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A limit theorem in the theory of finite Abelian groups

By A. LAURINČIKAS (Vilnius)
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Abstract. In the paper a limit theorem in the sense of the weak convergence of
probability measures for a Dirichlet series used in the theory of finite Abelian groups
in the space of analytic functions is obtained.

1. Introduction

Let G be a finite Abelian group of order |G|. Denote by τ(G) and r(G)
the number of subgroups of G and the rank of G, respectively. Let, as
usual, R, N, Z and C denote the sets of real, natural, integer and complex
numbers, respectively. It is known that the group G has rank r if

G ∼= Z/m1Z⊗ · · · ⊗ Z/mrZ,

where mj | mj+1 for j = 1, . . . , r − 1.
Let

tr(m) =
∑

|G|=m, r(G)≤r

τ(G).
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In several recent papers the sum function

T (x) =
∑

m≤x

t2(m)

has been studied. Let

∆(x) = T (x)−K1x log2 x−K2x log x−K3x,

where K1, K2 and K3 are effective constants. Denote by B a number
bounded by a constant. G. Bhowmik and H. Menzer [3] proved that

(1) ∆(x) = Bxc+ε

with c = 31/43 for every positive ε. H. Menzer [12] improved the esti-
mate (1) until c = 9/14, and he also conjectured that

∆(x) = Ω(x1/2 log2 x).

The latter conjecture was proved by G. Bhowmik and J. Wu in [4].
Moreover, they obtained a bound

∆(x) = Bx5/8 log4 x.

Finally, A. Ivič [6] investigated the mean square of the error term ∆(x)
and proved that

∫ x

1

∆2(u) du = Bx2(log x)31/3(log log x)28/3,

and ∫ x

1

∆2(u) du = Ω(x2 log4 x).

These results allowed him to conjecture that
∫ x

1

∆2(u) du ∼ Cx2 log4 x, x →∞,

with a suitable constant C > 0.
Let s = σ + it be a complex variable. The Dirichlet series

H(s) =
∞∑

m=1

t2(m)
ms

, σ > 1,
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plays an important role in the proofs of the results mentioned above.
G. Bhowmik and O. Ramaré [2], see also [4], obtained that, for σ > 1/2,

(2) H(s) = ζ2(s)ζ2(2s)ζ(2s− 1)
∏
p

(
1 +

1
p2s

− 2
p3s

)
,

where, as usual, ζ(s) stands for the Riemann zeta-function. This gives the
analytic continuation of H(s) over the half-plane σ > 1/2 except for the
pole of order 3 at the point s = 1. Our aim is to study the statistical prop-
erties of the function H(s), and in this note we will prove a limit theorem
in the sense of the weak convergence of probability measures in the space
of analytic functions for H(s). The theory of functional limit theorems for
Dirichlet series was obtained by B. Bagchi in [1] (see also [8]), and we
will use his ideas.

Let γ be the unit circle on the complex plane C, i.e. γ = {s∈C : |s|=1},
and let

Ω =
∏
p

γp,

where γp = γ for each prime number p. With the product topology and
pointwise multiplication Ω is a compact Abelian topological group. Denote
by B(S) the class of Borel sets of the space S. Then there exists the
probability Haar measure mH on (Ω,B(Ω)). This yields a probability
space (Ω,B(Ω),mH). Let ω(p) stand for the projection of ω ∈ Ω to the
coordinate space γp. Setting

ω(k) =
∏

pα‖k
ωα(p),

where pα ‖ k means that pα | k but pα+1 - k, we obtain an extension of
ω(p) to the set N as a completely multiplicative unimodular function.

