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On the strong summability of Walsh series
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Abstract. In this paper we investigate the strong (H, p)- and BMO-summability
of Walsh-Fourier series. Among others we give a characterization of points in which the
Walsh-Fourier series of an integrable function is (H, p)- and BMO-summable. This is
the analogue of Gabisonia’s result that characterizes the points of strong summability
with respect to the trigonometric system.

1. Introduction

It was proved by L. Fejér [3] that the (C, 1) means of the trigonomet-
ric Fourier series (TFS) of any 2π periodic continuous function converges
uniformly to the function. The same problem for integrable functions was
investigated by H. Lebesgue [7]. He proved that the TFS of any inte-
grable function f ∈ L1

2π is a.e. (C, 1)-summable, i.e.

(1.1)

1
n

n−1∑

k=0

[
(ST

k f)(x)− f(x)
] → 0 as n →∞

(for a.e. x ∈ (−π, π)).
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Lebesgue gave the following simple sufficient condition for the points in
which (1.1) holds. Namely, he showed that the limit relation holds in every
point x ∈ (−π, π) for which

(1.2) (Λnf)(x) :=
1

|Jn(x)|
∫

Jn(x)

|f(x)− f(s)| ds → 0 (n →∞),

where Jn(x) := [x − π2−n, x + π2−n) and |Jn(x)| is the lenght of Jn(x).
Such points are called Lebesgue points of the function f For any f ∈ L1

2π

almost every x is a Lebesgue point of f .
Strong summability, i.e. the convergence of the strong means

(
1
n

n−1∑

k=0

|(ST
k f)(x)− f(x)|p

)1/p

(x ∈ R, n ∈ N∗, p > 0)

was first considered by G. H. Hardy and J. E. Littlewood [6]. They
showed that for any f ∈ Lr

2π (1 < r < ∞) the strong means tend to 0 a.e.
if n →∞.

Let us consider it more generally. We will introduce strong means
generated by the stricly increasing continuous function Ψ : [0, +∞) →
[0,+∞) with Ψ(0) = 0. Then the Hardy operators are defined as

(1.3) (HT,Ψ
n f)(x) := Ψ−1

(
2−n

2n−1∑

k=0

Ψ
(|(ST

k f)(x)|)
)

(x ∈ R, n ∈ N),

where Ψ−1 is the inverse of the function Ψ. If Ψ(t) = tp (0 ≤ t < ∞,
0 < p < ∞) then we use the simpler notation HT,p

n . The trigonometric
Fourier series of f ∈ L1

2π is called (H, Ψ)-summable at x ∈ R if

(1.4) lim
n→∞

(
HT,Ψ

n (f − f(x)
)
(x) = 0.

If Ψ(t) = tp (0 < p < ∞, t ≥ 0) then the shorter notation (H, p)-
summability will be used. The (H, p)-means increases with p, therefore
(H, p) (p ≥ 1)-summability implies (H, 1)-summability and hence the con-
vergence of the (C, 1)-means follows.

For functions in L1
2π the (H, p)-summability was investigated

by J. Marcinkiewicz [8] for p = 2, and later by A. Zygmund [15] for
the general case. He proved that (1.4) holds a.e. for Ψ(t) = tp (0 < p < ∞,
t ≥ 0), as n →∞.
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For the points in which the strong means tend to 0 O. D. Gabisonia

gave a simple sufficient condition (see [5], [10], [11]). Namely, modifying
the definition of Λnf he introduced the following operator

(1.5) (Λ(p)
n f)(x) :=

( ∑

t∈Tn

(
1
t

∫

Jn(x+t)

|f(s)− f(x)|ds

)p)1/p

,

where p > 0 and Tn := {(k + 1/2)2π2−n : −2n−1 ≤ k < 2n−1, k ∈ Z}.
Gabisonia [5] showed that the Hardy-operators can be estimated by

the Λ(p)
n ’s, i.e.

(1.6)
(
HT,p

n (f − f(x))
)
(x) ≤ Cp

(
Λ(p)

n f
)

(x) (p > 1).

Moreover (see [5], [10], [11]),

(1.7)
(
Λ(p)

n f
)

(x) → 0, if n →∞

for a.e. x ∈ R. The points x satisfying (1.7) are called Gabisonia-points or
strong Lebesgue-points of the function f . A.e. x point is a strong Lebesgue-
point for f therefore the result of Zygmund, the trigonometric Fourier-
series of any integrable function is a.e. (H, p) summable (0 < p < ∞),
follows by (1.6). Since Λnf = O(1)Λ(p)

n f (p ≥ 1, n > 0) we have that every
Gabisonia-point is a Lebesgue-point for f and this justifies the notion.
V. A. Rodin [10], [11] generalized these results for certain Ψ-means, and
BMO-means. Moreover, his idea to consider BMO-means was an essential
contribution to this subject.

