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Oscillation criteria for nonlinear differential
equations with several deviating arguments

By S. R. GRACE (Giza)

Abstract. In this paper we reduce the problem of the oscillation of the solu-
tions of nonlinear differential equations with several deviating arguments of the form
d
dt

1
an−1(t)

d
dt

. . . d
dt

1
a1(t)

d
dt

x(t)± f(t, x[g1(t)], . . . , x[gm(t)]) = 0 to the problem of oscil-

lation of a certain set of second order ordinary differential equations of the type�
1

ai(t)
ẏ(t)

�.
+ Qi(t)|y(t)|λsgny(t) = 0, i = 1, 2, . . . , n− 1 and λ > 0.

The obtained criterion extends the results by Lovelady, Kusano, Naito and Trench
in such a way that they can be applied in cases of nonlinear differential equations with
several deviating arguments.

1. Introduction

Consider the functional differential equation

(E; δ) Lnx(t) + δf(t, x[g1(t)], . . . , x[gm(t)]) = 0,

where δ = ±1, n ≥ 3, L0x(t) = x(t), Lkx(t) = 1
ak(t) (Lk−1x(t)). , k =

1, 2, . . . , n,
(
˙= d

dt

)
, an(t) = 1, ai : [t0,∞) → (0,∞), i=1, 2, . . . , n − 1,

gj : [t0,∞) → R, j = 1, 2, . . . ,m, f : [t0,∞) ×Rm → R are continuous
and lim

t→∞
gj(t) = ∞, j = 1, 2, . . . ,m.

We will assume that

(1)

∞∫
ai(s)ds = ∞, i = 1, 2, . . . , n− 1.

There exist continuous functions q : [t0,∞) → R+ = [0,∞) and
σ : [t0,∞) → R, and nonnegative constants λi (i = 1, 2, . . . , m) with
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m∑
i=1

λi = λ > 0 such that

f(t, x1, . . . , xm)sgnx1 ≥ q(t)
m∏

i=1

(|xi|)λi for t ∈ [t0,∞)(2)

and x1xi > 0 (i = 1, 2, . . . , m), and

σ(t) = min{t, g1(t), . . . , gm(t)}.(3)

The domain of Ln, D(Ln) is defined to be the set of all functions
x : [Tx,∞) → R such that Ljx(t), j = 0, 1, . . . , n exist and are continuous
on [Tx,∞), Tx ≥ t0. A solution of equation (E; δ) is called oscillatory if it
has arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation
(E; δ) is said to be oscillatory if all of its solutions are oscillatory.

Equation (E; δ) is said to be almost oscillatory if:
(i) for δ = 1 and n even, every solution of equation (E; δ) is oscillatory;
(ii) for δ = 1 and n odd, every solution x of equation (E; δ) is either

oscillatory or |Lix(t)| → 0 monotonically as t →∞, i=0, 1, . . . , n−1;
(iii) for δ = −1 and n even, every solution x of equation (E; δ) is oscillatory,

|Lix(t)| → 0 monotonically as t → ∞, i = 0, 1, . . . , n − 1 or else
|Lix(t)| → ∞ monotonically as t →∞, i = 0, 1, . . . , n− 1;

(iv) for δ = −1 and n odd, every solution x of equation (E; δ) is either oscil-
latory or |Lix(T )| → ∞ monotonically as t →∞, i = 0, 1, . . . , n− 1.
Next, equation (E; δ) is said to have “property A” if (i) and (ii) are
satisfied and (iii) and (iv) are replaced by:

(iii)’ for δ = −1 and n even, every solution x(t) of equation (E; δ) is either
oscillatory or |Lix(t)| → 0 monotonically as t →∞, i=0, 1, . . . , n−1;

(iv)’ for δ = −1 and n odd, every solution of equation (E; δ) is oscillatory,
respectively.
Also, equation (E; δ) is said to have “property B” if (i) and (iv) are
satisfied and (ii) and (iii) are replaced by:

