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Characterizing polynomial
functions by a mean value property

By THOMAS RIEDEL (Louisville) and MACIEJ SABLIK (Katowice)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on their 60th birthday

Abstract. We generalize Flett’s Mean Value Theorem to the case of functions
defined in normed spaces. This is a motivation for considering functional equations
related to the Flett mean value formula in a quite general setting. We solve them in the
case where functions are defined in abelian groups and take values in a rational linear
space.

1. Introduction

In [6] Sahoo and Riedel gave a generalization of Flett’s Mean Value
Theorem [2] as follows:

Theorem 1.1. Let f be a real valued function differentiable in [a, b],
then there is a point c ∈ (a, b) such that

(1) f(c)− f(a) = (c− a)f ′(c)− 1
2

f ′(b)− f ′(a)
b− a

(c− a)2.

It is easy to see that if f ′(b) = f ′(a), then this reduces to Flett’s Mean
Value Theorem.

In [4], following the approach of Aczél [1] and Haruki [3] who solved
functional equations related to the Lagrange Mean Value Theorem, we
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replaced in (1) the derivative of f by an unknown function h and so we
obtained the following functional equation:

(2) f(c)− f(a) = (c− a)h(c)− 1
2

h(b)− h(a)
b− a

(c− a)2.

It turns out that specifying c to be equal to a+3b
4 implies that (2)

characterizes cubic polynomials. More exactly, we obtained in [4] the fol-
lowing.

Theorem 1.2. Let t ∈ (0, 1) be fixed. The pair (f, h) of real valued

functions defined in R satisfies the equation

f ((1− t)a + tb)− f(a) = t(b− a)h((1− t)a + tb)(3)

− 1
2

h(b)− h(a)
b− a

(t(b− a))2,

for all a, b ∈ R if and only if

f(x) =

{
Ax3 + Bx2 + Cx + D if t = 3

4

Bx2 + Cx + D if t 6= 3
4

(4)

h(x) =

{
3Ax2 + 2Bx + C if t = 3

4

2Bx + C if t 6= 3
4 .

(5)

Let us note that solutions (4) and (5) are highly regular despite the
fact that we do not assume any regularity a priori . An explanation to this
effect might be given by the following argument. Let us first observe that
the equation (3) may be written equivalently (with new variables x = a

and y = b− a) in the form

(6) f (x + ty)− f(x) =
[
h(x + ty)− t

2
(h(x + y)− h(x))

]
(ty).

Now the problem of solving (6) may be properly asked in the case of
functions f : G → H and h : G → L(G,H), where G and H are real linear
spaces and L(G,H) denotes the space of all linear mappings from G into
H. This setting is quite a natural extension of our original problem since
it comes from Flett’s equality where f ′ is replaced by h, and so in higher
dimensional normed spaces one would expect h to be a differential, hence
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a linear mapping. Looking closer, one can even ask for solutions of (6) in
the case where G is a semigroup where multiplication by t is defined (e.g.
if t = 3

4 and G is uniquely divisible by 2), H is a group with the same
property (and uniquely divisible by 2), and h maps G into Hom(G,H).
Taking G = H = R, with the usual addition, we see that in fact there
is a regularity condition implicitly assumed when solving (3). Namely,
the form of (3) (or equivalently of (6)), with multiplication by ty on the
righthand side tacitly imposes that we are looking for linear , and hence
continuous homomorphisms h. We show below that dropping this kind
of regularity we get generalized polynomial functions as solutions to (6),
which turn out to be ordinary polynomials under rather slight regularity
assumptions.

To strengthen our argument and dismiss the doubt that our general-
ization has not very much in common with Theorem 1.1 stated for func-
tions defined in reals, let us extend this result to the multidimensional
case. We have the following.

Theorem 1.3. Let D be an open subset of a normed space G and let

a, b ∈ D be such that the segment I := {a + tb : t ∈ [0, 1]} is contained in

D. Further, let f : D → R be a function differentiable at every point of

I. Then there is a point c = a + t0(b− a) ∈ I \ {a, b} such that

(7) f(c)− f(a) =
[
dcf − t0

2
(dbf − daf)

]
(c− a) .