In this paper we investigate the similar question for Walsh-Fourier
series. In Section 2 we introduce the dyadic analogue of Lebesgue- and
strong Lebesgue-points and summarize the results. It turns out that for
shift-invariant systems the (H, p) summability methods are a.e. equivalent
to each others for any p > 0. Thus it is enough to investigate the (H, 2)
summability (see Section 3).

In Section 4 we estimate the maximal operator of the strong (H, 2)-
means of Walsh-Fourier series by the maximal operator of dyadic Gabisonia
operators. In Section 5 we show that this operator is of weak type (1,1)
(in a little sharper sense as usual). This can be used to derive an L1-norm
estimation for this maximal function.
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2. Strong means of Walsh-Fourier series

The analogue of Lebesgue’s theorem for Walsh-Fourier series was
proved by N. J. Fine [4]. We note that in this case the Lebesgue charac-
terizations cannot be used. Namely, it follows from a result of D. K. Fad-

deeff [2] (see also Alexits [1]) that there exists an integrable func-
tion with a Lebesgue point such that the Walsh-Fourier series (WFS)
of this function is not (C, 1) summable at this point. The analogue no-
tion of the Lebesgue point for the Walsh-system is the following. Denote
In(t) the dyadic interval of lenght 2−n containing t ∈ I := [0, 1) and set
ek := 2−k−1 (k ∈ N). The point x ∈ I is called Walsh-Lebesgue point
(WLP) of f ∈ L1 := L1[0, 1) if

(2.1) (Wnf)(x) :=
n∑

k=0

2k

∫

In(xuek)

|f(s)−f(x)| ds → 0, as n →∞,

where u denotes the dyadic addition (see [13]).
It is known (see [13]) that if f ∈ L1 then almost every point is Walsh-

Lebesgue point for f . Furthermore, the WFS are (C, 1)-summable in the
Walsh-Lebesgue points.

The convergence of sequences of singular integral operators in Walsh-
Lebesgue points was investigated by F. Weisz [14].

The analogues of the results of Marcinkiewicz and Zygmund for the
Walsh-system was proved by F. Schipp [12] for p = 2. The general case
and the case of BMO-means was proved by V. A. Rodin [11]. In this
paper – similarly to Gabisonia’s result – we give a sufficient condition for
the (H, p)-summability of WFS. This condition can be obtained from (2.1)
in a similar way as we get the Gabisonia condition from the definition of
Lebesgue points.

On the basis of (1.5) and (2.1) we introduce the operators

(W (p)
n f)(x):=


 ∑

t∈Qn

(
n−1∑

k=0

2kχ[0,2−k)(t)
∫

In(xutuek)

|f(x)−f(s)|ds

)p



1/p

(n ∈ N, x ∈ I, p > 0),(2.2)
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where Qn := {k2−n : k = 0, 1, 2, . . . , 2n − 1} and χH denotes the charac-
teristic function of H. For n ∈ N let us introduce the projections

(2.3) (Enf)(x) := (SW
2n f)(x) = 2n

∫

In(x)

f(s) ds (f ∈ L1, x ∈ I)

and the operators

(V (p)
n g)(x) : =

( ∑

t∈Qn

∣∣∣
n∑

k=0

2k−nχ[0,2−k)(t)(Eng)(x u t u ek)
∣∣∣
p
)1/p

= 2−n/q

∥∥∥∥∥
n∑

k=0

2kχ[0,2−k)τekuxEng

∥∥∥∥∥
p

(2.4)

(g ∈ L1, x ∈ I, p > 0),

where (τsh)(x) := h(x u s) is the dyadic translation operator and 1/p +
1/q = 1.

We shall say that the point x ∈ I is a strong Walsh–Lebesgue point
(SWLP) for f ∈ L1 if

(2.5) lim
n→∞

(W (p)
n f)(x) = lim

n→∞

(
V (p)

n (|f − f(x)|)
)

(x) = 0.

By (2.1) and (2.2) we have Wnf ≤ W
(p)
n f (n ∈ N, p ≥ 1). Consequently,

every SWLP is a WLP.
The Hardy-operator with respect to the Walsh system will be denoted

by HW,p
n . We will show that for any function f ∈ L1 the HW,2

n f means
can be estimated by V

(2)
n f . Set

(2.6) HW,pf := sup
n

HW,p
n f, V (p)f := sup

n
V (p)

n f.

We shall prove the following inequality for these maximal operators.

Theorem 1. The maximal operator of the Hardy-operators HW,2
n sat-

isfies

(2.7) HW,2f ≤ 2V (2)(|f |) (f ∈ L1).

In Section 5 we show that the operator V (2) is of type (∞,∞) and of
weak type (1,1) in the following sharp form.
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Theorem 2. i) For any function f ∈ L∞

(2.8) ‖V (2)f‖∞ ≤ 2‖f‖∞.

ii) For any f ∈ L1 and y > 0 we have

(2.9)
∣∣∣
{

x ∈ I : (V (2)f)(x)>5y
}∣∣∣ ≤ 321

y

∫

{E∗|f |>y}
|f(s)| ds ≤ 321

y
‖f‖1,

where E∗f = supn |Enf | is the dyadic maximal operator.