(ii)’ for δ = 1 and n odd, every solution of equation (E; δ) is oscillatory.
(iii)’ for δ = −1 and n even, every solution x(t) of equation (E; δ) is either

oscillatory or |Lix(t)| → ∞monotonically as t →∞, i=0, 1, . . . , n−1,
respectively.
The behavioral properties of the solutions of the equation (E; δ) and/or

related equations have been discussed by numerous authors using various
techniques and as recent contributions to this study we cite the papers of
Chanturya [1], Grace and Lalli ([2] - [4]), Kitamura [5], Kusano and
Naito [6], Lovelady [7] and [8], Philos [9] and [10], Trench ([11]–[13]),
Willett [14] and Werbowski [15].
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Lovelady [7] and [8] considered the retarded equation

(L; δ) x(n)(t) + δq(t)x[g(t)] = 0,

where δ = ±1, n > 3, g, q : [t0,∞) → R are continuous, q(t) ≥ 0 and
not identically zero for all large t, g(t) ≤ t and g(t) → ∞ as t → ∞,
and established some interesting results. He has related oscillation of all
solutions of equation (L; δ) to oscillation of certain associated second order
equations.

Lovelady’s results for the equation (L; 1) have been extended by
Trench [11] to more general equations of the form

x(n)(t) + f(t, x(t)) = 0,

where n ≥ 3, f : [t0,∞)×R → R is continuous,

f(t, x)
x

≥ q(t) ≥ 0 for x 6= 0 and t ≥ t0,

and q is defined as in equation (L; δ).
On the other hand, the result proved in [8] has been generalized by

Kusano and Naito [6] to the general linear equation

Lnx(t) + q(t)x(t) = 0,

where Ln and q are defined as in equation (E; δ).
The interesting results of ([6]–[8] and [11]) have limited applications,

since they are applicable only to linear or almost linear equations and fail
to apply to other classes of nonlinear differential equations with general
deviating arguments.

Therefore, the purpose of this paper is to extend the results of Love-
day, Kusano and Naito and Trench to equations of type (E; δ) with
general deviating arguments.

The main results of this paper are presented in the form of four the-
orems. In Theorem 1, we give a sufficient condition for equation (E; δ)
to be almost oscillatory, while Theorem 2 [respectively Theorem 3] con-
cerns with a sufficient condition so that equation (E; δ) has property A
[respectively property B]. Theorem 4 deals with the oscillatory behaviour
of equation (E; δ) when λ = 1.

2. Main results

We begin by formulating preparatory results which are needed in prov-
ing our main results.
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For functions pi : [t0,∞) → R, i = 1, 2, . . . , we define

I0 = 1

Ii(t, s; pi, . . . , p1) =

t∫

s

pi(u)Ii−1(u, s; pi−1, . . . , p1)du, i = 1, 2, . . . .

It is easy to verify that for i = 1, 2, . . . , n− 1

Ii(t, s; p1, . . . , pi) = (−1)iIi(s, t; pi, . . . , p1)

and

Ii(t, s; p1, . . . , pi) =

t∫

s

pi(u)Ii−1(t, u; p1, . . . , pi−1)du.

The following two lemmas will be needed in the proofs of the main
results.

Lemma 1. If x ∈ D(Ln), then for t, s ∈ [t0,∞) and 0 ≤ i < k ≤ n

(i) Lix(t) =
k−1∑

j=i

Ij−i(t, s; ai+1, . . . , aj)Ljx(s)

+

t∫

s

Ik−i−1(t, u; ai+1, . . . , ak−1)ak(u)Lkx(u)du,

(ii) Lix(t) =
k−1∑

j=i

(−1)j−iIj−i(s, t; aj , . . . , ai+1)Ljx(s)

+ (−1)k−i

s∫

t

Ik−i−1(u, t; ak−1, . . . , ai+1)ak(u)Lkx(u)du.

This lemma is a generalization of Taylor’s formula with remainder encoun-
tered in calculus. The proof is immediate.

Lemma 2. Suppose condition (1) holds. If x ∈ D(Ln) is of constant
sign and not identically zero for all large t, then there exist a tx ≥ t0 and
an integer `, 0 ≤ ` ≤ n with n+ ` even for x(t)Lnx(t) nonnegative or n+ `
odd for x(t)Lnx(t) nonpositive and such that for every t ≥ tx

` > 0 implies x(t)Lkx(t) > 0 (k = 0, 1, . . . , `)
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and

` ≤ n− 1 implies (−1)`−kx(t)Lkx(t) > 0 (k = `, ` + 1, . . . , n).

