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Exponential diophantine equations
over function fields

By Á. PINTÉR∗ (Debrecen)

1. Introduction

In the past decade several effective finiteness results and algorithms
have been proved and constructed for diophantine equations over function
fields (see e.g. [2], [7], [15], [16], [20], [24]). These theorems are interesting
in themselves and they have certain applications; for instance, to diophan-
tine problems over number fields (cf. [6]). Furthermore, combining these
results with analogue theorems over algebraic number fields and Györy’s
specialization method (cf. [12], [13], [14]), similar results can be proved
over finitely generated domains. To illustrate it we refer to [4], [5], [9],
[12], [13] and [14].

In this paper we give an effective upper bound for the “height” of the
solutions to a general class of diophantine equations over function fields,
generalizing and improving some earlier related results. We apply our
general theorem (Th. 1) to some special, however important equations.

2. Notation

Let k be an algebraically closed field of characteristic zero and k(t) be
the field of rational functions over k. Moreover, let K be a finite extension
of k(t) with genus g. The additive height of an α ∈ K∗ (as usual K∗ denotes
the set of non-zero elements of K) is defined by

H(α) =
∑

v∈MK

max{0, v(α)} ,

∗This work was supported by the Grant 1641 of the Hungarian National Foundation
for Research.
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where MK is the set of the (additive) valuations of K with value group
Z. In the special case when K = k(t) and α =

p

q
, where p, q ∈ k[t] are

relatively prime polynomials,

H(α) = max{deg p, deg q} .

For a rational integer n ≥ 2 we denote by K[X1, . . . , Xn] the polynomial
ring in n variables over K and let f1, . . . , fn and g be non-zero elements of
K[X1, . . . , Xn].

Consider the equation

(1)
n∑

i=1

fi(x1, . . . , xn) · xri
i = g(x1, . . . , xn)

in x = (x1, . . . , xn) ∈ Kn and r = (r1, . . . , rn) ∈ Zn under the condition
that

(∗) the sum
n∑

i=1

fi(x) · xri
i has no proper vanishing subsum.

Let R be a non-zero element of k[t]. In 1979 Newman and Slater
[19] showed that the equation

(2) xr
1 + · · ·+ xr

n = R

with r > deg R + n(n− 1)/2 has no non-constant solution in k[t].
Later Stepanov ([24], [25]) generalized the above theorem, when the

sum is weighted and the exponents are not necessary equals, under the
assumption that x1, . . . , xn are pairwise relatively prime polynomials in
k[t].

By using algebraic geometry, Voloch [25] proved the following. Let
K = C and S be a finite subset of MK containing all the infinite valuations,
that is the extensions of the degree-valuation of k(t). Let OK,S denote the
set of S–integers in K1. Further, let a1, . . . , an, b be non-zero elements of
OK,S . If

(3)
n∑

i=1

aix
r
i = b

1We adopt the terminology of Borevich and Shafarevich [3], an α ∈ K∗ is
said to be an S–integer if v(α) ≥ 0 for every v ∈ MK \ S. The S–integers form a
ring and the units of this ring are called S–units.
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with r > n(n − 1) and a1x
r
1, . . . , anxr

n are linearly independent (over C)
then

{r − n(n− 1)} ·max
i

H(xi) ≤ n(n− 1)
2

{2g − 2 + Card(S)}+ 2H ,

where H = H(a1)+· · ·+H(an)+H(b) and Card(S) denotes the cardinality
of set S.

The case n = 2, f1, f2, g are non-zero constants, has a special interest.
There are some results connected with the equation

(4) a1x
r1
1 + a2x

r2
2 = 1 in (x1, x2) ∈ K2

and K = k(t), see e.g. [1], [10], [11], [18]. The proofs are based on the
unique factorization property of k[t] and there seems to be no way to
extend them to the general algebraic function field case.

A rather general theorem on Thue’s equations due to Schmidt [20]
gives

H(x1) + H(x2) ≤ 178{H(a1) + H(a2)}+ 422g

in the homogeneous case r1 = r2.
Using another approach, Silverman [22] shoved that

5 ·max{H(a1),H(a2)}+ 2g − 2 ≥

≥
(

1− 1
r1
− 1

r2
− 1

[r1, r2]

)
·max{H(xr1

1 ),H(xr2
2 )}

where [r1, r2] denotes the least common multiple of r1 and r2.
Mueller [17] proved that the equation

(5) a1x
r
1 + a2x

r
2 = 1

has at most two solutions (in K∗), provided that r > 30 + 20g and a1

a2 6∈ (K∗)r, where (K∗)r is the multiplicative group of the r–th powers.
The proof of result based on an idea of Evertse, Györy, Stewart and
Tijdeman [8]. Later, Mueller and Bombieri [2] extended this theorem
to the general case n > 2.

3. On the height function

Following the notation of 2.§, let

f(X1, . . . , Xn) =
m∑

i=1

αiX
vi1
1 · . . . ·Xvin

n
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be an element of K[X1, . . . , Xn]. The lenght of f is defined by

L(f) =
m∑

i=1

H(αi) .