Hence by Marcinkiewicz’s interpolation theorem we get

Corollary 1. For any function f ∈ Lp (1 < p ≤ ∞)

(2.10) ‖V (2)f‖p ≤ Cp‖f‖p,

where Cp depends only on p.

We remark that (2.10) can be obtained immediately from (2.9) with-
out applying Marcinkiewicz’s interpolation theorem. The same argument
yields the following estimation for the L1-norm of V (2)f

Corollary 2. For the integral of V (2)f we have

(2.11) ‖V (2)f‖1 ≤ C

(
‖f‖1 +

∫ 1

0

|f(s)| log
(E∗|f |)(s)
‖f‖1 ds

)
.

3. Estimation for the BMO-means

After having introduced (H, p) and (H, Ψ)-means now we introduce
the BMO-means. To this end set

(3.1) J := {J := [k2n, (k + 1)2n) ∩ N : k, n ∈ N}.

Then J is the collection of integer dyadic intervals. The number of ele-
ments in J ∈ J will be denoted by |J |. The mean value of the sequence
s = (sk, k ∈ N) with respect to J is denoted by

sJ :=
1
|J |

∑

k∈J

sk.
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The BMO norm of the sequence s is defined by

(3.2) ‖s‖BMO := sup
J∈J

ΩJ := sup
J∈J

(
|J |−1

∑

k∈J

∣∣sk − sJ
∣∣2

)1/2

.

This norm is in strong connection with the BMO-norm of functions.
Namely, denote s♦ the step function on [0,∞) having the value sn on
the interval [n, n + 1). Fix the number N ∈ N and set

(s♦N )(t) := s♦(2N t) (t ∈ I).

It is easy to see that

(3.3) ‖s‖BMO = sup
N
‖s♦N‖BMO,

where on the right hand side we take the usual dyadic BMO-norm of the
function s♦N . This connection can be used to deduce the properties of this
sequence norm. For example, if LΨ denotes the Orlicz-space generated by
the function Ψ(t) := exp(|t|)− 1 (t ∈ R) then BMO ⊂ LΨ and

(3.4) ‖f‖LΨ ≤ C‖f‖BMO (f ∈ BMO),

where C > 0 is an absolute constant. Furthermore it is known, that LΨ is
the minimal rearrangement invariant subspace in L1 containing BMO.

The 2N -th (H, p) mean of s corresponds to the Lp-norm of the func-
tion s♦N : 

2−N
2N−1∑

k=0

|sk|p



1/p

= ‖s♦N‖p (p > 0).

It is known, that

‖f‖p ≤ Cp‖f‖BMO (f ∈ BMO, 1 ≤ p < ∞),

where the constant Cp = O(p) does not depend on f . This implies

(3.5) s〈p〉 := sup
N


2−N

2N−1∑

k=0

|sk|p



1/p

≤ Cp‖s‖BMO (1 ≤ p < ∞).
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From (3.4) and (3.5) it follows that all of the mentioned means can
be estimated from above by the BMO-means. In the case of Fourier series
with respect to certain orthogonal systems a lower estimation is also true.
Suppose that the system ε = (εn, n ∈ N) is orthonormal with respect to
the scalar product 〈· , ·〉, |εn| ≤ 1 and has the following shift-property : For
every J = [k, k + 2s) ∩ N ∈ J
(3.6) εk+` = εkε` (0 ≤ ` < 2s).

For example the complex trigonometric system and the Walsh-system sat-
isfy (3.6). The k-th partial sum of the Fourier series with respect to the
system ε will be denoted by

(3.7) Sε
kf :=

k−1∑

`=0

〈f, ε`〉ε` (k ∈ N∗),

where by definition Sε
0f = 0.

First we show that (3.6) implies

(3.8) Sε
k+`f − Sε

kf = εkSε
`(fεk) (0 ≤ ` < 2s, [k, k + 2s) ∈ J ).

Indeed,

Sε
k+`f − Sε

kf =
∑

j∈[k,k+`)

〈f, εj〉εj = εk

∑

i∈[0,`)

〈fεk, εi〉εi = εkSε
`(fεk).

Hence for the means

(3.9) Ωε
Jf :=


|J |−1

∑

j∈J

∣∣∣∣∣S
ε
jf−2−s

∑

i∈J

Sε
i f

∣∣∣∣∣

2



1/2

(J = [k, k + 2s)∈J )

it follows that

(3.10) Ωε
[k,k+2s)f = Ωε

[0,2s)(fεk) ([k, k + 2s) ∈ J ).

