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Generalized pseudo-contractions
and nonlinear variational inequalities

By RAM U. VERMA (Orlando)

Abstract. Based on a modified iterative algorithm, the solvability of a class
of nonlinear variational inequality problems involving Lipschitzian generalized pseudo-
contractions is presented on convex sets in Hilbert spaces.

1. Introduction

General variational inequalities have been applied to many problems
in applied mathematics, physics, engineering sciences, and others. A
closely associated notion of the complementarity involves several problems
in mathematical programming, game theory, economics, and mechanics.
There are situations where both concepts are equivalent, especially on a
colsed convex cone. For more details on variational inequalities, we advise
to consult [2–4, 7–12].

Let H be a real Hilbert space and let K be a nonempty closed convex
subset of H. Let 〈u, v〉 and ‖u‖ denote, respectively, the inner product
and norm on H for u, v in H. Let PK be the projection of H onto K. For
an operator T : K → H, we consider the nonlinear variational inequality
(NVI) problem (Pl): Find an element x in K such that

(1) 〈(I − T )x, y − x〉 ≥ 0 for all y in K,

where I is the identity.
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The NVI problem (1) is equivalent to a complementarity problem
when K is a closed convex cone ([9]).

Next, we consider an important concept of the generalized pseudo-
contractivity – a mild generalization of the pseudo-contractivity introduced
by Browder and Petryshyn in [1]. Generalized pseudo-contractions are
more general than Lipschitz continuous operators and unify certain class
of operators.

Definition 1.1. An operator T : H → H is said to be a generalized
pseudo-contraction if, for all x, y in H, there exists a constant r > 0 such
that

(2) ‖Tx− Ty‖2 ≤ r2‖x− y‖2 + ‖Tx− Ty − r(x− y)‖2.

It is easy to check that (2) is mutually equivalent to

(3) 〈Tx− Ty, x− y〉 ≤ r ‖x− y‖2.

Clearly, this implies that

(4) 〈(I − T )x− (I − T )y, x− y〉 ≥ (1− r) ‖x− y‖2,

that is, I − T is strongly monotone for r < 1. Here I is the identity.
For r = 1 in (2), we arrive at the usual concept of the pseudo-

contractivity of T introduced by Browder and Petryshyn in [1], that
is,

(5) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− Ty − (x− y)‖2.

An operator T : H → H is called Lipschitz continuous if there is a
constant s > 0 such that

(6) ‖Tx− Ty‖ ≤ s ‖x− y‖ for all x, y in H.

Clearly, (6) implies

(7) 〈Tx− Ty, x− y〉 ≤ s ‖x− y‖2.
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Remark 1.1. Wenote that (2) and (3) are mutually equivalent, whereas
(6) and (7) are not (since (7) does not imply (6)). That is why the gener-
alized pseudo-contractions are more general than the Lipschitz continuous
operators.

Here our aim is to present, based on a modified iterative algorithm,
the solution of the NVI problem (1) involving the generalized psedudo-
contractions which are Lipschitz continuous. The obtained results gener-
alize, especially the results on pseudo-contractive and Lipschitz continuous
operators in Hilbert space settings. For selected recent research works on
the pseudo-contractivity, we advise [5, 6].

2. Nonlinear variational inequalities

We are just about ready to present the result on the solvability of the
NVI problem (1).

Lemma 2.1 [4]. Let K be a nonempty closed convex subset of a real
Hilbert space H. Then for an element z in H, an element x in K satisfies

(8) 〈x− z, y − x〉 ≥ 0 for all y in K iff x = PKz.

Theorem 2.1. Let K be a nonemty closed convex subset of a Hilbert
space H. Then NVI problem (1) has a solution x in K iff x in K satisfies
the relation

(9) x = PK [x− t(x− Tx)],

where t > 0 is arbitrary.

Proof. Assume an element u in K is a solution of the NVI prob-
lem (1). Then u in K is such that

(10) 〈u− Tu, y − u〉 ≥ 0 for all y in K.

Now for any t > 0, it follows that

(11) 〈u− (u− t(u− Tu)), y − u〉 ≥ 0 for all y in K.

By Lemma 2.1, we find that

(12) u = PK [u− t(u− Tu)].
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Conversely, if u satisfies the relation

u = PK [u− t(u− Tu)],

then u belongs to K and, by Lemma 2.1, we obtain

〈u− (u− t(u− Tu)), y − u〉 ≥ 0 for all y in K.

Since t > 0, this implies that

〈u− Tu, y − u〉 ≥ 0 for all y in K.

Hence u is a solution of the NVI problem (1).

Theorem 2.2. Let H be a real Hilbert space and K be a nonempty
closed convex subset of H. Let T : K → H be generalized pseudo-
contractive (with constant r > 0) and Lipschitz continuous (with constant
s ≥ 1). Let {an} be an increasing sequence in [0, 1) such that

(13)
∞∑

n=0

an = ∞ for all n ≥ 0.

If, for an element x0 in K, the sequence {xn} is generated by an iterative
algorithm

(14) xn+1 = (1− an)xn + anPK [(1− t)xn + t Txn] for all n ≥ 0,

then the sequence {xn} converges to a unique solution of the NVI problem
(1) for 0 < t < 2(1− r)/(1− 2r + s2), and r < 1.