Proof. Put h = b− a and define F : [0, 1] → R by

F (t) = f(a + th).

In view of our assumptions F is differentiable at every point of [0, 1].
Moreover, as it is easy to calculate

(8) F ′(t) = da+thf(h)

for every t ∈ [0, 1]. By Theorem 1.1 we infer that there is a t0 ∈ (0, 1) such
that

F (t0)− F (0) = t0F
′(t0)− 1

2
(F ′(1)− F ′(0)) t20

whence we immediately get (7) putting c = a + t0h and using (8).
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2. Functional equation

Before we proceed to solve the equation (6) let us prove a lemma
which will be the main tool in the proof. The lemma is a “homomorphic”
version of a result by L. Székelyhidi [7, Theorem 9.5], see also W. H.

Wilson [8].

Lemma 2.1. Let G and H be abelian groups, denote by

X = Hom(G,H) the space of group homomorphisms from G to H and

suppose that for fixed n ∈ N the functions h, h1, . . . , hn : G −→ X satisfy

(9)

[
h(x) +

n∑

i=1

hi(αi(x) + βi(y))

]
(y) = 0

for every x, y ∈ G, where αi, βi ∈ Hom(G,G) and αi(G) ⊂ βi(G) for

i = 1, . . . , n then ∆2n
y h(x) = 0, for every x, y ∈ G.

Proof. We proceed by induction. If n = 1 then (9) takes the form

(10) [h(x) + h1(α1(x) + β1(y))] (y) = 0, for all x, y ∈ G.

Fixing u ∈ G arbitrarily, letting v be such that α1(u) + β1(v) = 0, and
replacing x by x + u and y by y + v in (10), we get

[h(x + u) + h1(α1(x) + β1(y))] (y)(11)

= − [h(x + u) + h1(α1(x) + β1(y))] (v).

Subtracting (11) from (10) gives

(12) [h(x)− h(x + u)] (y) = [h(x + u) + h1(α1(x) + β1(y))] (v).

Again replacing x by x + u and also y by y + v in (12), we get

[h(x + u)− h(x + 2u)] (y + v) = [h(x + 2u) + h1(α1(x) + β1(y))] (v),

whence

[h(x + u)− h(x + 2u)] (y)(13)

= [2h(x + 2u)− h(x + u) + h1(α1(x) + β1(y))] (v).
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Subtracting (12) from (13) yields

− [h(x + 2u)− 2h(x + u) + h(x))] (y)(14)

= 2 [h(x + 2u)− h(x + u)] (v).

The lefthand side of (14) does not depend on v, therefore it has to vanish
(to see this put v = 0 in the righthand side). Thus we get that for every
x, u ∈ G

(15) h(x + 2u)− 2h(x + u) + h(x) = ∆2
uh(x) = 0.

This establishes the base case for the induction. Now suppose that our
assertion holds for some natural n ≥ 1 and suppose that h, h1, . . . , hn+1 :
G −→ X satisfy

(16)

[
h(x) +

n+1∑

i=1

hi(αi(x) + βi(y))

]
(y) = 0,

for all x, y ∈ G, where αi, βi ∈ X and αi(G) ⊂ βi(G) for i = 1, . . . , n + 1.
Let u ∈ G be arbitrary and choose v ∈ G such that αn+1(u)+βn+1(v) = 0.
Substituting x + u for x and y + v for y in (16), we get

[
h(x + u) +

n∑

i=1

hi(αi(x) + βi(y) + αi(u) + βi(v))(17)

+hn+1(αn+1(x) + βn+1)(y)
]
(y + v) = 0.