In order to see this apply (3.8) for ` < 2s. Then

Sε
k+`f − 2−s

∑

j∈J

Sε
jf = (Sε

k+`f − Sε
kf)− 2−s

∑

j∈J

(Sε
j − Sε

kf)

= εk

(
Sε

`(fεk)− 2−s
2s−1∑

i=0

Sε
i (fεk)

)
.
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Hence

Ωε
[k,k+2s)f =


2−s

2s−1∑

`=0

∣∣∣∣∣S
ε
`(fεk)− 2−s

2s−1∑

i=0

Sε
i (fεk)

∣∣∣∣∣

2



1/2

= Ωε
[0,2s)(fεk).

The maximal operator of Ψ-means and BMO-means with respect to the
system ε are denoted by

Hε,Ψf := sup
n

Hε,Ψ
n f, Hε,BMOf := sup

J∈J
Ωε

Jf.

From (3.4) and (3.5) it follows that

(3.11) 2−n
2n−1∑

k=0

|Sε
kf |p ≤ Cp2−n

2n−1∑

k=0

(exp(|Sε
kf |)− 1).

Obviously
Ωε

[0,2n)f ≤ Hε,2
n f.

Consequently, if the system ε satisfies (3.6) then by (3.10) we get the
following reverse inequality

(3.12) Hε,BMOf ≤ sup
k

Hε,2(fεk).

In connection with this inequality we introduce the following notion.
Suppose that the operators H and V map functions defined on I into
functions. We say that the operator V is an absolute majorant of H if for
every f ∈ DH we have that |f | ∈ DV and |Hf | ≤ V |f |. Obviously every
positive linear operator is an absolute majorant for itself. From (1.6) and
from (2.7) and (2.9) it follows that the maximal operator of the Hardy-
operators both in the trigonometric case and in the Walsh case has an
absolute majorant with weak type (1,1). Using this concept we obtain from
(3.11) and (3.12) the next

Equvivalence Principle. Suppose that the complete unitary ortho-
normal system ε satisfies (3.6). If the maximal operator Hε,2 has an abso-
lute majorant of weak type (1, 1) then for any function f ∈ L1 the Fourier
series of f with respect to the system ε is a.e. (H, 2) summable. Moreover
in this case the (H, p) (1 ≤ p < ∞), (H, Ψ) (Ψ(t) = exp(t)− 1) and BMO
summabilities are equivalent in the a.e. convergence sense.
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Especially, Theorem 1 and 2 implies for the Walsh-system

Corollary 3. i) If f ∈ L1 and 0 < p < ∞, then

lim
n→∞

(
HW,p

n (f − f(x))
)
(x) = 0 for a.e. x ∈ I.

ii) Let f ∈ L1 and Ψλ(t) := exp(t/λ)− 1 (t ≥ 0, λ > 0). Then there

exists λ0 such that for every number λ > λ0

lim
n→∞

(HW,Ψλ
n (f − f(x)))(x) = 0 for a.e. x ∈ I.

4. Pointwise estimation for strong means

In order to show (2.7) we need the Walsh-Dirichlet kernels that are
denoted by

D0 := 0, Dm := DW
m :=

m−1∑

k=0

wk (m ∈ N∗).

First we prove the identity

Dm(t) = (d−n wm)(t) (t ∈ [2−n−1, 2−n), n, m ∈ N),(4.1)

where

(d−n g)(t) :=
n−1∑

k=0

2k−1 (g(t)− g(t u ek))− 2n−1 (g(t)− g(t u en))

(t ∈ I, n ∈ N∗)(4.2)

is the n-th modified dyadic difference operator . Indeed, from the definition
of the Walsh-functions it follows that

2k−1 (wm(t)− wm(t u ek)) = 2k−1(1− (−1)mk)wm(t) = 2kmkwm(t)

(t ∈ I, k ∈ N).
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Hence

d−n wm = wm

(
n−1∑

k=0

mk2k −mn2n

)
.

It is known (see [13]), that Dm can be written in the following form

Dm = wm

∞∑

j=0

mjw2j D2j


m =

∞∑

j=0

mj2j ∈ N

 .

Since [13]

w2j (t)D2j (t) =





2j , t ∈ [0, 2−j−1),

−2j , t ∈ [2−j−1, 2−j),

0, t ∈ [2−j , 1),

we have that

Dm(t) = wm

(
n−1∑

k=0

mk2k −mn2n

)
= (d−n wm)(t)

(
t ∈ [2−n−1, 2−n), n, m ∈ N)

and (4.1) is proved.
Denote

(4.3) (f ? g)(x) :=
∫ 1

0

f(x u t)g(t) dt = 〈τxf, g〉 (x ∈ I)

the dyadic convolution of the functions f ∈ L1, g ∈ L∞. Starting from the
representation (2.4) of V

(2)
n we prove inequality (2.7).