The degree of the j–th variable (of f) is given by

degj(f) =
m∑

i=1

vij

For f1, . . . , fn ∈ K[X1, . . . , Xn] we put f = (f1, . . . , fn), L(f) =
n∑

i=1

L(fi) and degj(f) =
n∑

i=1

degj(fi), for j = 1, . . . , n.

We are going to use the following known relations (cf. [15]),

∑

v∈MK

v(α) = 0 ,

max{H(αβ),H(α + β)} ≤ H(α) + H(β), α, β ∈ K∗
H(αz) = |z| ·H(α), z ∈ Z, α ∈ K∗ .

Let H(α) be the cardinality of the set {v : v ∈ MK, v(α) 6= 0}. One
can see that H(α) ≤ 2H(α).

4. Results

Our main results is

Theorem 1. If x = (x1, . . . , xn) ∈ Kn, r = (r1, . . . , rn) ∈ Zn is a
solution of the equation (1) satisfying the condition (∗) then

n∑

i=1

|ri| ·H(xi) ≤ c1(n)G + c2(n)L(f) + c3(n)L(g)+

+
n∑

i=1

(
2c1(n) + c2(n) degi(f) + c3(n) degi(g)

)
·H(xi) ,

where c1(n) = 1
2n2(n− 1), c2(n) = n2(n− 1) + 1, c3(n) = n2(n− 1) + n

and G = max(2g − 2, 0).
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Remark 1. In the special case when the polynomials f1, . . . , fn, g are
constans, that is fi ≡ ai, g ≡ b, ai, b ∈ K∗ for i = 1, . . . , n, Theorem 1
yields

n∑

i=1

|ri| ·H(xi) ≤ 1
2
n2(n− 1)G + {n2(n− 1) + 1} ·

n∑

i=1

H(ai)+

+ {n2(n− 1) + n}H(b) + n2(n− 1)
n∑

i=1

H(xi) .

It is generalization of the above-mentioned result of Voloch with a weaker
condition which is necessary and cannot be made weaker. However,
Voloch’s bound is sharper because of the generality of Theorem 1 and
the method that we used.

Remark 2. For an arbitrary x ∈ K the triple (xr2 , xr1 , 1) ∈ K3 is a
solution of the equation

xr1
1 − xr2

2 + xr3
3 = 1

showing that the condition (∗) is necessary. It seems to be a harder problem
to characterize all the solutions without condition (∗).

We are going to mention two simple consequences of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, if

|ri| > 2c1(n) + c2(n) degi(f) + c3 degi(g)

then
n∑

i=1

H(xi) ≤ c1(n)G + c2(n)L(f) + c3(n)L(g) .

(The constants are defined in Theorem 1).

Corollary 2. The equation (1) with the above conditions has no so-
lution (x, r) ∈ Kn × Zn with xi ∈ K \ k (i = 1, . . . n) and

n∑

i=1

|ri| > c1(n){2n + G}+ c2(n)

{
n∑

i=1

degi(f) + L(f)

}
+

+c3(n)

{
n∑

i=1

degi(g) + L(g)

}
.

The ground field k is algebraically closed, hence the conditions
xi ∈ K \ k are necessary.
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Remark 3. In the case n = 2, min(r1, r2) ≥ 5, our inequalities imply

(r1 − 4)H(x1) + (r2 − 4)H(x2) ≤ 10 ·max{H(a1), H(a2)}+ 2G
improving and generalizing a related theorem of Schmidt [5].

The next theorems are further applications of Theorem 1.
Theorem 2. Let a1, a2 ∈ K with a1 6= 0. If (x1, x2) ∈ K2,

(r1, r2) ∈ Z2 satisfy

(6) a1 · xr1
1 − 1

x1 − 1
= xr2

2 + a2

with x1 6= 1− a1

a2
in the case a2 6= 0, then

|r1| ·H(x1)+ |r2| ·H(x2) ≤ 2G+11H(a1)+12H(a2)+15H(x1)+4H(x2) .

If a2 6= 0 and x1 = 1 − a1

a
then we cannot give upper bound for

H(x2), r1 and r2. Indeed, let a2 = −1, e ∈ N and r1 = r2e, say. Then
x1 = a1 + 1 and x2 = (a1 + 1)e satisfy (6), and H(x2) = eH(a1 + 1) ≥ e,
provided that a1 6∈ k.

Corollary 3. The equation (6) has no solution satisfying
xi ∈ K \ k, i = 1, 2, |r1| > 15, |r2| > 4 and

|r1|+ |r2| > 19 + 2G + 11H(a1) + 12H(a2) .