Let G be a region on C. Denote by H(G) and M(G) the spaces of
analytic and meromorphic functions on G, respectively, equipped with the
topology of uniform convergence on compacta. Let D = {s ∈ C : σ > 3/4}.
Now we may define an H(D)-valued random element on the probability
space (Ω,B(Ω),mH):

H(s, ω) =
∏
p

(
1− ω(p)

ps

)−2 ∏
p

(
1− ω2(p)

p2s

)−2 ∏
p

(
1− ω2(p)

p2s−1

)−1

×
∏
p

(
1 +

ω2(p)
p2s

− 2ω3(p)
p3s

)
, ω ∈ Ω, s ∈ D.
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The second and the last products in this formula converge uniformly for
σ > 3/4, and therefore, they define H(D)-valued random elements. It is
easy to check similarly as in [8] that the first and the third products con-
verge uniformly for almost all ω ∈ Ω on every compact subsets of D. Hence
they define H(D)-valued random elements. Thus H(s, ω) is an H(D)-
valued random element defined on the probability space (Ω,B(Ω),mH).

Let w(t) be a positive function of bounded variation on [T0,∞), T0 >
0, such that its variation V b

a w on [a, b] satisfies the inequality V b
a w ≤ cw(a)

with some c > 0 for all b ≥ a ≥ T0. Moreover, let

U = U(T, w) =
∫ T

T0

w(t) dt,

and suppose that limT→∞ U(T, w) = ∞. In addition we assume that the
function w(t) satisfies some special condition related to the ergodic theory.
Let X(τ, ω) be an ergodic process with E|X(τ, ω)| < ∞, and let its sample
paths be integrable almost surely in the Riemann sense over every finite
interval. Here EX denotes the mean of the random variable X. Then we
suppose that

(3)
1
U

∫ T

T0

w(τ)X(t + τ, ω) dτ = EX(0, ω) + o(1 + |t|)α

almost surely for all t ∈ R with some α > 0 as T →∞. The latter equality
is a generalization of the classical Birkhoff–Khinchin theorem which asserts
that

(4) lim
T→∞

1
T

∫ T

0

X(τ, ω) dτ = EX(0, ω)

almost surely. Thus (3) with w(t) ≡ 1 implies (4). Some examples of
functions satisfying (3) can be found in [11].

Let D1 = {s ∈ C : 3/4 < σ < 1}, D2 = {s ∈ C : σ > 1}, and
let IA denote the indicator function of the set A. Define two probability
measures

Pj,T,w(A) =
1
U

∫ T

T0

w(τ)I{τ :H(s+iτ)∈A}dτ, A ∈ B(H(Dj)), j = 1, 2.

Let Pξ denote the distribution of an H(D)-valued random element ξ,
and let Pj,ξ be the restriction of Pξ to (H(Dj),B(H(Dj))), j = 1, 2.
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Theorem. The measures Pj,T,w converge weakly to Pj,H as T →∞.

Denote by meas{A} the Lebesgue measure of the set A, and set,
for T > 0,

ντ
T (· · · ) =

1
T

meas{τ ∈ [0, T ], . . . },

where instead of dots we write a condition satisfied by τ . Now let

Pj,T (A) = ντ
T

(
H(s + iτ) ∈ A

)
, A ∈ B(H(Dj)), j = 1, 2.

Corollary. The measures Pj,T converge weakly to Pj,H as T →∞.

Thus, the limit measure in the Theorem is independent of the func-
tion w(t). This is a consequence of (3).

Note that the Theorem can be used for the investigation of the uni-
versality of the function H(s).

Since the case j = 2 is simpler and similar to that of j = 1, we will
consider the case j = 1 only.

2. Auxiliary results

For the proof of the theorem we will apply the fact that each multiplier
in (2) has limit distribution. Let

Q
(1)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :ζ(s+iτ)∈A}dτ, A ∈ B(H(D1)),

and

ζ1(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

, ω ∈ Ω, s ∈ D.

Lemma 1. The measure Q
(1)
T converges weakly to P1,ζ1 as T →∞.

Proof. The lemma is a Theorem from [11] with such a difference
that in [11] D1 = {s ∈ C : 1/2 < σ < 1}.

Now let

Q
(2)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :ζ(2(s+iτ))∈A}dτ, A ∈ B(H(D1)),
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and

ζ2(s, ω) =
∏
p

(
1− ω2(p)

p2s

)−1

, ω ∈ Ω, s ∈ D.