Proof of Theorem 1. Since SW
2n f = Enf we have

SW
m f = SW

m (Enf) = (Enf) ? Dm (m ≤ 2n).

Let the characteristic function of the interval [2−j−1, 2−j) be denoted by
χj (j ∈ N). Using (4.1) we can write the function Dm in the form

Dm =
n−1∑

k=0

χkd−k wm + mχ[0,2−n) (0 ≤ m < 2n).
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Introducing the notations

(4.4)

∆−
k g := d−k g +

1
2
g = −

k−1∑

j=0

2j−1τej g + 2k−1τek
g,

Lng :=
n−1∑

k=0

χk∆−
k g,

we obtain the following representation of the Dirichlet kernels:

Dm =
n−1∑

k=0

χk∆−
k wm − 1

2
wm + (m + 1/2)χ[0,2−n)

= Lnwm − 1
2
wm + (m + 1/2)χ[0,2−n).

Hence

SW
m f = (Enf) ? (Lnwm)− 1

2
f ? wm + (m + 1/2)2−nEnf.

Thus for the (H, 2) means we have

(4.5) (HW,2
n f)(x) ≤

(
2−n

2n−1∑
m=0

|〈τxEnf, Lnwm〉|2
)1/2

+
3
2
(E∗|f |)(x).

There is a suitable vector

(a0(x), a1(x), . . . , a2n−1(x)) ∈ R2n

,

2n−1∑

k=0

|ak(x)|2 = 1

such that the first term, without the factor 2−n/2, can be written in the
form

σ1(x) :=

(
2n−1∑
m=0

|〈τxEnf, Lnwm〉|2
)1/2

=
2n−1∑
m=0

am(x)〈τxEnf, Lnwm〉

=

〈
τxEnf, Ln

(
2n−1∑
m=0

am(x)wm

)〉
= 〈τxEnf, LnPx〉 = 〈L?

nτxEnf, Px〉.
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Here L?
n is the adjoint of Ln and the Walsh polinomial

Px =
∑2n−1

m=0 am(x)wm satisfies ‖Px‖2 = 1. Applying Cauchy’s inequality
we get

(4.6) σ1(x) ≤ ‖L?
nτxEnf‖2.

The operators ∆−
k are self-adjoint, therefore

L?
ng =

n−1∑

k=0

∆−
k (χkg).

Hence we have the following estimation for L?
ng:

|L?
ng| ≤

n−1∑

k=0

|∆−
k (χkg)| ≤

n−1∑

k=0

k∑

j=0

2j−1τej (χk|g|)

=
n−1∑

j=0

2j−1τej




n−1∑

k=j

χk|g|

 .

Clearly,
n−1∑

k=j

χk ≤ χ[0,2−j), τej χ[0,2−j) = χ[0,2−j).

Consequently,

(4.7) |L?
ng| ≤

n−1∑

j=0

2j−1χ[0,2−j)τej |g|.

It follows from (2.4) that En|f | ≤ V
(2)
n |f |, therefore by (4.4), (4.5), (4.6)

and (4.7) we have

(HW,2
n f)(x) ≤ 1

2
(V (2)

n |f |)(x) +
3
2
(E∗|f |)(x) ≤ 2(V (2)|f |)(x).

Hence (2.7) follows by taking the supremum.

5. The maximal operator of the Walsh–Gabisonia operators

In this section we prove Theorem 2. To this end we shall use the
Calderon–Zygmund decomposition in the following form (see [13]).
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Calderon–Zygmund lemma. Let f ∈ L1 and y > ‖f‖1. Then there
exist a sequence of pairwise disjoint intervals Jk ⊆ I (k ∈ N∗) and a
decomposition f =

∑∞
k=0 fk of the function f such that :

i) ‖f0‖∞≤2y,(5.1)

ii) {fk 6= 0}⊆Jk,

iii)

∫

Jk

fk(s)ds=0,

iv) |Jk|−1

∫

Jk

|fk(s)|ds ≤ 4y (k ∈ N∗),

v)

∞∑

j=1

|Jj | ≤ 1
y

∫

U

|f(s)|ds,

vi) U :=
∞⋃

j=1

Jj = {x ∈ I : (E∗|f |)(x) > y}.

We shall estimate the maximal operator V (2)f on the complementer
of the set U by generalized convolution operators. In connection with this
we prove

Lemma 1. Let I = (Jk, k ∈ N∗) be a system of pairwise disjoint
dyadic intervals and let ϕk ∈ L1 (k ∈ N∗) be a sequence of functions
satisfying

M := sup
k
‖ϕk‖1 < ∞.

Then the generalized convolution operator

Tf :=
∞∑

k=1

(χJk
f) ? ϕk(5.2)

satisfies

‖Tf‖1 ≤ M‖χUf‖1 (f ∈ L1),(5.3)

where U :=
⋃∞

k=1 Jk.