For {an} = 1, Theorem 2.2 reduces to

Corollary 2.1. Let T : K → H be generalized pseudo-contractive
and Lipschitz continuous, and let r > 0 and s > 1 be constants of the gen-
eralized pseudo-contractivity and Lipschitz continuity of T , respectively.
Then the sequence {xn}, generated by an iterative algorithm

(15) xn+1 = PK [(1− t)xn + t Txn] for an element x0 in K

and for all t such that 0 < t < 2(1−r)/(1−2r+s2), converges to a unique
solution of the NVI problem (1).

Proof of Theorem 2.2. Suppose that z is a solution of the NVI prob-
lem (1). Then by Theorem 2.1, we have

z = PK [(1− t)z + t Tz].
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Since PK is nonexpansive, we find that

(16)
‖xn+1 − z‖ = ‖(1− an)xn + anPK [(1− t)xn + t Txn]− z‖
≤ (1− an)‖xn − z‖+ an‖t(Txn − Tz) + (1− t)(xn − z)‖.

Now, since T is generalized pseudo-contractive (and hence equivalent
to (3)) and Lipschitz continuous, it follows that

‖t(Txn − Tz) + (1− t)(xn − z)‖2(17)

= (1− t)2‖xn − z‖2 + 2t(1− t)〈Txn − Tz, xn − z〉+ t2‖Txn − Tz‖2

≤ (1− t)2‖xn − z‖2 + 2t(1− t)r‖xn − z‖2 + t2s2‖xn − z‖2

=
[
(1− t)2 + 2t(1− t)r + t2s2

] ‖xn − z‖2.
Applying (17) to (16), we get

‖xn+1 − z‖ ≤
[
1− an + an

(
(1− t)2 + 2t(1− t)r + t2s2

)1/2
]
‖xn − z‖

= [1− (1− k)an] ‖xn − z‖ ≤
n∏

j=0

[1− (1− k)aj ] ‖x0 − z‖,(18)

where 0 < k =
[
(1− t)2 + 2t(1− t)r + t2s2

]1/2
< 1 for all t such that

0 < t < 2(1 − r)/((1 − 2r + s2), r < 1 and s ≥ 1. Since
∞∑

j=0

aj = ∞ and

k < 1, this implies that lim
n→∞

n∏
j=0

[1− (1− k)aj ] = 0. Hence {xn} converges

to z.
To show the uniqueness of the solution, let x1 and x2 be two solutions

of the NVI problem (1). Then we have

〈(I − T )x1, y − x1〉 ≥ 0 for all y in K,(19)

and

〈(I − T )x2, y − x2〉 ≥ 0 for all y in K.(20)

If we replace y in (19) by x2 and y in (20) by x1, and add, we obtain

(21) 〈(I − T )x1 − (I − T )x2, x1 − x2〉 ≤ 0.
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Since I − T is strongly monotone with constant 1 − r, we find on
applying (21) that

(22) (1− r)‖x1 − x2‖2 ≤ 〈(I − T )x1 − (I − T )x2, x1 − x2〉 ≤ 0.

This implies that x1 = x2, and this copmpletes the proof.

Acknowledgement. The author wishes to express his sincere appreci-
ation to the referee for all the valuable comments leading to the revised
version.

References

[1] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear
mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.

[2] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-
Verlag, New York, 1984.

[3] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Varia-
tional Inequalities, North-Holland, Amsterdam, 1981.

[4] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequal-
ities and their Applications, Academic Press, New York, 1980.

[5] W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc.
25 (1970), 821–823.

[6] J. Moloney and X. Weng, A fixed point theorem for demicontinuous pseudocon-
ractions in Hilbert space, Studia Math. 116 (3) (1995), 217-223.

[7] M. A. Noor, General auxiliary principle for variational inequalities, PanAmerican
Math. J. 4 (1) (1994), 27–44.

[8] A. H. Siddiqi and Q. H. Ansari, Strongly nonlinear quasivariational inequalities,
J. Math. Anal. Appl. 149 (1990), 444–450.

[9] M. Thera, Existence results for the nonlinear complementarity problem and ap-
plications to nonlinear analysis, J. Math. Anal. Appl. 154 (1991), 572–584.

[10] R. U. Verma, Iterative algorithms for variational inequalities and associated non-
linear equations involving relaxed Lipschitz operators, Appl. Math. Lett. 9 No. 4
(1996), 61–63.

[11] R. U. Verma, Nonlinear variational and constrained hemivariational inequalities
involving relaxed operators, ZAMM 77 (1997), 387–391.

[12] E. Zeidler, Nonlinear Functional Analysis and its Applications IV, Springer-Ver-
lag, New York, 1988.

RAM U. VERMA
INTERNATIONAL PUBLICATIONS
12046 COED DRIVE
ORLANDO, FLORIDA 32826
USA
and
ISTITUTO PER LA RICERCA DI BASE
DIVISION OF MATHEMATICS
I–86075 MONTERODUNI (IS), MOLISE
ITALY

(Received May 14, 1996; revised February 28, 1997)