Lemma 2. The measure Q
(2)
T converges weakly to P1,ζ2 as T →∞.

Proof. It coincides with that of Lemma 1. We note only that the
Dirichlet series for ζ(2s) is

∞∑
m=1

am

ms
,

where

am =
{ 1 if m = k2,

0 otherwise.

Thus in this case

ζ2(s, ω) =
∞∑

m=1

amω(m)
ms

=
∞∑

m=1

ω(m2)
m2s

=
∞∑

m=1

ω2(m)
m2s

=
∏
p

(
1− ω2(p)

p2s

)−1

.

Now we set

V
(3)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :ζ(2(s+iτ)−1)∈A}dτ, A ∈ B(H(D1)),

and

ξ3(s, ω) =
∏
p

(
1− ω2(p)

p2s−1

)−1

, ω ∈ Ω, s ∈ D.

Lemma 3. The measure V
(3)
T converges weakly to P1,ξ3 as T →∞.

Proof. It repeats the arguments of that of Lemmas 1 and 2. The
Dirichlet series for ζ(2s− 1) is

∞∑
m=1

am

ms
,
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where

am =
{ √

m if m = k2,

0 otherwise.

Consequently, we have

ξ3(s, ω) =
∞∑

m=1

amω(m)
ms

=
∞∑

m=1

mω(m2)
m2s

=
∞∑

m=1

ω2(m)
m2s−1

=
∏
p

(
1− ω2(p)

p2s−1

)−1

for almost all ω ∈ Ω.
For all σ > 1/2 let

U(s) =
∞∑

m=1

um

ms
=

∏
p

(
1 +

1
p2s

− 2
p3s

)
,

the latter Dirichlet series being absolutely convergent for σ > 1/2. More-
over, let

V
(4)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :U(s+iτ)∈A}dτ, A ∈ B(H(D1)),

and

ξ4(s, ω) =
∏
p

(
1 +

ω2(p)
p2s

− 2ω3(p)
p3s

)
, ω ∈ Ω, s ∈ D.

Lemma 4. The measure V
(4)
T converges weakly to P1,ξ4 as T →∞.

Proof. We give only a sketch of the proof because of its similarity
to the proof of a Theorem from [9]. Let

Un(s) =
n∑

m=1

um

ms
,

Un(s, ω) =
n∑

m=1

umω(m)
ms

, ω ∈ Ω.
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Then Lemma 2 of [11] asserts that the probability measures

1
U

∫ T

T0

w(τ)I{τ :Un(s+iτ)∈A}dτ, A ∈ B(H(D1)),

and
1
U

∫ T

T0

w(τ)I{τ :Un(s+iτ,ω)∈A}dτ, A ∈ B(H(D1)),

converge weakly to the same measure as T → ∞. Using this and the
relations

lim
n→∞

lim sup
T→∞

1
U

∫ T

T0

w(τ) sup
s∈K

∣∣U(s + iτ)− Un(s + iτ)
∣∣ dτ = 0,

lim
n→∞

lim sup
T→∞

1
U

∫ T

T0

w(τ) sup
s∈K

∣∣ξ4(s + iτ, ω)− Un(s + iτ, ω)
∣∣ dτ = 0

which are valid for any compact subset K of D1, we obtain that the mea-
sures V

(4)
T and

1
U

∫ T

T0

w(τ)I{τ :ξ4(s+iτ,ω)∈A}dτ, A ∈ B(H(D1)),

converge weakly to some measure V as T → ∞ simultaneously. The last
step of the proof consists of the checking that V coincides with P1,ξ4 .
The arguments used to show this are similar to those of [9], and involve
elements of the ergodic theory.

Let S and S1 be two metric spaces, and let h : S → S1 be a measurable
function. Then every probability measure P on (S,B(S)) induces a unique
probability measure Ph−1 on (S1,B(S1)) defined by Ph−1(A) = P (h−1A),
A ∈ B(S1).