Proof. Using the inequality

‖g ? h‖1 ≤ ‖g‖1‖h‖1 (g, h ∈ L1)
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we get that the series (5.2) converges in L1–norm and

‖Tf‖1 ≤
∞∑

k=1

‖χJk
f‖1‖ϕk‖1 ≤ M

∞∑

k=1

‖χJk
f‖1 = M‖χUf‖1.

In the case U = I and ϕk = ϕ (k ∈ N∗) we have

Tf = f ? ϕ,

and this justifies the notion. We will apply this lemma for operators defined
by the sequences

ϕ
〈1〉
j :=

∞∑

k=j

2−k∆jD2k , ϕ
〈2〉
j := 2−j

j∑

k=0

∆kD2k (j ∈ N),

where

∆kg :=
k∑

j=0

2j−1τej g (k ∈ N).

Since
‖D2k‖1 = 1, ‖∆jD2k‖1 < 2j (j, k ∈ N),

we obtain

‖ϕ〈1〉j ‖1 ≤ 2j
∞∑

k=j

2−k = 2, ‖ϕ〈2〉j ‖1 = 2−j

j∑

k=0

2k < 2 (j ∈ N).

Thus Lemma 1 can be applied for every subsequence of these sequences.
Let |Jk| = 2−νk denote the lenght of Jk and let us introduce the generalized
convolution operators

(5.4) T 〈i〉f =
∞∑

k=1

(χJk
f) ? ϕ〈i〉νk

(f ∈ L1, i = 1, 2).

Applying Lemma 1, we get

Corollary 5. The operators T 〈i〉 (i = 1, 2) satisfy

‖T 〈i〉f‖1 ≤ 2‖χUf‖1 (f ∈ L1, i = 1, 2).
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Taking (2.4), i.e. the following form of the operators V
(2)
n

(V (2)
n f)(x) = 2−n/2

∥∥∥∥∥
n−1∑

k=0

2kχ[0,2−k)τekuxEnf

∥∥∥∥∥
2

,

and applying the decomposition of f introduced in (5.1) we show that the
operators V

(2)
n can be estimated by the operators T 〈i〉 on the complemen-

tary set U := I \ U of U . More precisely we prove

Lemma 2. Let g =
∑∞

k=1 fk, where the fk’s (k ∈ N∗) are the func-

tions in the Calderon–Zygmund decomposition of f corresponding to the

parameter y > 0. Denote |Jk| = 2−νk (k ∈ N∗) the lenght of Jk. Then the

following estimation holds at every point x ∈ U :

(5.5) |(V (2)g)(x)| ≤ 8y
(
(T 〈1〉|g|)(x) + 4(T 〈2〉|g|)(x)

)
(x ∈ U).

Proof. If νj ≥ n then Enfj = 0. Therefore, the square of V (2)g can
be written in the form

|(V (2)
n g)(x)|2 = 2−n

∫ 1

0

∣∣∣∣∣∣

n−1∑

k=0

2kχ[0,2−k)(u)
(
En

( ∑

j:νj<n

fj

))
(xuekuu)

∣∣∣∣∣∣

2

du

=
∑

(j,k)∈A(n)

α
(n)
(j,k)(x),

where

A(n) := {(j, k) : j = (j1, j2), k = (k1, k2), 0 ≤ νj1 , νj2 < n, 0 ≤ k1, k2 < n} ,

and for (j, k) ∈ A(n) the α’s are defined by

(5.6)
α

(n)
(j,k)(x) := 2−n+k1+k2

∫ 1

0

χ[0,2−k1∨k2 )(u)(Enfj1)

×(x u ek1 u u)(Enfj2)(x u ek2 u u) du.

Since

α
(n)
(`,k)(x) = α

(n)

(ˆ̀,k̂)
(x)

(
ˆ̀ := (`2, `1), k̂ :=(k2, k1), ` = (`1, `2), k=(k1, k2)

)
,
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we have that the last sum can be estimated as

(5.7) |(V (2)
n g)(x)|2 ≤ 2

∑

(j,k)∈A
(n)
1

|α(n)
(j,k)(x)|,

where A
(n)
1 := {(j, k) ∈ A(n) : νj1 ≤ νj2}. For ν` < n it follows from (5.1)

iii) and iv) that

(5.8)
(Enf`)(s) = 0 (s /∈ J`),

2−n|(Enf`)(s)| ≤
∫

J`

|f(t)| dt ≤ 4y|J`| (s ∈ J`).

For ` ∈ N∗ and for every index (j, k) set

(5.9) h`(s) :=
{

0 (s /∈ J`),

|J`| (s ∈ J`),

and

(5.10)
α(j,k)(x) := 2k1+k2

∫ 1

0

χ[0,2−k1∨k2 )

×(u u x)|fj1(u u ek1)|hj2(u u ek2) du.