This lemma generalizes a well–known lemma of Kiguaradze and can
be proved similarly.

It will be convenient to make use of the following notation in the
remainder of this paper. For any T ≥ t0 and all t ≥ s ≥ T we let

αi[t, s] = Ii(t, s; a1, . . . , ai), i = 1, 2, . . . , n− 1;

ζi[t, s] = Ii(t, s; ai, . . . , a1), i = 1, 2, . . . , n− 1;

βi[t, s] = In−i−1(t, s; an−1, . . . , ai+1), i = 1, 2, . . . , n− 1;

Ri[t, T ] =

t∫

T

ai(s)ds, i = 1, 2, . . . , n− 1;

γi,j [σ(t), T ] =

σ(t)∫

T

αi−2[gj(t), s]ai−1(s)Ri[s, T ]ds, i = 2, 3, . . . , n−1, and
j = 1, 2, . . . , m;

γ1,j [σ(t), T ] = R1[σ(t), T ], j = 1, 2, . . . , m.

In the following theorem, we give a sufficient condition for equation
(E; δ) to be almost oscillatory. In fact, we relate oscillation of equation
(E; δ) to oscillation of a certain set of second order nonlinear ordinary
differential equations; namely

(4; i)
(

1
ai(t)

ẏ(t)
).

+ Qi(t, T )|y(t)|λsgny(t) = 0, i = 1, 2, . . . , n− 1,

for T sufficiently large with σ(t) > T, where

Qi(t, T ) = ai+1(t)

∞∫
βi+1[u, t]q(u)

m∏

j=1

(
γi,j [σ(u), T ]

Ri[u, T ]

)λj

du,

i = 1, 2, . . . , n− 2

Qn−1(t, T ) = q(t)
m∏

J=1

(
γn−1,j [σ(t), T ]

Rn−1[t, T ]

)λj

.

Theorem 1. Suppose that conditions (1), (2) and (3) hold. Then
equation (E; δ) is almost oscillatory if:
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(i) for δ = 1 and n even, the equations (4; i) (i = 1, 3, . . . , n − 1) are
oscillatory;

(ii) for δ = 1 and n odd, the equations (4; i) (i = 2, 4, . . . , n − 1) are
oscillatory and for all large T

(5)

∞∫
β0[s, T ]q(s)ds = ∞;

(iii) for δ = −1 and n even, the equations (4; i) (i = 2, 4, . . . , n − 2) are
oscillatory, condition (5) and for all large T

(6)

∞∫
q(s)

m∏

i=1

(αn−1[gi(s), T ])λids = ∞,

are satisfied;
(iv) for δ = −1 and n odd, the equations (4; i) (i = 1, 3, . . . , n − 2) are

oscillatory and condition (6) is satisfied.

Proof. Let x(t) be a nonoscillatory solution of equation (E; δ). With-
out loss of generality, we assume that x(t) 6= 0 for all t ≥ t0. Furthermore,
we suppose that x(t) > 0, x[gi(t)] > 0 (i = 1, 2, . . . ,m) and x[σ(t)] > 0
for t ≥ t0, since the substitution w = −x transforms equation (E; δ) into
an equation of the same form subject to the assumptions of the theorem.

By Lemma 2, there exist a t1 ≥ t0 and an integer ` ∈ {0, 1, . . . , n}
with n + ` odd if δ = 1 or n + ` even if δ = −1 such that

(7)
{

x(t)Lkx(t) > 0 for t ≥ t1, (k = 1, 2, . . . , `),
(−1)`−kx(t)Lkx(t) > 0 for t ≥ t1, (k = `, ` + 1, . . . , n).