Comparing (16) and (17) yields

[
∆uh(x) +

n∑

i=1

∆αi(u)+βi(v)hi(αi(x) + βi(y))

]
(y)(18)

= −
[
h(x + u) +

n∑

i=1

hi(αi(x) + βi(y) + αi(u) + βi(v))

+hn+1(αn+1(x) + βn+1(y))

]
(v).
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Again, substitute in (18) x + u for x and y + v for y to get

[
∆uh(x + u) +

n∑

i=1

∆αi(u)+βi(v)hi(αi(x)(19)

+βi(y) + αi(u) + βi(v))

]
(y + v)

= −
[
h(x + u) +

n∑

i=1

hi(αi(x) + βi(y) + αi(u) + βi(v))

+hn+1(αn+1(x) + βn+1(y))

]
(v).

Subtracting (18) from (19) we get

(20)

[
∆2

uh(x) +
n∑

i=1

∆2
αi(u)+βi(v)hi(αi(x) + βi(y))

]
(y) = H(x, u, v)(v),

where H(x, u, v) ∈ X is a suitable homomorphism. The righthand side
of (20) does not depend on y and repeating the argument in the base case,
we get

(21)

[
∆2

uh(x) +
n∑

i=1

∆2
αi(u)+βi(v)hi(αi(x) + βi(y))

]
(y) = 0

for all x, y, u ∈ G. Using the induction hypothesis we conclude that

(22) 0 = ∆2n
u ∆2

uh(x) = ∆2(n+1)
u h(x),

which finishes the proof.

We will also need the following technical lemma.

Lemma 2.2. Let K be an abelian group, and assume that H is a

rational linear space. Let N ∈ N be fixed and let 1 ≤ k1 < k2 < · · · < kN

be positive integers. If functions Bi : K → H satisfy

Bi(2z) = 2kiBi(z)
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for every i ∈ {1, . . . , N} then

N∑

i=1

Bi(z) = 0

if and only if Bi = 0 for every i ∈ {1, . . . , N}.
Proof. Induction.
In the sequel we admit the following hypothesis.

(A) (G, +) is an abelian group, (H, +) is a rational linear space and t ∈
Q∩(0, 1) is such that the mappings G 3 x → tx ∈ G, G 3 x → (2−t)x ∈ G,
G 3 x → (1− t)x ∈ G, are automorphisms.

Remark 2.3. Let us note that if t = p
q , p, q ∈ N, p < q, (p, q) = 1, then

assumptions on G appearing in the above hypothesis (A) are equivalent to
say that G is uniquely divisible by p, q, 2q − p and q − p. For instance, if
t = 3

4 then (A) is satisfied by any abelian group G, uniquely divisible by 3,
4 and 5, or simply by 5!. Of course, (A) is satisfied if we assume that G is
a rational linear space, but admitting only the latter case would certainly
limit the results that follow.

Now, let us prove the main result for equation (6).

Theorem 2.4. Let the hypothesis (A) be satisfied and denote by X
the set Hom(G,H) of all homomorphisms mapping G into H. The func-
tions f : G → H and h : G → X are solutions of the functional equation (6)
if and only if

f(x) =

{
A(x, x)(x) + B(x)(x) + C(x) + D if t = 3

4 ,

B(x, x) + C(x) + D if t 6= 3
4

(23)

h(x) =

{
3A(x, x) + 2B(x) + C if t = 3

4 ,

2B(x) + C if t 6= 3
4

(24)

where A : G × G → X is a biadditive symmetric function such that the
function

(25) G×G×G 3 (x, y, z) → A(x, y)(z) ∈ H

is symmetric, B : G → X is additive and such that the function

(26) G×G 3 (x, y) → B(x)(y) ∈ H
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is symmetric, C ∈ X and D ∈ H are constants.

Proof. Since multiplication by t is an automorphism in G and in H

(and hence also in X) we get that any additive function from G into H or
into X is t-homogeneous. Using this fact and symmetry of mappings (25)
and (26) it is easy to check that the functions f, h given by (23) and (24)
do satisfy the functional equation (6).

To show that these are the only solutions, substitute in (6) x−ty for x

to get

f (x)− f(x− ty) =
[
h(x)− t

2
(h(x + (1− t)y)− h(x− ty))

]
(ty).

