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On a certain subclass of pseudosymmetric manifolds

By RYSZARD DESZCZ (WrocÃlaw) and MARIAN HOTLO�S (WrocÃlaw)

Abstract. This article studies semi-Riemannian manifolds which are pseudosym-
metric and satisfy the condition R·R−Q(S, R) = LQ(g, C) simultaneously. We give the
necessary and sufficient conditions for a non-conformally flat and non-Einstein manifold
to be a manifold of the above type. Using these results we show that such subclasses
of semisymmetric manifolds as conformally symmetric manifolds as well as simple con-
formally recurrent manifolds satisfy this condition.

1. Introduction

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian
manifold of class C∞. We denote by ∇, R̃, R, C, S and κ the Levi-Civita
connection, the curvature operator, the Riemann-Christoffel curvature ten-
sor, the Weyl conformal curvature tensor, the Ricci tensor and the scalar
curvature of (M, g), respectively.

The semi-Riemannian manifold (M, g) is locally symmetric ([23]) if

∇R = 0.

There exist many various possibilities to obtain curvature conditions
weaker than the above one. A semi-Riemannian manifold (M, g) is said to
be semisymmetric ([27]) if it satisfies the relation

R̃(X, Y ) ·R = 0
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for all tangent vectors X and Y on M , where the curvature operator
R̃(X,Y ) acts on the tensor R as a derivation. In the present paper the
above identity is noted shortly: R ·R = 0.

It is clear that any locally symmetric manifold is semisymmetric. Rie-
mannian semisymmetric manifolds were classified in [27]–[29] and [21].
They are non locally symmetric in general. Very recently theory of Rieman-
nian semisymmetric manifolds has been presented in the monograph [2].

A weaker condition than semisymmetry arose during the study of to-
tally umbilical submanifolds of semisymmetric manifolds as well as during
the consideration of geodesic mappings of semisymmetric manifolds (see
[14], [30]). A semi-Riemannian manifold (M, g) is said to be pseudosym-
metric [16] if at every point of M the following condition is satisfied:

(∗) the tensors R ·R and Q(g, R) are linearly dependent.

This condition is equivalent to the relation

(1) R ·R = LRQ(g, R)

on the set UR = {x ∈ M | Z(R) 6= 0 at x}, where LR is some function
on UR. The definitions of the tensors used will be given in Section 3.
There exist various examples of pseudosymmetric manifolds which are
non-semisymmetric (see e.g. [10], [16], [18]) and a review of results on
pseudosymmetric manifolds is given in [14] and [30].

Manifolds (M, g) fulfilling

(2) R ·R = Q(S, R)

were considered in [3], [5], [6]. Conformally flat manifolds realizing (2)
were investigated in [13]. It is worth noticing that any 3-dimensional
semi-Riemannian manifold satisfies (2) ([13], Theorem 3.1). Moreover,
any hypersurface M immersed isometrically in an (n+1)-dimensional semi-
Euclidean space En+1

s , n ≥ 4, fulfils this condition ([19], Corollary 3.1).
It is easy to see that at every point of a pseudosymmetric Einstein

manifold the following condition is satisfied:

(∗∗) the tensors R ·R−Q(S,R) and Q(g, C) are linearly dependent.

It is obvious that every manifold fulfilling (2) satisfies (∗∗).
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The condition (∗∗) is equivalent to the relation

(3) R ·R−Q(S, R) = LQ(g, C)

on the set UC = {x ∈ M | C 6= 0 at x}, where L is some function on UC .
Warped products realizing (∗∗) were considered in [8]. For instance,

in [8] it was shown that any warped product M1 ×F M2, dim M1 = 1,
dim M2 = 3, with an arbitrary positive smooth function F on M1, satis-
fies (∗∗). In particular, any generalized Robertson–Walker spacetime ([1])
fulfils (∗∗).

In the present paper we investigate semi-Riemannian manifolds which
satisfy both conditions (∗) and (∗∗) simultaneously. The class of such
manifolds contains, as we present in Section 2, various known classes of
semi-Riemannian manifolds. In Section 2 we also describe examples of
warped product manifolds M1 ×F M2, with 1-dimensional base manifold
M1, satisfying (∗) and (∗∗).