Suppose ` ∈ {1, 2, . . . , n− 2}. Then, from Lemma 1 (ii) we obtain

L`+1x(t) =
n−1∑

j=`+1

(−1)j−`−1Ij−`−1(t, s; aj , . . . , a`+2)Ljx(s)+

(−1)n−`−1

s∫

t

In−`−2(u, t; an−1, . . . , a`+2)Lnx(u)du

for s ≥ t ≥ t1. Using (2), (7) and letting s →∞ we have

(8) −L`+1x(t) ≥
∞∫

t

β`+1[u, t]q(u)
m∏

i=1

(x[gi(u)])λidu, t ≥ t1.
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Again, from Lemma 1 (i) and ` ∈ {2, 3, . . . , n− 2} we get

x(t) =
`−2∑

j=0

Ij(t, t1; a1, . . . , aj)Ljx(t1)+

+

t∫

t1

I`−2(t, u; a1, . . . , a`−2)a`−1(u)L`−1x(u)du

≥
t∫

t1

α`−2[t, u]a`−1(u)L`−1x(u)du, t ≥ t1.

There exists a t2 ≥ t1 so that σ(t) ≥ t1 for all t ≥ t2 and

(9) x[gj(t)] ≥
σ(t)∫

t1

α`−2[gj(t), u]a`−1(u)L`−1x(u)du, j = 1, 2, . . . , m.

From the definition of the operator Ln, we have

(10) (L`−1x(t)). = a`(t)L`x(t) for t ≥ t2.

Integrating (10) from t2 to t and using the fact that L`x(t) is nonincreasing
for t ≥ t1, we get

L`−1x(t) = L`−1x(t2) + R`[t, t2]L`x(t)−
t∫

t2

R`[s, t2]a`+1L`+1x(s)ds.

Since L`+1x(t) < 0 for t ≥ t1 we obtain

(11) L`−1x(t) ≥ R`[t, t2]L`x(t) for t ≥ t2.

From (11), we can easily see that the function

(12)
L`−1x(t)
R`[t, t2]

is nonincreasing for t ≥ t3 for some t3 > t2.

Thus, inequality (9) takes the form

(13)
x[gj(t)] ≥ L`−1x(t)

R`[t, t2]

σ(t)∫

t3

α`−2[gj(t), u]a`−1(u)R`[u, t2]du

=
γ`,j [σ(t), t2]

R`[t, t2]
L`−1x(t) for t ≥ t3, j = 1, 2, . . . , m.
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Next, let ` = 1. From (7), (12) and condition (3) we have

x[gj(t)] ≥ x[σ(t)] ≥ R1[σ(t), t2]
R1[t, t2]

x(t)

=
γ1,j [σ(t), t2]

R1[t, t2]
L0x(t) for t ≥ t3, j = 1, 2, . . . , m.

That is inequality (13) holds for ` = 1.
Combining (8) and (13) and using condition (3) we get

−L`+1x(t) ≥
∞∫

t

β`+1[u, t]q(u)
m∏

j=1

(
γ`,j [σ(u), t2]

R`[u, t2]

)λj

(L`−1x(u))λdu,

or

(14) −
(

1
a`(t)

(L`−1x(t)).
).
≥ Q`(t, t2)(L`−1x(t))λ for t ≥ t3.

Set w(t) = L`−1x(t). Then inequality (14) takes the form
(

1
a`(t)

ẇ(t)
).

+ Q`(t, t2)(w(t))λ ≤ 0 for t ≥ t3.

Now, from Lemma 2 in [3] (also, see [1]), it follows that the equation
(

1
a`(t)

ẇ(t)
).

+ Q`(t, t2)(w(t))λ = 0, t ≥ t3

has a nonoscillatory solution. But this is impossible by the hypothesis.
Next, let ` = n− 1. From inequality (13), condition (2) and equation

(E; 1), we have

−Lnx(t) =−
(

1
an−1(t)

(Ln−2x(t)).
).

≥ q(t)
m∏

j=1

(
γn−1,j [σ(t), t2]

Rn−1[t, t2]

)λj

(Ln−2x(t))λ

= Qn−1(t, t2)(Ln−2x(t))λ for t ≥ t∗3 for some t∗3 > t2.

Let v(t) = Ln−2x(t). Then the above inequality becomes
(

1
an−1(t)

v̇(t)
).

+ Qn−1(t, t2)(v(t))λ ≤ 0 for t ≥ t∗3.
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Again, by Lemma 2 in [3], we see that the equation
(

1
an−1(t)

v̇(t)
).

+ Qn−1(t, t2)(v(t))λ = 0, t ≥ t∗3,

has a nonoscillatory solution, contradicting the hypothesis.
The proofs when ` = 0 and ` = n are similar to the proofs of those

cases in Theorems 1 and 3 in [2] and also in [9], and hence will be omitted.
This completes the proof.