Now, replace y by −y in the above to obtain

(27) f (x)− f(x + ty) = −
[
h(x)− t

2
(h(x− (1− t)y)− h(x + ty))

]
(ty).

Adding (6) to (27) and multiplying both sides by 2 we infer that

[
(2− t)h(x + ty)− (2− t)h(x)− th(x + y)(E)

+th(x− (1− t)y)
]
(ty) = 0.

Now, substituting in the above x + (1− t)y for x and dividing both sides
by t we get
[
h(x)− 2− t

t
h(x + (1− t)y) +

2− t

t
h(x + y)− h(x + (2− t)y)

]
(y) = 0.

By Lemma 2.1 we see that h is a polynomial function of degree at most 5,
i.e. h is of the form

(28) h(x) = Ao +
5∑

i=1

A∗i (x)

where Ao ∈ X is a constant, A∗1 : G → X is additive, and A∗i , i = 2, 3, 4, 5
are diagonalizations of i-additive symmetric functions Ai : Gi → X.

Setting x = 0 in (6), we get (cf. (A))

(29) f(x) =
[
h(x)− t

2

[
h

(x

t

)
− h(0)

]]
(x) + D
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or, taking into account t-homogeneity of additive mappings

(30) f(x) = D + Ao(x) +
5∑

i=1

(
1− 1

2
t1−i

)
A∗i (x)(x).

where D ∈ H is a constant. Substituting (28) and (30) into (6) we see
that the obtained equality imposes no conditions on D and Ao. Further,
denote for i ∈ {1, . . . , 5}

Bi(x, y) =
(

1− 1
2t1−i

)
[A∗i (x + ty)(x + ty)−A∗i (x)(x)]

−
[
A∗i (x + ty)− t

2
(A∗i (x + y)−A∗i (x))

]
(ty).

Then we have for every i ∈ {1, . . . , 5}

Bi(2x, 2y) = 2i+1Bi(x, y)

and from (6) we derive
5∑

i=1

Bi(x, y) = 0.

From Lemma 2.2 (with K = G×G and z = (x, y)) it follows that Bi = 0
for i ∈ {1, . . . , 5}. In other words, we get the following equations

(
1− 1

2t1−i

)
[A∗i (x + ty)(x + ty)−A∗i (x)(x)](31)

=
[
A∗i (x + ty)− t

2
(A∗i (x + y)−A∗i (x))

]
(ty).

for every i ∈ {1, . . . , 5}. Elementary though tedious calculations, which we
omit here, show that under our assumptions on t the mappings A3, A4 and
A5 have to vanish. For i = 1 the equation (31) reduces to

t

2
(A∗1(x)(y) + A∗1(y)(x) + tA1(y)(y)) =

t

2
(2A∗1(x)(y) + tA1(y)(y))

whence it follows that

A∗1(x)(y) = A∗1(y)(x)
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for every x, y ∈ G. Defining B : G → H by B = 1
2A∗1 we see that B

satisfies the assertion.
For i = 2 we get from (31) the equation

(
1− 1

2t

) [
t (A2(x, x)(y) + 2A2(x, y)(x))

+t2 (2A2(x, y)(y) + A2(y, y)(x)) + t3A2(y, y)(y)
]

= tA2(x, x)(y) + t2A2(x, y)(y) +
(

t3 − t2

2

)
A2(y, y)(y).

Fixing y and using Lemma 2.2 we see that the above equation is equivalent
to the following system.

2 (2t− 1) A2(x, y)(x) = A2(x, x)(y)(32)

2 (1− t) A2(x, y)(y) = (2t− 1) A2(y, y)(x)(33)

for every x, y ∈ G. Interchanging x and y in (33), comparing with (32)
and using divisibility by rationals in H, we see that either

(34) A2(x, y)(x) = 0

for every x, y ∈ G, or
(2t− 1)2 = t− 1.