The next family of examples of manifolds realizing (∗) and (∗∗) es-
tablishes hypersurfaces. First of all, in [19] it was proved that any hyper-
surface M in a semi-Riemannian manifold of constant curvature (N, g),
dim N ≥ 4, satisfies the condition (∗∗). Some of them are such hyper-
surfaces which at any point have at most 2 distinct principal curvatures,
whence, in virtue of Lemma 1 of [20], they are pseudosymmetric. It is
worth noticing that examples of hypersurfaces with at most 2 distinct
principal curvatures we can obtain using Theorem 5 of [24]. So, the study
of pseudosymmetric hypersurfaces in semi-Riemannian spaces of constant
curvature we can interpret as a part of the study of semi-Riemannian
manifolds realizing (∗) and (∗∗). Very recently, results on pseudosymmet-
ric hypersurfaces in semi-Riemannian spaces of constant curvature have
been presented in [7], [9] and [15]. The main result of [15] states that a
hypersurface M , of dimension ≥ 4, in a semi-Riemannian space of con-
stant curvature is pseudosymmetric if and only if for every point x ∈ M

we have: the shape operator A of M is of rank 2 at x or the operator A2

is a linear combination of A and the identity transformation at x.
In Section 3 of this paper we fix the notations and present auxiliary

lemmas. In Section 4 we give necessary and sufficient conditions for a
non-conformally flat and non-Einstein semi-Riemannian manifold to be a
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manifold satisfying (∗) and (∗∗). In the Riemannian case conditions (∗)
and (∗∗) force the very special form of the curvature tensor, namely

R(X, Y, Z, W ) = φ(S(X, W )S(Y, Z)− S(X, Z)S(Y, W ))

+ηG(X, Y, Z, W ) + µ(S(X, W )g(Y, Z) + S(Y, Z)g(X,W )

−S(X,Z)g(Y,W )− S(Y,W )g(X, Z)).

Basing on Theorem 4.2 we show that every essentially conformally sym-
metric manifold as well as every simple conformally recurrent manifold
with non-parallel Ricci tensor satisfy the condition (∗∗). Results obtained
in the present paper will make essentially easier investigations of warped
product spacetimes realizing (∗) and (∗∗). Such manifolds will be consid-
ered in a subsequent paper of the authors.

Throughout this paper all manifolds are assumed to be connected
paracompact manifolds of class C∞.

2. Examples

First we show that the class of manifolds satisfying (∗) and (∗∗) con-
tains various known classes of semi-Riemannian manifolds.

Example 2.1. A semi-Riemannian manifold (M, g) is said to be a K∗-
space [31] if it is either recurrent (∇R = R⊗ ω) or locally symmetric and
satisfies the following condition:

(4)
∑

X,Y,Z

a(X)R(Y,Z) = 0,

where a is a 1-form on M and Σ denotes the cyclic sum. We note that if
M is recurrent then (4) also holds and a is the recurrence 1-form.

Every K∗-space is semisymmetric. Using now Lemma 3.3, in virtue
of (4) we have Q(S, R) = 0. Thus the relation (3) is satisfied with L = 0.

Example 2.2. Let (M, g) be an essentially conformally symmetric
manifold [11] (e.c.s. in short), i.e., such a conformally symmetric mani-
fold (∇C = 0) which is neither conformally flat nor locally symmetric.
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Every e.c.s. manifold is semisymmetric ([11], Theorem 9) and satisfies the
condition ([12], Theorem 7)

∑

X,Y,Z

S(W,X)C(Y, Z) = 0.

Moreover, every e.c.s. manifold fulfils the relation rank S ≤ 2 ([12], Theo-
rem 5). It is worth noticing that if M is Ricci-recurrent then rank S ≤ 1.
Thus in the case S = ea⊗a where e = ±1, we have

∑
X,Y,Z a(X)C(Y, Z)=0

and, in virtue of κ = 0 ([11], Theorem 7), also (4). Hence, in the same
manner as in the Example 2.1 we see that M satisfies (∗∗).