Lemma 5. Let h : S → S1 be a continuous function, and let Pn and P

be probability measures on (S,B(S)). Suppose that Pn converges weakly

to P as n →∞. Then Pnh−1 converges weakly to Ph−1 as n →∞.

Proof. This is a special case of Theorem 5.1 of [5].
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Now let

V
(1)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :ζ2(s+iτ)∈A}dτ, A ∈ B(H(D1)),

V
(2)
T (A) =

1
U

∫ T

T0

w(τ)I{τ :ζ2(2(s+iτ))∈A}dτ, A ∈ B(H(D1)),

and

ξ1(s, ω) =
∏
p

(
1− ω(p)

ps

)−2

, ω ∈ Ω, s ∈ D1,

ξ2(s, ω) =
∏
p

(
1− ω2(p)

p2s

)−2

, ω ∈ Ω, s ∈ D1.

Lemma 6. The measures V
(1)
T and V

(2)
T converge weakly to the mea-

sures P1,ξ1 and P1,ξ2 , respectively, as T →∞.

Proof. The assertion of the lemma immediately follows from Lem-
mas 1, 2 and 5.

3. A fourdimensional limit theorem

In the previous section we have seen that the functions ζ2(s), ζ2(2s),
ζ(2s − 1) and U(s) have a limit distribution in the space H(D1). In this
section we will prove a joint limit theorem for these functions. We will use
the following notation. We put

ξ1(s) = ζ2(s),

ξ3(s) = ζ(2s− 1),

ξ2(s) = ζ2(2s),

ξ4(s) = U(s),

and denote by vj(m) the coefficients of the Dirichlet series of ξj(s), j =
1, . . . , 4. Moreover, let

Φ(s) =
(
ξ1(s), . . . , ξ4(s)

)
,

Φ(s, ω) =
(
ξ1(s, ω), . . . , ξ4(s, ω)

)
, ω ∈ Ω, s ∈ D1,
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where

ξj(s, ω) =
∞∑

m=1

vj(m)
ω(m)
ms

.

Thus Φ(s, ω) is an H4(D1)-valued random element, where H4(D1) denotes
the Cartesian product of H(D1)×H(D1)×H(D1)×H(D1). Let as above
PΦ stand for the distribution of Φ(s, ω), and define the probability measure

P
(4)
T,w(A) =

1
U

∫ T

T0

w(τ)I{τ :Φ(s+iτ)∈A}dτ, A ∈ B(H4(D1)).

Proposition. The measure P
(4)
T,w converges weakly to PΦ as T →∞.

We divide the proof of the proposition into three parts, and we state
two first parts as individual lemmas. Before that we recall that the fam-
ily of probability measures {P} is relatively compact if every sequence of
elements of {P} contains a weakly convergent subsequence, and the fam-
ily {P} is tight if for an arbitrary ε > 0 there exists a compact set K such
that P (K) > 1− ε for all P from {P}.

Lemma 7. The family of probability measures P
(4)
T,w is relatively com-

pact.

Proof. By Lemmas 3, 4 and 6 we have that the probability mea-
sures V

(l)
T converge weakly to the measures P1,ξl

, respectively, as T →∞,
l = 1, . . . , 4. Consequently, the family of probability measures {V (l)

T } is
relatively compact, l = 1, . . . , 4. The space of analytic functions H(D1)
is a complete separable space. Hence it follows by the Prokhorov theo-
rem (see, for example, [5], Theorem 6.2) that the family {V (l)

T } is tight,
l = 1, . . . , 4. Thus for an arbitrary ε > 0 there exists a compact set
Kl ∈ H(D1) such that

(5) V
(l)
T

(
H(D1)\Kl

)
<

ε

4
, l = 1, . . . , 4.

Let ηT be a random variable on (Ω̃,F ,P) such that

P(ηT ∈ A) =
1
U

∫ T

T0

w(t)IA dt, A ∈ B(R),



A limit theorem in the theory of finite Abelian groups 527

and let
ξl,T (s) = ξl(s + iηT ), l = 1, . . . , 4,

ΦT (s) =
(
ξ1,T (s), . . . , ξ4,T (s)

)
.