Theorem 3. Let a1 ∈ K∗ and a2 ∈ K. Then all solutions
(x1, x2) ∈ K2, (r1, r2) ∈ Z2 of the equation

(7) a1
xr1

1 − 1
x1 − 1

=
xr2

2 − 1
x2 − 1

+ a2

with
x1 − 1
x2 − 1

6= a1 + a2(x1 − 1)

satisfy

|r1| ·H(x1)+ |r2| ·H(x2) ≤ 2G+22H(a1)+24H(a2)+21H(x1)+21H(x2).

Corollary 4. The equation (7) has no solution (x1, x2) ∈ K2,
(r1, r2) ∈ Z2 satisfying xi ∈ K \ k, i = 1, 2, min{|r1|, |r2|} > 21 and

|r1|+ |r2| > 42 + 2G + 22H(a1) + 24H(a2) .

Remark 4. In the number field case, equations (6) and (7) are related
number systems and investigated by several authors. For further details
we refer to Shorey and Tijdeman [21] (Ch. 11–12.).
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5. Proofs

The proof of our main result is based on a theorem of Brownawell
and Masser [7] concerning S–unit equations in several variables. Similar
inequality had been proved by Mason [16] with weaker constants.

Lemma 1. (Brownawell and Masser [7]). Let S be a finite subset
of MK containing all the infinite valuations. Furthermore, let u1, . . . , ul be
S–units, for which

u1 + · · ·+ ul = 0(i)

there is no proper vanishing subsum in (i)(ii)

Then

max
{

H

(
u2

u1

)
, . . . , H

(
ul

u1

)}
≤ 1

2
(l − 1)(l − 2){Card S + G} .

where G = max(2g − 2, 0).

Proof of Theorem 1. Let (x, r) ∈ Kn × Zn be an arbitrary but
fixed solution with condition (∗). The valuation set S1 is defined by

S1 =

{
v : v ∈ MK,

(
n∑

i=1

v2(xi) +
n∑

i=1

v2(fi(x))

)
+ v2(g(x)) > 0

}
.

It is clear that

(8) Card(S1) ≤
n∑

i=1

H(xi) +
n∑

i=1

H(fi(x)) +H(g(x)) .

Let f(X1, . . . , Xn) =
m∑

i=1

αiX
vi1
1 · . . . · Xvin

n , with αi ∈ K and

vij ∈ Z, vij ≥ 0 for i = 1, . . . , n; j = 1, . . . , m. Then

H(f(x)) ≤ 2·H(f(x)) ≤ 2·L(f)+2·H(x1)·deg1(f)+· · ·+2·H(xn)·degn(f) .

Combining this inequality with (8) we have

Card(S1) ≤ 2
n∑

i=1

H(xi) + 2L(f) + 2L(g) + 2H(x1) · deg1(f) + . . .(9)

. . . + 2H(xn) · degn(f) + 2H(x1) · deg1(g) + · · ·+ 2H(xn) · degn(g) .

The relation
n∑

i=1

fi(x) · xri
i − g(x) = 0
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can be considered as an S1–unit equation and there is no proper vanishing
subsum because of condition (∗). The inequality of Brownawell and
Masser (Lemma 1) yields

(10)

|ri| ·H(xi) = H(xri
i ) ≤

≤ 1
2
n(n− 1){Card(S1) + G}+ H(g(x)) + H(fi(x)) ≤

≤ 1
2
n(n− 1){Card(S1) + G}L(g) + L(fi)+

+
n∑

j=1

degj(g) ·H(xj) +
n∑

j=1

degj(fi) ·H(xj)

for i = 1, 2, . . . , n.
By taking the sum of these inequalities and applying (9) we obtain

Theorem 1.

Proof of Theorem 2. Let (x1, x2) ∈ K2, (r1, r2) ∈ Z2 be a solu-
tion of (6). In the trivial case x1 = 0 or x2 = 0 one can verify the theorem.
In the sequel we assume that x1x2 6= 0. If a2 = 0 then

a1x
r1
1 − (x1 − 1)xr2

2 − a1 = 0

and a1x1x2(x1 − 1) 6= 0, moreover if a2 6= 0 then

a1x
r1
1 − (x1 − 1)xr2

2 − a2(x1 − 1)− a1 = 0

and because of x1 6= 1− a1

a2
there is no proper vanishing subsum. In both

cases Theorem 1 implies Theorem 2.

Proof of Theorem 3. We may assume again that x1x2 6= 0. We
have two cases to distinguish: either

a1(x2 − 1)xr1
1 − (x1 − 1)xr2

2 − a1(x2 − 1) + (x1 − 1) = 0

or

a1(x2−1)xr1
1 − (x1−1)xr2

2 −a1(x2−1)+(x1−1)−a2(x2−1)(x1−1) = 0,

with a2 6= 0. The condition

a1(x2 − 1)− (x1 − 1) + a2(x2 − 1)(x1 − 1) 6= 0

provides that there is no proper vanishing subsum and applying Theorem 1,
a simple calculation gives Theorem 3.

Acknowledgements. The author is grateful to K. Györy and B. Brin-
dza for their valuable remarks.
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