Example 2.3. A conformally recurrent manifold (M, g) (∇C = C⊗ω)
is said to be simple [25] (s.c.r. in short) if its metric is locally conformal to a
non-conformally flat conformally symmetric one. The curvature tensor of
every s.c.r. manifold satisfies R · R = 0 ([25], Proposition 2). Every s.c.r.
manifold with non-parallel Ricci tensor satisfies rank S ≤ 2. Moreover,
if M is Ricci-recurrent then rank S ≤ 1 ([25], Theorem 6). If the Ricci
tensor of a non-locally symmetric s.c.r. manifold is of the form S = ea⊗a,
then the equation (4) holds ([26], Lemma 12). This, as in the previous
examples, leads to (∗∗).

In Section 4 we show that every e.c.s. manifold as well as every s.c.r.
manifold with non-parallel Ricci tensor satisfy the condition (∗∗).

Now we present examples of warped product manifolds M1 ×F M2,
with 1-dimensional base manifold M1, realizing (∗) and (∗∗).

Example 2.4. Let (M1, g1), dimM1 = 1, and (M2, g2), dimM2 = n−1
≥ 3, be semi-Riemannian manifolds. We denote by M1×F M2 the warped
product manifold of (M1, g1) and (M2, g2). It is well known that if (M2, g2)
is a space of constant curvature then the warped product M1 ×F M2 is a
conformally flat pseudosymmetric manifold ([10], Lemma 3.1). Moreover,
from Lemma 4.1 of [8] it follows that M1 ×F M2 realizes (∗∗).

Example 2.5. Let the warped product M1 ×F M2, dim M1 = 1,
dim M2 = 3, be a pseudosymmetric manifold. Of course, such manifolds
exist (e.g. see [16]). Theorem 4.2 of [8] states that the manifold M1×F M2

realizes (∗∗).
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Example 2.6. We denote by (M2, g2) the Cartesian product of the
standard spheres S1 and Sn−2, n ≥ 5. It is clear that (M2, g2) is a
semisymmetric and conformally flat manifold. The Ricci tensor S̃ of
(M2, g2) has two distinct eigenvalues of multiplicity 1 and n − 2, respec-
tively. Now from Theorem 3.5 of [15] it follows that

(5) R̃ · R̃ = Q(S̃, R̃)

holds on M2. Further, let (M1, ḡ), ḡ11 = ε, ε = ±1, be a 1-dimensional
manifold and F a function on M1 defined by F (x1) = a exp(bx1), a, b ∈
R−{0}. Corollary 4.2 of [16] states that the warped product M1×F M2 is
a non-semisymmetric pseudosymmetric manifold. Since (5) holds on M2,
Theorem 4.2 of [8] states that (∗∗) is fulfilled on M1 ×F M2.

3. Preliminaries

Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian manifold. A
tensorB̃ of type (1, 3) on M is said to be a generalized curvature tensor [22],
if

∑

X1,X2,X3

B̃(X1, X2)X3 = 0,

B̃(X1, X2) + B̃(X2, X1) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2),

where

B(X1, X2, X3, X4) = g(B̃(X1, X2)X3, X4).

The Ricci tensor Ric(B̃) of B̃ is the trace of the linear mapping X1 →
B̃(X1, X2)X3. For a generalized curvature tensor B̃ we define the scalar
curvature κ(B̃) and the tensor Z(B) by

κ(B̃) =
n∑

i=1

εi Ric(B̃)(Ei, Ei), εi = g(Ei, Ei),

and

Z(B) = B − κ(B̃)
n(n− 1)

G



On a certain subclass of pseudosymmetric manifolds 35

respectively, where E1, . . . , En is an orthonormal basis and the tensor G

is defined by

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4),

(X1 ∧X2)X3 = g(X2, X3)X1 − g(X1, X3)X2.

Further, we define the Weyl curvature tensor C(B̃) associated with B̃ by

C(B̃)(X1, X2, X3, X4) = B(X1, X2, X3, X4)

+
κ(B̃)

(n− 1)(n− 2)
G(X1, X2, X3, X4)− 1

n− 2
(
g((R̃ic(B̃)X1 ∧X2)X3, X4)

−g((R̃ic(B̃)X1 ∧X2)X4, X3)
)
,

where the tensor field R̃ic(B̃) is defined by

Ric(B̃)(X, Y ) = g(R̃ic(B̃)X,Y ).

For an (0, 2)-tensor field A on (M, g) we define the endomorphism X ∧A Y

of Ξ(M) by (X ∧A Y )Z = A(Y, Z)X −A(X, Z)Y , where X,Y, Z ∈ Ξ(M).
In particular we have X ∧g Y = X ∧ Y .

