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On a functional equation of Alsina and Garćıa-Roig

By K�AROLY LAJK�O (Debrecen)

Dedicated to the 60th birthday of
Professors Zoltán Daróczy and Imre Kátai

Abstract. In the present paper we consider the functional equation (1) for func-
tions f : R → R or f : I → R respectively, supposing the existence a subset E ⊂ R (or
E ⊂ I) of positive Lebesgue measure such that f(x) 6= 0 for all x ∈ E.

1. Introduction

In a recent paper [2] C. Alsina and J. L. Garćıa-Roig have found
the continuous solutions of the following two functional equations

f(px + (1− p)y)f((1− p)x + py) = f(x)f(y)(1)

f(x)f(px + (1− p)y) + f(y)f((1− p)x + py)(2)

= f(px + (1− p)y)2 + f((1− p)x + py)2

in the case p = 1
3 and f maps R into (0,∞).

During the 31st ISFE (Debrecen, 1993), C. Alsina [1] asked to find
continuous solution of (2) where p ∈ (0, 1) is fixed and to solve (2) on a
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restricted domain. During the meeting, the first question was answered by
A. Járai and Gy. Maksa [4] and an answer to the second question was
given by W. Jarczyk [5].

During the 32 ISFE (Gargnano, 1994) W. Jarczyk and M. Sablik [6]
presented some other results connected with the system (1), (2). They gave
two results on equation (1) and (2) treated separately (see also [7]).

In connection with the functional equation (1), W. Jarczyk and
M. Sablik ([6], [7]) found the following

Theorem. Let f : I = [a, b] ⊂ R → (0,∞) be a solution of (1) with

some p ∈ (0, 1). Then

(i) if p ∈ Q then f(x) = Bea(x)(x ∈ I), where B > 0 is a constant

and a : R→ R is an additive function;

(ii) if f is continuous then f(x) = BeAx (x ∈ I), where A ∈ R and

B > 0 are some constans.

The proof of this Theorem based on a result of Gy. Maksa, K. Niko-

dem and Zs. Páles (see [9]) connected to the t-Wright convexity.
The aim of this paper is to present the general solution of (1) for

functions f : R → R or f : I → R respectively, supposing the existence a
subset E ⊂ R (or E ⊂ I) of positive Lebesgue measure such that f(x) 6= 0
for all x ∈ E.

2. The general solution of (1) on R

Lemma 1. If the function f : R→ R satisfies the functional equation

(1) for all x, y ∈ R and there exists a subset E ⊂ R of positive Lebesgue

measure such that f(x) 6= 0 for all x ∈ E, then f(x) 6= 0 for any x ∈ R.

Proof (see also [8]). If p = 1
2 , then we obtain from (1) the functional

equation

(1’) f2

(
x + y

2

)
= f(x)f(y) (x, y ∈ R).

If there exists an y0 ∈ R such that f(y0) = 0, then (1’) shows that f(x) = 0
for all x ∈ R, which is a contradiction. Then f(x) 6= 0 for any x ∈ R.
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If p 6= 1
2 then, under our assumptions, (1) implies that f(u) 6=0 if

u ∈ pE+(1−p)E. By Steinhaus’s theorem, the set pE+(1−p)E contains a
nonvoid interval I1 ⊂ R and f(x) 6= 0 for all x ∈ I1. By the transformation

u = px + (1− p)y, v = (1− p)x + py,

we get from (1) the functional equation

(3) f(u)f(v) = f

(
p

2p− 1
u +

p− 1
2p− 1

v

)
f

(
p− 1
2p− 1

u +
p

2p− 1
v

)

for all u, v ∈ R. Using (3), one can easily verify that, if f(u) 6= 0 for all
u ∈ I1, then f(x) 6= 0 for all x ∈ I2, where I2 has the same center as I1 and
|I2|=

∣∣∣ 1
2p−1

∣∣∣ |I1|>|I1|. Now define a sequence 〈In〉 of intervals as folows: if

In is given then In+1 has the same center as In and |In+1| =
∣∣∣ 1
2p−1

∣∣∣ |In|. By
repeating the above argument and using induction, we find that f(x) 6= 0

for all x ∈ In(n ∈ N), where |In| =
∣∣∣ 1
2p−1

∣∣∣
n−1

|I1|. But
∣∣∣ 1
2p−1

∣∣∣ > 1, thus

lim
n→∞

|In| = |I1| lim
n→∞

∣∣∣ 1
2p−1

∣∣∣
n−1

= +∞. Hence, we infer that f(x) 6= 0 for
all x ∈ R.

Lemma 2. If the function f : R→ R, satisfies the functional equation

(1) for all x, y ∈ R, and f(x) 6= 0 (x ∈ R), then f(x)
f(0) > 0 for any x ∈ R.

Proof. Let us write in (1) x + t and y + s for x and y, respectively,
such that (1− p)t + ps = 0. Then we get the equation

(4) f(x + t)f(y + s) = f(px + (1− p)y + pt + (1− p)s)f((1− p)x + py)

for all x, y, t ∈ R, s = p−1
p t.

