· · ·+αsρ

r
s) = CNf(r) = f(Nd)f(r),

from which the R-multiplicativity of f is clear. The fulfilment of (3.1) is
obious.

Assume now that f is an R-multiplicative function and that (3.1)
holds. Then

0 = P (E)f(Nd + d− k)

= ak(f((N + 1)d)− f(Nd)f(d)) + f(Nd)P (E)f(d− k).

Hence, by (3.2) and from ak 6= 0 we have that

(3.4) f((N + 1)d) = f(Nd)f(d).

From f(d) = 0 it would follow that f(0) = 0, which cannot be. Thus

(3.5) f(Nd) = CN (∀N ∈ N0), 0 6= C ∈ C.

The general solution of (3.1) can be written as

(3.6) f(n) = p1(n)ρn
1 + · · ·+ ph(n)ρn

h,

where ρj are the roots of P (z) and pj are polynomials.
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(3.5), (3.6) and the R-multiplicativity of f imply that

(3.7)
h∑

i=1

pi(Nd + r)σN
i ρr

i − f(r)cN = 0

holds for every N ∈ N0 and r = 0, 1, . . . , d−1. Here σj := ρd
j (j = 1, . . . , h).

Since f(0) = 1, from (3.7) by r = 0 we obtain that σi = C holds for
at least one i.

Assume that σ1 = · · · = σi1 , σi1+1 = · · · = σi2 , . . . , σit−1+1 = · · · =
σit , σit+1 = · · · = σh = C, and that σiν 6= σiµ if ν 6= µ. Assume that
i1 < h.

Let

Q
(r)
ij

(N) := pij−1+1(Nd + r)ρr
ij−1+1 + · · ·+ pij (Nd + r)ρr

ij

(j = 1, . . . , t; i0 := 0),

Q(r)(N) := pit+1(Nd + r)ρr
it+1 + · · ·+ ph(Nd + r)ρr

h − f(r).

By using these notations (3.7) can be rewritten as

(3.8) Q
(r)
i1

(N)σN
i1 + · · ·+ Q

(r)
it

(N)σN
it

+ Q(r)(N)CN = 0 (N ∈ N0).

Consequently the polynomials Q
(r)
iν

(x), Q(r)(x) are zero identically, i.e.

(3.9)
pij−1+1(z)ρr

ij−1+1 + · · ·+ pij (z)ρr
ij

= 0

(r = 0, 1, . . . , ij − ij−1 − 1 < d)

for z ∈ C, since ρij−1+1, . . . , ρij are distinct complex numbers, the determi-
nant of the system, being a Vandermonde determinant, is nonzero, hence
pν(z) = 0 identically, and consequently

(3.10) f(n) = q1(n)ρn
1 + · · ·+ qs(n)ρn

s ,

where 1 5 s 5 h, ρd
1 = · · · = ρd

s = C, q1, . . . , qs ∈ C[x].
From (3.5) and from the R-multiplicativity of f ,

f(r) = q1(Nd + r)ρr
1 + · · ·+ qs(Nd + r)ρr

s (N ∈ N0, 0 5 r < d).

Hence we obtain easily that the coeffitients qj(Nd+r) do not depend on N ,
consequently qj(Nd + r) = αj (j = 1, . . . , s).

Finally, from f(0) = 1 we obtain that α1 + · · ·+ αs = 1. The proof of
Theorem 3.1 is complete.
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4. Remark to the Theorem 3.1

To prove (3.1) the assumption of the condition deg P 5 d is inportant.
If deg P > d, then in general there exists such an R-multiplicative function
for which (3.1), (3.2) are satisfied, but (3.3) does not hold.
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