For an (0, k)-tensor field T , k ≥ 1, an (0, 2)-tensor field A and a
generalized curvature tensor B̃ on (M, g) we define the tensors B · T and
Q(A, T ) by

(B · T )(X1, . . . , Xk;X,Y ) = −T (B̃((X,Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, B̃(X, Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y ) = −T ((X ∧A Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X, Y, Z, X1, X2, . . . ∈ Ξ(M). Putting in the above formulas

B̃(X,Y )Z = R̃(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

T = R, A = g or A = S, we obtain the tensors R · R, R · S, Q(g,R),
Q(g, S), Q(S,R) and Z(R), respectively.
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Let (M, g) be a semi-Riemannian manifold covered by a system of
charts {U ;xk}. We denote by gij , Rhijk, Sij , S j

i = gjkSik, Ghijk =
ghkgij − ghjgik and

Chijk = Rhijk − 1
n− 2

(ghkSij − ghjSik + gijShk − gikShj)(6)

+
κ

(n− 1)(n− 2)
Ghijk

the local components of the metric tensor g, the Riemann-Christoffel cur-
vature tensor R, the Ricci tensor S, the Ricci operator S̃, the tensor G

and the Weyl tensor C, respectively.

At the end of this section we present some results which will be used
in the next section.

Lemma 3.1 ([8], Lemma 2.1). Let B̃ be a generalized curvature tensor

on a semi-Riemannian manifold (M, g), n ≥ 3. Then the following identity

is fulfilled on M :

Q(g, C(B̃)) = Q(g, B) +
1

n− 2
Q(Ric(B̃), G).

Lemma 3.2 ([8], Corollary 2.3). The following two conditions are

equivalent on any semi-Riemannian manifold (M, g), n ≥ 3:

R ·R = Q(S, R) + LQ(g, C),

R ·R = Q

(
S + Lg, R +

L

n− 2
G

)
.

Lemma 3.3 ([17], Theorem 1). Let B̃ be a generalized curvature ten-

sor at x ∈ M such that the condition

∑

X,Y,Z

ω(X)B̃(Y, Z) = 0

is satisfied for B̃ and a covector ω at x, where X, Y, Z ∈ Tx(M), and Σ
denotes the cyclic sum. If ω 6= 0 then the following relation holds at x:

B ·B = Q(Ric(B̃), B).
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Lemma 3.4 ([3], Proposition 4.1). Let (M, g), dim M ≥ 3, be a semi-
Riemannian manifold. Let A be a non-zero symmetric (0, 2)-tensor and B̃

a generalized curvature tensor at a point x of M satisfying the condition

Q(A,B) = 0.

Moreover, let V be a vector at x such that the scalar ρ = a(V ) is non-zero,

where a is a covector defined by a(X) = A(X, V ), X ∈ Tx(M).
(i) If the tensor A− 1

ρa⊗ a vanishes then the relation

∑

X,Y,Z

a(X)B̃(Y,Z) = 0

holds at x, where X, Y, Z ∈ Tx(M).
(ii) If the tensor A− 1

ρa⊗ a is non-zero then the relation

ρB(X, Y, Z, W ) = λ(A(X, W )A(Y, Z)−A(X, Z)A(Y, W ))

holds at x, where λ ∈ R and X, Y, Z, W ∈ Tx(M).
Moreover, in both cases the following condition holds at x:

B ·B = Q(Ric(B̃), B).

Using algebraic properties of a (0,2)-symmetric tensor and generalized
curvature tensors we can prove the following

Lemma 3.5. Let A be a symmetric (0,2)-tensor at x ∈ M . Moreover,

let B̃1 and B̃2 be generalized curvature tensors at x ∈ M defined by

B1(X, Y, Z, W ) = A(X, W )A(Y, Z)−A(X,Z)A(Y,W ),

and

B2(X, Y, Z, W ) = A(X, W )g(Y, Z) + A(Y, Z)g(X, W )

−A(X, Z)g(Y, W )−A(Y, W )g(Y, Z),

respectively, where X, Y, Z, W ∈ Tx(M). Then the relations

Q(A,G) = −Q(g, B2),

Q(A,B2) = −Q(g, B1)

hold at x.
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Lemma 3.6. Let B̃ be a generalized curvature tensor at x ∈ M such

that the condition ∑

X,Y,Z

a(X)B̃(Y,Z) = 0

is satisfied for a covector a at x, where X, Y, Z ∈ Tx(M). Then the relation

Q(a⊗ a,B) = 0

holds at x.