The latter equality holds only if t = 0 or t = 3
4 . In other cases (34)

holds which in view of (32) and well known fact that a symmetric and
biadditive function is uniquely determined by its values on the diagonal,
implies A2 = 0. We assumed that t ∈ Q ∩ (0, 1). It remains therefore to
consider the case t = 3

4 . Then (32) becomes

A2(x, x)(y) = A2(x, y)(x).

Substitute x + z for x in the above equality to get

(35) 2A(x, z)(y) = A2(x, y)(z) + A2(z, y)(x).

Interchanging y and z in (35) we obtain

(36) 2A(x, y)(z) = A2(x, z)(y) + A2(z, y)(x).
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After substracting (36) from (35) we infer that

A2(x, y)(z) = A2(x, z)(y)

which in view of symmetry of A2 easily implies symmetry of the mapping
G3 3 (x, y, z) → A2(x, y)(z) ∈ H. To finish the proof it is enough to define
A : G×G → X by A = 1

3A2.

3. A remark on semigroups

The main tool in proving Theorem 2.3 was Lemma 2.1 which we
proved in the case of mappings h defined in abelian groups. Similarly,
Székelyhidi’s Theorem 9.5 from [7] has also been proved in the case where
the domain is an abelian group. We will show that in a particular case
which is important because of the origin of our problem, it is enough to
assume that the domain is a semigroup. Namely, if t = 3

4 , as in the original
problem stemming from Flett’s Theorem, and H = C then equation (E)
becomes

5h

(
x +

3
4
y

)
− 5h (x)− 3h (x + y) + 3h

(
x− 1

4
y

)
= 0,

or, after introducing new variables u = x− 1
4y and v = 1

4 and rearranging
the terms

(37) 3h (u + 5v)− 5h (u + 4v) + 5h (u + v)− 3h (u) = 0.

Without using Székelyhidi’s result we can prove the following.

Theorem 3.1. Let (G, +) be an abelian semigroup. A function h :
G → C is a solution of (37) if and only if

∆3
vh(u) = 0.

Proof. The “if” is easy to check. Assume now that h solves (37).
Let k and n be positive integers and substitute in (37) first kv instead of
v and then u + nv instead of u. We get

3h (u + (n + 5k)v)− 5h (u + (n + 4k)v)(38)

+5h (u + (n + k)v)− 3h (u + nv) = 0,
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for every k, n ∈ N and u, v ∈ G. Fix u and v and define a function
ϕ : N ∪ {0} → C by

ϕ(r) = h(u + rv).

Let us note that ϕ depends on u and v. Because of (37), ϕ satisfies the
following difference equation

(39) 3ϕ (n + 5k)− 5ϕ (n + 4k) + 5ϕ (n + k)− 3ϕ (n) = 0,

for every k, n ∈ N. Let k = 1. Then from (37) we derive

(40) 3ϕ (n + 5)− 5ϕ (n + 4) + 5ϕ (n + 1)− 3ϕ (n) = 0.

The characteristic equation for (40) has 1 as a triple root and the remaining
roots are λ = − 2

3 + i
√

5
3 and λ−1. Thus ϕ has the following form

(41) ϕ(r) = a + br + cr2 + dλr + eλ−r,

where a, b, c, d and e are some complex constants, depending on u and v.
Substituting (41) into (39) we easily get

(42) dλ2nzk + ewk = 0

where zk = 3
(
λk

)5− 5
(
λk

)4 + 5
(
λk

)− 3 and wk = 3
(
λ−k

)5− 5
(
λ−k

)4 +
5

(
λ−k

)− 3. We can choose a k ∈ N so that zk 6= 0 6= wk. Now, letting n

be equal 1 and 2, we easily derive from (42) that d = e = 0. Thus, finally,
ϕ has to be of the form

ϕ(r) = a + br + cr2

whence we get

h(u + rv) = a(u, v) + b(u, v)r + c(u, v)r2

for every u, v ∈ G and r ∈ N∪{0}, where a, b, c are some functions mapping
G×G into C. It can be immediately checked that h satisfies

h(u + 3v)− 3h(u + 2v) + 3h(u + v)− h(u) = 0

which ends the proof.
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