Observe that these functions do not depend on n. Then by (5.6), (5.8)
and (5.9) we have

(5.11)
∣∣∣α(n)

(j,k)(x)
∣∣∣ ≤ 4yα(j,k)(x)

(
(j, k) ∈ A

(n)
1

)
.

If ki ≥ νji then u u eki ∈ Jji if and only if u ∈ Jji . Consequently,

χ[0,2−k1∨k2 )(u u x)χJji
(u u eki) = 0 (x ∈ U, i = 1, 2).

Hence
α

(n)
(j,k)(x) = 0, if either k1 ≥ νj1 , or k2 ≥ νj2 .

for every x ∈ U. Thus in the points x ∈ U we have

∑

(j,k)∈A
(n)
1

∣∣∣α(n)
(j,k)(x)

∣∣∣ ≤ 4y
∑

(j,k)∈A

α(j,k)(x) (x ∈ U),
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where

A := {(j, k) : j ∈ N∗ × N∗, k ∈ N× N, νj1 ≤ νj2 , k1 < νj1 , k2 < νj2} .

The last sum does not depend on n therefore by (5.7) and (5.11) we have
that the square of the maximal operator V (2) can be estimated by

(5.12) |(V (2)g)(x)|2 ≤ 8y
∑

(j,k)∈A

α(j,k)(x) (x ∈ U).

We will decompose the sum according to the following pairwise disjoint
subsets of A:

A = {(j, k) ∈ A : k1 ≤ k2} ∪ {(j, k) ∈ A : k1 > k2}
= {(j, k) ∈ A : k1 ≤ k2} ∪A3 = {(j, k) ∈ A : k1 ≤ k2, νj1 ≤ k2}
∪ {(j, k) ∈ A : k1 ≤ k2, νj1 > k2} ∪A3 = A1 ∪A2 ∪A3.

The corresponding sums are

(5.13) Fi(x) :=
∑

(j,k)∈Ai

α(j,k)(x) (x ∈ U, i = 1, 2, 3).

If (j, k) ∈ A1, then 0 ≤ k1 < νj1 ≤ k2 < νj2 . By (5.9) we have

2k2χ[0,2−k2 )(u u x)
∑

j2:k2<νj2

hj2(u u ek2) ≤
1
2
χ[0,2−k2 )(u u x).

Then it follows from the definition of ∆` and from T 〈1〉 and by (5.10) that

F1(x) ≤
∞∑

j1=1

∑

k2≥νj1

νj1∑

k1=0

2k1−1

∫ 1

0

χ[0,2−k2 )(u u x)|fj1(u u ek1)| du

=
∞∑

j1=1


|fj1 | ? ∆νj1




∞∑

k2=νj1

2−k2D2k2





 (x) = (T 〈1〉|g|)(x) (x ∈ U).

If (j, k) ∈ A2, then 0 ≤ k1 ≤ k2 < νj1 ≤ νj2 . Again by (5.9) we have

(5.14)
∑

j2:νj1≤νj2

hj2(u u ek2) ≤ 2−νj1 (u ∈ I).



On the strong summability of Walsh series 629

Hence it follows in a similar way as before that

F2(x) ≤
∞∑

j1=1

νj1∑

k2=0

k2∑

k1=0

2k1−νj1

∫ 1

0

D2k2 (u u x u ek1)|fj1(u)| du

= 2
∞∑

j1=1

(
|fj1 | ?

(
2−νj1

νj1∑

k2=0

∆k2D2k2

))
(x) = 2(T 〈2〉|g|)(x) (x ∈ U).

Finally let (j, k) ∈ A3. Then 0 ≤ k2 < k1 < νj1 ≤ νj2 , therefore by (5.14)
we have

F3(x) ≤
∞∑

j1=1

2−νj1

νj1∑

k1=0

k1−1∑

k2=0

2k2

∫ 1

0

D2k1 (u u x)|fj1(u u ek1 | du

=
∞∑

j1=1

2−νj1

νj1∑

k1=0

k1−1∑

k2=0

2k2

∫ 1

0

D2k1 (u u x)|fj1(u)| du

=
∞∑

j1=1

2−νj1

(
|fj1 | ?

( νj1∑

k1=0

2k1D2k1

))
(x) (x ∈ U).

Recall the definition of ∆` to see

2`−1D2` ≤ ∆`D2` .

Consequently F3(x) ≤ 2(T 〈2〉|g|)(x) holds true in the points of U .
Summarizing our inequalities we have by (5.12) and (5.13) that

|(V (2)g)(x)|2 ≤ 8y(F1(x) + F2(x) + F3(x))

≤ 8y
(
(T 〈1〉|g|)(x) + 4(T 〈2〉|g|)(x)

)
(x ∈ U).

Lemma 2 is proved.

Now we prove Theorem 2.