Proof. We can write the left hand side of the above equality in the
form

Q(a⊗ a,B)hijklm = ahalBmijk − ahamBlijk + aialBhmjk − aiamBhljk

+ ajalBhimk − ajamBhilk + akalBhijm − akamBhijl

= al(ahBmijk + aiBhmjk) + al(ajBhimk + akBhijm)

− am(ahBlijk + aiBhljk)− am(ajBhilk + akBhijl),

where ai and Bhijk denote the local components of the covector a and the
tensor B, respectively. In local components our assumption takes the form

ahBmijk + amBihjk + aiBhmjk = 0

which immediately gives

ahBmijk + aiBhmjk = amBhijk.

Taking into account this equality we easily obtain our assertion.

4. Main results

Assume that (M, g) is a non-conformally flat and non-Einstein semi-
Riemannian manifold. We restrict our considerations to the set U = UC ∩
US , where US = {x ∈ M | S − κ

ng 6= 0 at x}. It is easy to verify that
U ⊂ UR.
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Propopsition 4.1. Let (M, g), dim M ≥ 4, be a semi-Riemannian

manifold which is pseudosymmetric and satisfies the relation (∗∗). Then

the equalities

R(S̃X, Y, Z,W ) = κR(X, Y, Z, W ) + S(X,Z)S(Y,W )− S(X, W )S(Y, Z)

+(n− 1)(LC(X,Y, Z, W )− LRR(X, Y, Z,W ))

−LR(S(X, Z)g(Y,W )− S(X, W )g(Y, Z)),

R(S̃X, Y, Z, W ) + R(S̃Z, Y, W,X) + R(S̃W, Y, X,Z) = 0(7)

hold on U , where X, Y, Z, W ∈ Ξ(M).

Proof. First of all we note that from (∗) and (∗∗) it follows that the
equality

Q(S, R) = Q(g, LRR− LC)

is fulfilled on U . In local coordinates this equation takes the form

ShlRmijk − ShmRlijk + SilRhmjk − SimRhljk + SjlRhimk − SjmRhilk

+SklRhijm − SkmRhijl = ghl(LRRmijk − LCmijk)

−ghm(LRRlijk − LClijk) + gil(LRRhmjk − LChmjk)

−gim(LRRhljk−LChljk)+gjl(LRRhimk−LChimk)−gjm(LRRhilk−LChilk)

+gkl(LRRhijm − LChijm)− gkm(LRRhijl − LChijl).

Contracting the above equality with ghl we find

κRmijk −Dmijk + Dimjk + Djimk + Dkijm + SjmSik − SkmSij(8)

= (n− 1)(LRRmijk − LCmijk) + LR(gjmSik − gkmSij),

where Dlijk = S r
l Rrijk, whence, by cyclic permutation of m, j, k we ob-

tain (7).
Substituting (7) into (8) we have

Dimjk = κRimjk + SijSmk − SikSmj + (n− 1)(LCimjk − LRRimjk)

−LR(Sijgmk − Sikgmj),

which completes the proof.
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Assume now that (M, g) is a non-conformally flat and non-Einstein
pseudosymmetric manifold satisfying (∗∗). Applying (1), (3) and Lem-
ma 3.2 we easily obtain the following equality:

Q(LRg,R) = Q

(
S + Lg, R +

L

n− 2
G

)
.

On the other hand Q(LRg, R) = Q(LRg, R + L
n−2G). Thus we have the

following relation:

Q

(
S + (L− LR)g, R +

L

n− 2
G

)
= 0.

Let V be a vector at x ∈ U such that the scalar ρ = a(V ) is non-zero,
where a is a covector defined by

a(X) = S(X, V ) + (L− LR)g(X,V ),

X ∈ Tx(M). Using now Lemma 3.4 we have two cases:
(i) If the tensor S + (L− LR)g − 1

ρa⊗ a vanishes then the relation

(9)
∑

X,Y,Z

a(X)B̃(Y,Z) = 0

holds at x, where B = R + L
n−2G and X, Y, Z ∈ Tx(M).