Then in view of (5) the definition of V
(l)
T yields

(6) P
(
ξl,T (s) ∈ H(D1)\Kl

)
<

ε

4
, l = 1, . . . , 4.

Now let us take K = K1×· · ·×K4. Then K is a compact set of the space
H4(D1), and in virtue of (6)

P
(4)
T,w

(
H4(D1)\K

)
= P

(
ΦT (s) ∈ H4(D1)\K

)

= P
( 4⋃

l=1

(
ξl,T (s) ∈ H(D1)\Kl

))

≤
4∑

l=1

P
(
ξl,T (s) ∈ H(D1)\Kl

)
< ε.

This shows that the family of probability measures {P (4)
T,w} is tight. Hence

by the Prokhorov theorem (Theorem 6.1 of [5]) it is relatively compact.
Now let s1, . . . , sn be arbitrary points on D1, and we set

σ1 = min
1≤m≤n

Re sm, σ2 = max
1≤m≤n

Re sm.

Then we have σ1 > 3/4. Moreover, let σ3 = 3/4−σ1 < 0, σ4 = 1−σ2 > 0
and D3 = {s ∈ C : σ3 < σ < σ4}. We take arbitrary complex numbers
ulm, and let the function h : H4(D1) → H(D3) be given by the formula

h(f1, . . . , f4) =
4∑

l=1

n∑
m=1

ulmfl(sm + s),

where s ∈ D3, fl ∈ H(D1), l = 1, . . . , 4. We set

W (s) = h
(
ξ1(s), . . . , ξ4(s)

)
,

and denote the convergence in distribution by D→.
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Lemma 8. The relation

W (s + iηT ) D→
T→∞

h(Φ)

holds.

For the proof of Lemma 8 we need the following result.

Lemma 9. Let for σ > σ0 + 1/2 the function f(s) be given by an

absolutely convergent Dirichlet series

∞∑
m=1

am

ms
,

such that
∑

m≤n |am|2 = Bn2σ0 . Suppose that f(s) is a meromorphic

function in the half-plane σ > σ0, all poles in this region are included in a

compact set, and for σ ≥ σ0

f(σ + it) = B|t|δ

with some positive δ. Moreover, suppose that the functions w(τ) and f(s)
satisfy the estimate

∫ T

T0

w(τ)|f(σ + it + iτ)| dτ = BU(1 + |t|)β

with some positive β for all σ > σ0 and all t ∈ R. Then the probability

measure
1
U

∫ T

T0

w(τ)I{τ :f(s+iτ)∈A}dτ, A ∈ B(M(D0)),

where D0 = {s ∈ C : σ > σ0}, converges weakly to the distribution of the

random element ∞∑
m=1

amω(m)
ms

, ω ∈ Ω, s ∈ D0,

as T →∞.

Proof. The lemma is a Theorem of [7] proved for the Matsumoto
zeta-function which satisfies all conditions of the lemma. The general case
of the lemma is identic to that of [7].
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Proof of Lemma 8. For σ > σ3 + 1/4 we have

W (s) =
4∑

l=1

n∑
m=1

ulmξl(sm + s).

Suppose that in this region

ξl(s) =
∞∑

m=1

vl(m)
ms

.

Thus

W (s) =
∞∑

k=1

wk

ks
,

where

wk =
4∑

l=1

n∑
m=1

ulmvl(k)
ksm

.

By Lemma 4 of [10]
∫ T

T0

w(τ)|ζ(σ + it + iτ)|2 dτ = BU(1 + |t|)2

for σ > 1/2 and for all t ∈ R. Consequently, the well-known properties of
the Riemann zeta-function as well as of U(s) and Lemma 9 with σ0 = 3/4
yield the weak convergence of the probability measure

(7)
1
U

∫ T

T0

w(τ)I{τ :W (s+iτ)∈A}dτ, A ∈ B(H(D3)),

to the measure PW as T →∞, where PW is the distribution of the random
element

W (s, ω) =
∞∑

k=1

wkω(k)
ks

, ω ∈ Ω, s ∈ D3.