Since f(x) 6= 0 for all x ∈ R, we obtain from (1) and (4) that

(5)
f(x + t)f(y + s)

f(x)f(y)
=

f(px + (1− p)y + pt + (1− p)s)
f(px + (1− p)y)

for all x, y, t ∈ R, s = p−1
p t.

Replacing x, y by x + t, y + v in (5), respectively, such that pt +
(1− p)v = 0 (i.e. v = p

p−1 t), we have

(6)
f(x + 2t)f(y + s + v)

f(x + t)f(y + v)
=

f(px + (1− p)y + pt + (1− p)s)
f(px + (1− p)y)
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for all x, y, t ∈ R, s = p−1
p t, v = p

p−1 t.

The right hand sides of (5) and (6) are equal therefore, we obtain

(7)
f(x + 2t)(f(y + s + v)

f(x + t)f(y + v)
=

f(x + t)f(y + s)
f(x)f(y)

for all x, y, t ∈ R, s = p−1
p t, v = p

p−1 t.
Putting here x = 0, we get

f(2t)f(y + s + v)
f(t)f(y + v)

=
f(t)f(y + s)

f(0)f(y)

for all y, t ∈ R, s = p−1
p t, v = p

p−1 t.

This implies that, together with (7),

(8)
f(x + 2t)

f(0)
=

f2(x + t)f(2t)
f(x)f2(t)

for all x, t ∈ R.
Substitute x = u

2 , t = u
4 in (8), then

(9)
f(u)
f(0)

=
f2

(
3
4u

)

f2
(

1
4u

) > 0 (u ∈ R).

This completes the proof of Lemma 2.

Lemma 3. If the function f : R→ R\{0} satisfies (1) for all x, y ∈ R,
then the function

(10) F : R→ R, F (x) = ln
f(x)
f(0)

satisfies the functional equation

(11) ∆3
t F (x) = F (x + 3t)− 3F (x + 2t) + 3F (x + t)− F (x) = 0

for all x, t ∈ R.

Proof. From the previous lemma, it follows that (8) is satisfied. Let
us write in (8) x + t for x, then we get the equation

(12)
f(x + 3t)

f(0)
=

f2(x + 2t)f(2t)
f(x + t)f2(t)

(x, t ∈ R).
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Dividing this equation by (8), we obtain

(13) f(x + 3t)f3(x + t) = f3(x + 2t)f(x) (x, t ∈ R).

Dividing (13) by f4(0) and using that f(x)
f(0) > 0 (x ∈ R), we obtain that

the function F defined by (10) satisfies the functional equation (11) for all
x, t ∈ R.

Lemma 4 (Djokovic̆, Székelyhidi). The function F : R → R satisfies

the functional equation (11) for all x, t ∈ R if and only if there exist k-

additive symmetric functions Ak : Rk → R (k = 0, 1, 2) such that

(14) F (x) = A2(x, x) + A1(x) + A0, x ∈ R

where A0 ∈ R constant.

Proof. See [3], [11].

This results allow us to formulate the following theorem which gives
the general solution of our problem for function f : R→ R.

Theorem 1. If the function f : R → R satisfies the functional equa-

tion (1) for all x, y ∈ R and there exists a subset E ⊂ R of positive

Lebesgue measure such that f(x) 6= 0 for all x ∈ E, then f has the form

(15) f(x) = B exp(A2(x, x) + A1(x)),

where Ak : Rk → R is k-additive symmetric function (k = 1, 2), B is a real

constant and

(16) A2(pt, (1− p)t) = 0 (t ∈ R)

holds.

Proof. By Lemma 1, f(x) 6= 0 for all x ∈ R. Then Lemma 2 implies
that f(x)

f(0) > 0 for any x ∈ R and we obtain that, by Lemma 3, F satisfies
the functional equation (11) for all x, t ∈ R. Due to Lemma 4, we have the
form (14) for F . Thus, from (10), (15) follows for the function f (since
F (0) = 0, A0 = 0).

An easy calculation shows that the function (15) satisfies the func-
tional equation (1) if and only if (16) holds.
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Corollary. Under the conditions of Theorem 1

(i) if p ∈ Q then f(x) = Bea(x)(x ∈ R), where 0 6= B ∈ R is a

constant and a : R→ R is an additive function;

(ii) if f is continuous then f(x) = BeAx(x ∈ R), where A and B 6= 0
are some constants in R.

Proof. If p ∈ Q, then

A2(pt, (1− p)t = p(1− p)A2(t, t) = 0

gives that A2(t, t) = 0 for all t ∈ R and so (15) reduces to (i) with B =
f(0) 6= 0 and with a(x) = A1(x) (x ∈ R).

To prove (ii), observe that A2 and A1 are continuous if f is, therefore

A1(t) = At, A2(t, t) = Ct2 (t ∈ R).

Then (16) gives again that C = 0, and we obtain (ii).