(ii) If the tensor S + (L−LR)g− 1
ρa⊗ a is non-zero then the relation

(10) ρB(X, Y, Z, W ) = λ(A(X,W )A(Y,Z)−A(X, Z)A(Y, W ))

holds at x, where B = R + L
n−2G, A = S + (L − LR)g, λ ∈ R and

X, Y, Z, W ∈ Tx(M).
Now we consider the case (i). In local coordinates we have the follow-

ing relations:

Sij = (LR − L)gij +
1
ρ
aiaj ,(11)

am

(
Rlijk +

L

n− 2
Glijk

)
+ aj

(
Rlikm +

L

n− 2
Glikm

)
(12)

+ak

(
Rlimj +

L

n− 2
Glimj

)
= 0.
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Contracting (12) with ghm we have

arR
r
ijk + ajSik − akSij = L(akgij − ajgik)

and using (11) we obtain

(13) arR
r
ijk = LR(akgij − ajgik).

Contracting (13) with gij we find arS
r
k = (n−1)LRak. On the other hand,

from (11) it follows that arS
r
k = (LR − L)ak + 1

ρarar, where ar = grsas.
Comparing the two last equalities we obtain

L + (n− 2)LR =
1
ρ
arar

and taking into account that κ = n(LR − L) + 1
ρarar, we have also

2LR − L =
κ

n− 1
.

Thus we have proved the following

Proposition 4.2. If (M, g) is a pseudosymmetric manifold satisfying
(∗∗) such that S = (LR − L)g + 1

ρa⊗ a at x ∈ U , then the equalities

arR
r
ijk = LR(akgij − ajgik),

L + (n− 2)LR =
1
ρ
arar,

2LR − L =
κ

n− 1

hold at x.

Corollary 4.1. If arar = 0 at x ∈ U then L + (n − 2)LR = 0, LR =
κ

n(n−1) and S = κ
ng + 1

ρa⊗ a hold at x.

We present now the converse statement.

Theorem 4.1. Let x be a point of a semi-Riemannian manifold (M, g),
dim M ≥ 4, such that the following conditions are fulfilled:

S = αg + βa⊗ a,(14)
∑

X,Y,Z

a(X)B̃(Y, Z) = 0,(15)
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for some non-zero covector a, where B = R − γG, α, β, γ ∈ R. Then the

equalities:

R ·R =
(

κ

n− 1
− α

)
Q(g, R),(16)

R ·R = Q(S, R) +
(

κ

n− 1
− 2α

)
Q(g, C),(17)

∑

X,Y,Z

a(X)C̃(Y,Z) = 0(18)

hold at x. Moreover, if x ∈ U then arar = 0 at x.

Proof. In the same manner as in the proof of Proposition 4.1 we
obtain

arR
r
ijk = (α− (n− 2)γ)(akgij − ajgik),

βarar = κ− nα,(19)

2α− (n− 2)γ =
κ

n− 1
.(20)

Now we observe that

(R− γG) · (R− γG) = (R− γG) ·R = R ·R− γQ(g, R).

Using Lemma 3.3, we have B · B = Q(Ric(B̃), B). Now, for B = R − γG

we get Ric(B̃) = S − (n− 1)g and next, in virtue of Lemma 3.6,

Q(Ric(B̃), B) = Q((α− (n− 1)γ)g, R− γG) = (α− (n− 1)γ)Q(g,R).

Thus we have

R ·R− γQ(g, R) = (α− (n− 1)γ)Q(g, R)

and taking into account (20) we obtain (16).
In virtue of (14) the equality (6) leads to

(21) Chijk = Rhijk +
1

n− 2

(
κ

n− 1
− 2α

)
Ghijk − β

n− 2
Thijk,
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where
Thijk = ghkaiaj − ghjaiak + gijahak − gikahaj .

Thus Q(g, C) = Q(g,R)− β
n−2Q(g, T ) and using the equality Q(g, T ) =

−Q(a⊗ a,G) (see Lemma 3.5), we obtain

(22) Q(g, C) = Q(g, R) +
β

n− 2
Q(a⊗ a,G).