On the other hand,

W (s, ω) =
4∑

l=1

n∑
m=1

ulm

∞∑

k=1

wkω(k)
ksm+s

=

=
4∑

l=1

n∑
m=1

ulmξl(sm + s, ω) = h(Φ(s, ω)).
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Thus the measure (7) converges weakly to PW as T →∞. This proves the
lemma.

Proof of the Proposition. By Lemma 7 there exists a sequence
T1→∞ such that the measure P

(4)
T1,w converges weakly to some proba-

bility measure P as T1 → ∞. Suppose that P is the distribution of an
H4(D1)-valued random element

Φ1(s) =
(
ξ11(s), . . . , ξ14(s)

)
.

Then, clearly,

(8) ΦT1

D−→
T1→∞

Φ1.

Taking into account the continuity of the function h, hence and from
Lemma 5 we deduce that

h(ΦT1)
D−→

T1→∞
h(Φ1).

Therefore, by the definition of W

(9) W (s + iηT ) D−→
T1→∞

h(Φ1).

By Lemma 8

W (s + iηT ) D−→
T1→∞

h(Φ).

Hence, and from (9)

(10) h(Φ) D=h(Φ).

Now let h1 : H(D3) → C be defined by the formula

h1(f) = f(0), f ∈ H(D3).

This function, clearly, is measurable. Therefore (10) implies the relation

h(Φ)(0) D= h(Φ1)(0).
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Thus by the definition of h we find that

(11)
4∑

l=1

n∑
m=1

ulmξl(sm) D=
4∑

l=1

n∑
m=1

ulmξ1l(sm)

for arbitrary complex numbers ulm. The hyperplanes in the space R8n

form a determining class (see [5]). Therefore, the hyperplanes also form
a determining class in the space C4n. Thus, taking into account (11), we
obtain that C4n-valued random elements ξl(sm) and ξ1l(sm), l = 1, . . . , 4,
m = 1, . . . , n, have the same distribution.

Now let K be a compact subset of the strip D1, and let f1, . . . , f4 ∈
H(D1). For an arbitrary ε > 0 we set

G =
{
(g1, . . . , g4) ∈ H4(D1) : sup

s∈K
|gl(s)− fl(s)| ≤ ε, l = 1, . . . , 4

}
,

and we choose a sequence {sm} to be dense in K. Moreover, let

Gn =
{
(g1, . . . , g4) ∈ H4(D1) : |gl(sm)− fl(sm)| ≤ ε,

l = 1, . . . , 4, m = 1, . . . , n
}
.

Thus the above mentioned properties of the random elements ξl(sm) and
ξ1l(sm) show that

(12) mH

(
ω ∈ Ω : Φ(s, ω) ∈ Gn

)
= P (Φ1(s) ∈ Gn).

Since the sequence {sm} is dense in K, we have Gn → G as n →∞. Thus,
letting n →∞ in (12), we find

(13) mH

(
ω ∈ Ω : Φ(s, ω) ∈ G

)
= P (Φ1(s) ∈ G).

The space H4(D1) is separable. Therefore, finite intersections of the
spheres form a determining class (see [5]). Hence we obtain from (12)
and (13) that

Φ D=Φ1.

This and (8) yield

(14) ΦT1

D−→
T1→∞

Φ.
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This means that the measure P
(4)
T,w converges weakly to the distribution of

the random element Φ as T1 → ∞. Now the assertion of the Proposition
follows from Lemma 7, since the random element Φ in (14) is independent
of the choice of the sequence T1.

4. Proof of the Theorem

Let the function h : H4(D1) → H(D1) be given by the formula

h(f1, f2, f3, f4) = f1f2f3f4, f1, . . . , f4 ∈ H(D1).

Since the latter function is continuous, the assertion of the Theorem follows
from the Proposition and Lemma 5.

The Corollary is the Theorem with w(τ) ≡ 1.
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