Remarks. 1. Theorem 1 extends Lovelady’s results in [7] and [8] and
the work of Kusano and Naito [6] in such a way that they can be ap-
plied in cases of nonlinear differential equations and especially with general
deviating arguments.

2. Theorem 1 extends and improves some of the known oscillation
criteria appeared in the literature. In particular, Theorem 1 can be applied
to cases in which Theorems 3.2, 3.3 and 5.1 in [5] and some of the results
in [1]–[3] and [6]–[15] are not applicable. Such cases are described in the
following examples.

Example 1. Consider the fourth order equation

(E1; δ)
(

1
t

(
1
t

(
1
t
ẋ(t)

). ). ).
+ δctc1 |x[tc2 ]|λsgnx[tc2 ] = 0, t > 0,

where δ = ±1, λ, c and c2 are positive constants and c1 is any constant.
Here, we take

ai(t) = t, i = 1, 2, 3, q(t) = ctc1 , g(t) = tc2 and f(x) = |x|λsgnx.

It is easy to check that all conditions of Theorem 1 are satisfied for equation
(E1, δ) in the following special cases:

λ =
5
3
, c1 = −14

3
, c2 =

1
2

and c > 0 (i.e. superlinear),(i)

λ = 1, c1 = −7, c2 = 1 and c > 0 (i.e. linear), and(ii)

λ =
1
3
, c1 = −13

3
, c2 = 3 and c > 0 (i.e. sublinear),(iii)

and hence equation (E1; δ) is almost oscillatory. One can easily check that
the results in [1]–[3], [6]–[15] and Theorems 3.2, 3.3 and 5.1 in [5] are not
applicable to equation (E1; δ) for the above cases.

In what follows we let

D = {t ∈ [t0,∞) | gi(t) ≤ t (i = 1, 2, . . . , m)}
A = {t ∈ [t0,∞) | gi(t) ≥ t (i = 1, 2, . . . ,m)}.
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In the case when the deviating arguments gi(t) (i = 1, 2, . . . ,m) are of
mixed type, we assume that there exist nondecreasing continuous functions

τ, ξ : [t0,∞) → R

such that

τ(t) ≤ t ≤ ξ(t) for t ≥ t0,

gi(t) ≤ τ(t) for t ∈ D, i = 1, 2, . . . ,m,

ξ(t) ≤ gi(t) for t ∈ A, i = 1, 2, . . . , m.

Also, we let

D(t) = D ∩ [τ(t), t] and A(t) = A ∩ [t, ξ(t)].

In the following result we present a sufficient condition so that equa-
tion (E; δ) has property A.

Theorem 2. Let conditions (1) – (3) hold. Then equation (E; δ) has
property A if:
(i) for δ = 1 and n even, the equations (4; i) (i = 1, 3, . . . , n − 1) are

oscillatory;
(ii) for δ = 1 and n odd, the equations (4; i) (i = 2, 4, . . . , n − 1) are

oscillatory and condition (5) holds;
(iii) for δ = −1, λ > 1 and n even, the equations (4; i) (i = 2, 4, . . . , n−2)

are oscillatory, condition (5) and

∫

A

aj [ξ(t)]ξ (̇t)
∫

A(t)

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)×

m∏

i=1

(αj−1[gi(s), ξ(t)])λidsdt = ∞
(15)

for some j = 1, 2, . . . , n− 1 are satisfied.
(iv) for δ = −1, λ > 1 the equations (4; i), (i = 1, 3, . . . , n − 2) are

oscillatory and condition (15) is satisfied.

Proof. Let x(t) be a nonoscillatory solution of equation (E; δ), say
x(t) > 0 for t ≥ t0. In view of Lemma 2, x(t) satisfies inequalities (7) for
some ` ∈ {0, 1, . . . , n}. Proceeding as in the proof of Theorem 1, we see
that the case ` ∈ {0, 1, . . . , n− 1} is impossible. Next, we let ` = n. This
is the case when δ = −1. Then from (7) we have

(16) Ljx(t) > 0 for t ≥ t1 and j = 0, 1, . . . , n.