3. The general solution of (1) on intervals

Let I ⊂ R be a real interval and suppose that the function f : I → R
satisfies the functional equation (1) for all x, y ∈ I.

There is an analogue of Lemma 1 for function f : I → R satisfying
(1). We have

Lemma 5. If the function f : I → R satisfies the functional equation

(1) for all x, y ∈ I and there exits a subset E ⊂ I of positive Lebesgue

measure such that f(x) 6= 0 for all x ∈ E, then f(x) 6= 0 for any x ∈ I.

Proof. If p = 1
2 , the we obtain from (1) the functional equation (1’)

for all x, y ∈ I = [a, b]. Suppose that f(y0) = 0 for some y0 ∈ I. Then we
infer from equation f2

(
x+y0

2

)
= f(x)f(y0) = 0 (x ∈ R) that f(x) = 0 for

all x ∈
[

a+y0
2 , y0+b

2

]
. By induction, we get for any n ∈ N that f(x) = 0 for

all x ∈
[

(2n−1)a+y0
2n , y0+(2n−1)b

2n

]
. Then, because of lim

n→∞
(2n−1)a+y0

2n = a

and lim
n→∞

y0+(2n−1)b
2n = b, we obtain that f(x) = 0 for all x ∈ (a, b), which

is a contradiction. Thus f(x) 6= 0 for any x ∈ I.

In case p 6= 1
2 let the sequence of intervals 〈In〉 be defined as in the

proof of Lemma 1 and let I ′n = In∩ I. Using induction again, we find that
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f(x) 6= 0 for all x ∈ I ′n (n ∈ N). Because of lim
n→∞

|In| = +∞, we get that

there exists an n0 ∈ N such that I ′n0
= I and thus we have f(x) 6= 0 for

all x ∈ I. The proof for noncompact interval is similar.

Lemma 6 (Páles). Let (G, · ) be an abelian semigroup, ϕi : G → G

are homomorphisms with ϕi ◦ ϕj = ϕj ◦ ϕi for all i, j = 1, . . . , n (i.e.

pairwise commuting). If the function f : I → G satisfies the functional

equation

(17) f(x) =
n∏

i=1

ϕi(f(λix + (1− λi)y))

for all x, y ∈ I, where λi ∈ [0, 1) (i = 1, . . . , n), then there exists a function

f̄ : R → G such that f̄ satisfies the functional equation (17) all x, y ∈ R
and f̄ |I= f .

Proof. See [10].

Lemma 7. If the function f : I → R \ {0} satisfies the functional

equation (1) for all x, y ∈ I, then there exists a function f̄ : R → R \ {0}
such that f̄ satisfies the functional equation (1) for all x, y ∈ R and f̄ |I= f .

Proof. Since f(x) 6= 0 for all x ∈ I, we infer from (1) the functional
equation

(18) f(x) =
f(px + (1− p)y)f((1− p)x + p(y))

f(y)

for all x, y ∈ I.

If ϕ1(f) = f , ϕ2(f) = f and ϕ3(f) = 1
f , then (ϕ1 ◦ ϕ2)(f) = (ϕ2 ◦

ϕ1)(f) = f , (ϕ1◦ϕ3)(f) = (ϕ3◦ϕ1)(f) = 1
f , (ϕ2◦ϕ3)(f) = (ϕ3◦ϕ2)(f) = 1

f

(i.e. ϕ1, ϕ2, ϕ3 are pairwise commuting homomorphisms). Further, if
λ1 = p, λ2 = 1− p, λ3 = 0, then λi ∈ [0, 1) (i = 1, 2, 3).

Thus f satisfies the conditions of Lemma 6, which implies that there
exists a function f̄ : R → R \ {0} such that f̄ satisfies (18) and so (1) for
all x, y ∈ R and f̄ |I= f .

Now, we can formulate the main result of this part of the paper.
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Theorem 2. If the function f : I → R satisfies the functional equation
(1) for all x, y ∈ I and there exists a subset E ⊂ I of positive Lebesgue
measure such that f(x) 6= 0 for all x ∈ E, then f has the form

(19) f(x) = B exp(A2(x, x) + A1(x)), x ∈ I,

where Ak : Rk → R is k-additive symmetric function (k = 1, 2), B 6= 0 is
an arbitrary real constant and

(20) A2(pt, (1− p)t) = 0 (t ∈ R)

holds.

Proof. By Lemma 5, f(x) 6= 0 for any x ∈ I. Then Lemma 7
implies that there exists a function f̄ : R → R \ {0} such that f̄ satisfies
the functional equation (1) for all x, y ∈ R and f̄ |I= f .
Now, using Theorem 1, we have

f̄(x) = B exp(A2(x, x) + A1(x)), x ∈ R,

where Ak : Rk → R is k-additive symmetric function (k = 1, 2) and (20)
holds.

Finally, f̄ |I= f gives (19).
It is easy to see that the function (19) satisfies (1) if (20) holds.

From Theorem 2, similarly as in the proof of our corollary, we get the
result of Jarczyk and Sablik.
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