Proof of Therem 2. Let us take the representation (2.4) of the op-
erators V

(2)
n and apply the inequality ‖Enf‖∞ ≤ ‖f‖∞ to obtain

(V (2)
n f)(x) ≤ 2−n/2‖f‖∞

∥∥∥∥∥
n−1∑

k=0

2kχ[0,2−k)

∥∥∥∥∥
2

≤ 2‖f‖∞.
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Taking the supremum with respect to n we get proof of part i) of our
theorem.

In the proof of part ii) we start with the number y > ‖f‖1 and apply
the Calderon–Zygmund decomposition for f . With the notations of this
decomposition lemma the function f can be written as f = f0 + g, where
‖f0‖∞ ≤ 2y. Applying the inequality of part i) and the subadditivity of
V (2) we get

(V (2)f)(x) ≤ (V (2)f0)(x) + (V (2)g)(x) ≤ 4y + (V (2)g)(x)

(for a.e. x ∈ I).

Hence

(5.15)
∣∣∣
{

x : (V (2)f)(x) > 5y
∣∣∣
}
≤

∣∣∣
{

x : (V (2)g)(x) > y
∣∣∣
}

.

By (5.1) v), vi) we have

(5.16)
∣∣∣
{

x ∈ U : (V (2)g)(x) > y
∣∣∣
}
≤ |U | ≤ 1

y

∫

U

|f(s)| ds,

therefore it is enough to estimate the function V (2)g in the points of U .
By Lemma 2 we have

∣∣∣
{

x ∈ U : (V (2)g)(x) > y
∣∣∣
}
≤ 1

y2

∫

U

|(V (2)g)(x)|2 dx

≤ 8
y

∫

U

(
(T 〈1〉g)(x) + 4(T 〈2〉g)(x)

)
dx.

Applying Corollary 5 we get

(5.17)
∣∣∣
{

x ∈ U : (V (2)g)(x) > y
∣∣∣
}
≤ 80

y

∫

U

|g(s)| ds.

On the basis of (5,1) ii) iv), v) and vi) we have

∫

U

|g(s)| ds =
∞∑

j=1

∫

Jj

|fj(s)| ds ≤ 4y

∞∑

j=1

|Jj | ≤ 4
∫

U

|f(s)| ds.

Therefore, it follows from (5.15), (5.16) , (5.17) and (4.1) vi) that (2.9) ii)
holds for every y > ‖f‖1. Finally, if we apply (E∗|f |)(x) ≥ ‖f‖1 (x ∈ I)
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for the case ‖f‖1 > y we get that the set {E∗|f | > y} is equal to the
interval [0, 1). Consequently, in this case we have 321‖f‖1/y ≥ 321 on the
right hand side wich is greater than the left hand side.

Theorem 2 is proved.

Proof of Corollary 1. Let F := V (2)f and g := E∗|f |. Inequality
(2.9) is equivalent to

(5.18)
∫ 1

0

χ{F>5y}(s) ds ≤ 321
y

∫ 1

0

χ{g>y}(s)|f(s)| ds (y > 0).

Let us take the left side. Multiply it by pyp−1 then integrate with respect
to y and apply Fubini’s theorem to obtain

∫ ∞

0

pyp−1

(∫ 1

0

χ{F>5y}(s)ds

)
dy

=
∫ 1

0

(∫ F (s)/5

0

pyp−1 dy

)
ds =

∫ 1

0

|F (s)/5|p ds.

Applying the same procedure for the right hand side, except for the factor
321, we get

∫ ∞

0

pyp−2

(∫ 1

0

χ{g>y}(s)|f(s)| ds

)
dy =

∫ 1

0

(
|f(s)|

∫ g(s)

0

pyp−2 dy

)
ds

=
p

p− 1

∫ 1

0

|f(s)| |g(s)|p−1ds.

Thus we proved

(5.19)
∫ 1

0

|F (s)|p ds ≤ 321 · 5p p

p− 1

∫ 1

0

|f(s)| |g(s)|p−1 ds.

Applying Hölder’s and Doob’s inequalities and (p−1)q = p, and p/q+1 = p

we get

∫ 1

0

|f(s)| |g(s)|p−1 ds ≤ ‖f‖p ‖g‖p/q
p ≤

(
p

p− 1

)p/q

‖f‖p
p.
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Comparing this with (5.19) we obtain

‖F‖p ≤ C
p

p− 1
‖f‖p (C < 5 · 321).

Proof of Corollary 2. Applying inequality (5.18) for y ≥ ‖f‖1 and
integrating with respect to y we get

∫ ∞

‖f‖1
|{F > 5y}| dy ≤ 321

∫ 1

0

|f(s)|
(∫ g(s)

‖f‖1

dy

y

)
ds

= 321
∫ 1

0

|f(s)| log
g(s)
‖f‖1 ds.

Since ∫ ‖f‖1

0

|{F > 5y}| dy ≤ ‖f‖1,

we can finish the proof by recalling that

1
5

∫ 1

0

F (s) ds =
∫ ∞

0

|{F > 5y}| dy.
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