Oscillation criteria for nonlinear differential equations . . . 109

Applying Lemma 1 (i), for j = 0, 1, . . . , n− 1 we obtain

Ljx(u) =
n−1∑

i=j

Ii−j(u, t; aj+1, . . . , ai)Lix(t)

+

u∫

t

In−j−1(u, s; aj+1, . . . , an−1)Lnx(s)ds.

Using (16) we get

(17) Ljx[ξ(t)] ≥
ξ(t)∫

t

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)
m∏

i=1

(x[gi(s)])λids.

Next, we show the fact that

(18) x[gi(s)] ≥ αj−1[gi(s), ξ(t)]Lj−1x[ξ(t)]

for t < s < ξ(t) and for any i = 1, 2, . . . , m and j = 1, 2, . . . , n−1. If j = 1,
(18) follows from the fact that x(t) and ξ(t) are nondecreasing functions
for t ≥ t1.

Let j ≥ 2. From Lemma 1 (i), we have

x[gi(s)] =
j−2∑
p=0

Ip(gi(s), ξ(t); a1, . . . , ap)Lpx[ξ(t)]

+

gi(s)∫

ξ(t)

Ij−2(gi(s), u; a1, . . . , aj−2)aj−1(u)Lj−1x(u)du

for s ∈ A(t), t ≥ t1. Using (16) and noting that Lj−1x is increasing on
[t1,∞), we easily get (18) from the above equation. Combining (17) with
(18), we obtain

Ljx[ξ(t)]
(Lj−1x[ξ(t)])λ

≥
ξ(t)∫

t

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)
m∏

i=1

(αj−1[gi(s), ξ(t)]Lj−1x[ξ(t)])λids,
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or

(Lj−1x[ξ(t)]). ˆ̇ξ̇(t)
(Lj−1x[ξ(t)])λ

≥ aj [ξ(t)]
ˆ̇
ξ̇(t)×

ξ(t)∫

t

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)
m∏

i=1

(αj−1[gi(s), ξ(t)])λids.

Integrating the above inequality on A, t ≥ t1, we get
∫

A

aj [ξ(t)]
ˆ̇
ξ̇(t)×

∫

A(t)

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)
m∏

i=1

(αj−1[gi(s), ξ(t)])λidsdt

≤
∞∫

t1

(Lj−1x[ξ(t)]).ξ (̇t)
(Lj−1x[ξ(t)])λ

dt ≤
∞∫

Lj−1x[ξ(t1)]

dη

ηλ
< ∞,

which contradicts (15). This completes the proof.
In the following theorem we give a sufficient condition so that equation

(E; δ) has property B.

Theorem 3. Suppose that conditions (1)–(3) hold. A sufficient con-
dition for equation (E; δ) to have property B is that:
(i) when δ = 1 and n is even, the equations (4; i) (i = 1, 3, . . . , n− 1) are

oscillatory;
(ii) when δ = 1, λ < 1 and n is odd, the equations (4; i) (i = 2, 4, . . . , n−

1) are oscillatory and
(19)∫

D

aj+1[τ(t)]τ (̇t)
∫

D(t)

βj+1[s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λidsdt = ∞

for some j = 0, 1, . . . , n− 2, holds;
(iii) when δ = −1, λ > 1 and n is even, the equations (4; i) (i = 2, 4, . . . ,

n− 2) are oscillatory, condition (6) and (19) hold;
(iv) when δ = −1 and n is odd, the equations (4; i), (i = 1, 3, . . . , n − 2)

are oscillatory and condition (6) holds.

Proof. Let x(t) be a nonoscillatory solution of equation (E; δ), say
x(t) > 0 for t ≥ t0. In view of Lemma 2, x(t) satisfies inequalities (7) for
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some ` ∈ {0, 1, . . . , n}. Proceeding as in the proof of Theorem 1, we see
that the case ` ∈ {1, 2, . . . , n} is impossible. Next, we let ` = 0. This is
the case when δ = 1 and n is odd, or δ = −1 and n is even. Thus from (9)
we have

(20) (−1)kLkx(t) > 0 for t ≥ t1, k = 0, 1, . . . , n− 1.

We first show that

(21) x[gi(s)] ≥ ζj [τ(t), gi(s)]|Ljx[τ(t)]|
for s ∈ D(t), t ≥ t2 ≥ t1 and any j = 0, 1, . . . , n− 2. If j = 0, this follows
from the fact that τ(t) is nondecreasing and x(t) is decreasing. Let j ≥ 1.
From Lemma 1 (ii) we obtain

x[gi(s)] =
j−1∑
p=0

(−1)pIp(τ(t), gi(s); ap, . . . , a1)Lpx[τ(t)]

+(−1)j

τ(t)∫

gi(s)

Ij−1(u, gi(s); aj−1, . . . , a1)aj(u)Ljx(u)du,

which, in view of the decreasing nature of |Ljx(t)|, readily implies (21).
Again, we apply Lemma 1 (ii):

|Lj+1x[τ(t)]| = (−1)j+1Lj+1x[τ(t)]

=
n−1∑

i=j+1

(−1)iIi−j−1(t, τ(t); ai, . . . , aj+1)Lix(t)

+ (−1)n

t∫

τ(t)

In−j−2(s, τ(t); an−1, . . . , aj)Ln(s)ds.

Thus,

(22) |Lj+1x[τ(t)]| ≥
t∫

τ(t)

βj+1[s, τ(t)]q(s)
m∏

i=1

(x[gi(s)])λids.

Combining (21) with (22) we have

|Lj+1x[τ(t)]| ≥ (|Ljx[τ(t)]|)λ

∫

D(t)

βj+1[s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λids
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or

aj+1[τ(t)]τ (̇t)
∫

D(t)

βj+1[s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λids

≤ |(Ljx[τ(t)]).|τ (̇t)
(|Ljx[τ(t)]|)λ

.

Integrating the above in D ∩ [t2,∞) we have
∫

D∩[t2,∞)

aj+1[τ(t)]τ (̇t)
∫

D(t)

βj+1[s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λidsdt

≤
|Ljx[τ(t2)]|∫

0

dw

wλ
< ∞,

which contradicts (19). This completes the proof.
The following theorem is concerned with the oscillatory behavior of

equation (E; δ) when f satisfies condition (2) with λ = 1.

Theorem 4. Let conditions (1), (3) and (2) with λ = 1 hold. Equation
(E, δ) is oscillatory if:
(i) for δ = 1 and n even, the equations (4; i) (i = 1, 3, . . . , n − 1) are

oscillatory;
(ii) for δ = 1 and n odd, the equations (4; i) (i = 2, 4, . . . , n − 1) are

oscillatory, and

(23) lim sup
t→∞

∫

D(t)

βj [s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λids > 1

for some j = 0, 1, . . . , n− 1, is satisfied;
(iii) for δ = −1 and n even, the equations (4; i) (i = 2, 4, . . . , n − 2) are

oscillatory, condition (23) and

(24)

lim sup
t→∞

∫

A(t)

In−j−1[ξ(t), s; aj+1, . . . , an−1)q(s)×

m∏

i=1

(αj [gi(s), ξ(t)])λids > 1

for some j = 0, 1, . . . , n− 1, are satisfied;
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(iv) for δ = −1 and n odd, the equations (4; i), (i = 1, 3, . . . , n − 2) are
oscillatory and condition (24) is satisfied.

Proof. Let x(t) be a nonoscillatory solution of equation (E; δ). As-
sume x(t) > 0 for t ≥ t0. In view of Lemma 2, x(t) satisfies the inequalities
(7) for some ` ∈ {0, 1, . . . , n}. Proceeding as in the proof of Theorem 1,
we see that the case ` ∈ {1, 2, . . . , n− 1} is impossible. Now, we consider
the following two cases:

Case 1: Let ` = 0. This is the case when δ = 1 and n is odd or δ = −1
and n is even. Then from (7) we get [20]). As in the proof of Theorem 3,
we obtain the inequalities (21) and (22). From (22) with j +1 replaced by
j

(25) |Ljx[τ(t)]| ≥
t∫

τ(t)

βj [s, τ(t)]q(s)
m∏

i=1

(|x[gi(s)]|)λids.

Combining (21) with (25) yields

|Ljx[τ(t)]| ≥ |Ljx[τ(t)]|
∫

D(t)

βj [s, τ(t)]q(s)
m∏

i=1

(ζj [τ(t), gi(s)])λids,

which contradicts (23).
Case 2. Let ` = n. This is the case when δ = −1. Then from (7) we

get (16). As in the proof of Theorem 2, we have the inequalities (17) and
(18). From (18) with j − 1 replaced by j

(26) x[gi(s)] ≥ αj [gi(s), ξ(t)]Ljx[ξ(t)].

Combining (17) with (26) yields

Ljx[ξ(t)] ≥

Ljx[ξ(t)]
∫

A(t)

In−j−1(ξ(t), s; aj+1, . . . , an−1)q(s)
m∏

i=1

(αj [gi(s), ξ(t)])λids,

which contradicts (24). This completes the proof.

The following example is illustrative.

Example 2. Consider the equation

(E2; −1) Lnx(t) = ct1−n(x[t + sin t])1/3(x[t + 2 sin t])2/3, t > 0,

where n ≥ 3

L0x(t) = x(t), Lkx(t) =
1
t
(Lk−1x(t))., k = 1, 2, . . . , n,
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an ≡ 1, and c is a positive constant.

Here we let

ai(t) = t, i = 1, 2, . . . , n−1, g1(t) = t+sin t, g2(t) = t+2 sin t, q(t) =

ct1−n, λ1 = 1
3 and λ2 = 2

3 . Thus σ(t) = t− 2 and

β0[t, s] = αn−1[t, s] =
1

2n−1(n− 1)!
(t2 − s2)n−1, t ≥ s ≥ t0.

Now,

D =
∞⋃

k=0

((2k + 1)π, (2k + 2)π) and A =
∞⋃

k=0

(2kπ, (2k + 1)π).

Define

τ(t) =
{

t + sin t for t ∈ D
t for t 6∈ D and ξ(t) =

{
t + sin t for t ∈ A
t for t 6∈ A.

If we choose tk = (2k + 1)π + π
2 , (k = 1, 2, . . . ), then

D(t) = D ∩ [τ(tk), tk] = [τ(tk), tk],

and

∫

D(t)

β0[s, τ(tk)]q(s)ds =
c

2n−1(n− 1)!

tk∫

τ(tk)

(s2 − τ2(tk))n−1 1
sn−1

ds

≥ c

2n−1(n− 1)!

tk∫

τ(tk)

(s− τ(tk))n−1ds =
c

2n−1n!
.

Thus, condition (23) is satisfied for c > 2n−1n!. If we choose tk = 2kπ +
π
2 (k = 1, 2, . . . ), then we can prove by a similar argument as above that
the condition (24) is also satisfied for c > 2n−1n! Therefore, all conditions
of Theorem 4 (iii) and (iv) are satisfied and hence equation (E2;−1) is
oscillatory.

Remarks. 1. The results of this paper are applicable to a larger class
of nonlinear differential equations which includes superlinear, sublinear
and linear equations. We also mention that we do not stipulate that the
functions gi(t) (i = 1, 2, . . . ,m) in equation (E; δ) be either retarded, ad-
vanced or of mixed type. Hence our theorems may hold for ordinary,
retarded, advanced and mixed type equations.
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2. When condition (1) is satisfied, the disconjugate operator Ln,

(?) Ln =
d

dt

1
an−1(t)

· · · 1
a1(t)

d

dt

is said to be in the canonical form (see Trench [13]) and if (1) is violated,
Ln is no longer in canonical form.
According to Trench [13] any operator of the form (?) can be uniquely
represented in a canonical form with a different set of ãi’s obtained from
the original ai’s. More precisely, we can find ãi, i = 1, 2, . . . , n − 1 such
that

Ln =
d

dt

1
ãn−1(t)

· · · 1
ã1(t)

d

dt
,

so that ∞∫
ãi(s)ds = ∞, i = 1, 2, . . . , n− 1,

and the ãi(t), i = 1, 2, . . . , n − 1 are determined up to positive multi-
plicative constants with product 1. Since actual computations of ãi(t)
are tedious and hard to obtain, we only mention that it is possible to
obtain an analogue of our main result without the explicit computation
of ãi(t), i = 1, 2, . . . , n − 1. This can be done by using the concept of a
principal system for an operator of the form (?) introduced by Trench [13].
Here we omit the details.
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