On the other hand, using (20) and Lemma 3.6, we find

Q(S, R)−
(

κ

n− 1
− α

)
Q(g, R)

= αQ(g, R) + βQ(a⊗ a,R)−
(

κ

n− 1
− α

)
Q(g,R)

=
(

2α− κ

n− 1

)
Q(g, R) + βγQ(a⊗ a,G)

= (n− 2)γ
(

Q(g, R) +
β

n− 2
Q(a⊗ a, G)

)
.

Comparing this equation with (22) and using (20) we obtain

Q(S, R) +
(

κ

n− 1
− 2α

)
Q(g, C) =

(
κ

n− 1
− α

)
Q(g,R).

This, by making use of (16), yields (17). Next, using (15), (21) and (20),
after standard calculation we obtain (18).

Now suppose that arar 6= 0 at x ∈ U . Transvection of the equality

amRlijk + ajRlikm + akRlimj = γ(amGlijk + ajGlikm + akGlimj)

with am yields

ararRlijk −
(

κ

n− 1
− α− γ

)
Tlijk = γararGlijk.

But using (19) and (20) we get

κ

n− 1
− α− γ =

β

n− 2
arar
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which turns the previous equality into

ararRlijk =
β

n− 2
ararTlijk + γararGlijk

and, in virtue of arar 6= 0, into

Rlijk =
β

n− 2
Tlijk + γGlijk.

Substituting this relation into (21) and using (20) we get C = 0 at x ∈ U ,
a contradiction. Our theorem is thus proved.

We consider now the case when S + (L − LR)g 6= 1
ρa ⊗ a. Thus, in

view of Lemma 3.4, we have

Rlijk +
L

n− 2
Glijk = φ(AlkAij −AljAik),

where Aij = Sij+(L−LR)gij , φ ∈ R, from which we conclude the following

Lemma 4.1. If (M, g) is a pseudosymmetric manifold satisfying (∗∗)
such that the tensor S + (L − LR)g − 1

ρa ⊗ a is non-zero at x ∈ U , then

the curvature tensor has the following form at x:

Rhijk = φ(ShkSij − ShjSik) + φ(L− LR)(Shkgij + Sijghk

−Shjgik − Sikghj) + (φ(L− LR)2 − L

n− 2
)Ghijk.

Theorem 4.2. Let (M, g) be a semi-Riemannian manifold with cur-

vature tensor of the form

R(X, Y, Z, W ) = φ(S(X, W )S(Y, Z)− S(X, Z)S(Y, W ))

+ηG(X, Y, Z, W ) + µ(S(X, W )g(Y, Z) + S(Y, Z)g(X,W )

−S(X, Z)g(Y, W )− S(Y, W )g(X, Z))

at x ∈ U , where X, Y, Z, W ∈ Tx(M) and φ, µ, η ∈ R. Then the equalities

R ·R = LRQ(g,R),(23)

R ·R = Q(S, R) + (LR +
µ

φ
)Q(g, C)(24)
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hold at x, where

LR =
µ

φ
((n− 2)µ− 1)− η(n− 2).

Proof. First we observe that φ 6= 0 at x (the equality φ = 0, by
standard calculation gives C = 0). Contracting the equality

Rhijk = φ(ShkSij − ShjSik)(25)

+ µ(Shkgij + Sijghk − Shjgik − Sikghj) + ηGhijk

with ghk we have

φSirS
r
j = (φκ− 1 + µ(n− 2))Sij + (µκ + η(n− 1))gij .

Transvecting (25) with S r
m and using the above equality we obtain

S r
mRrijk = (α + µ)(SmkSij − SmjSik)

+
(

µα

φ
+ η

)
(Smkgij − Smjgik) + β(gmkSij − gmjSik) +

µβ

φ
Gmijk,

where α = φκ − 1 + µ(n − 2), β = µκ + η(n − 1). Symmetrizing this
equality in m, i, we get

S r
mRrijk + S r

i Rmjk=
(

µα

φ
+ η − β

)
(Smkgij − Smjgik + Sikgmj−Sijgmk)

i.e.

(26) R · S = LRQ(g, S),

where LR = µ
φ ((n− 2)µ− 1)− η(n− 2).

Let S̄ and P denote the (0,4)-tensors with local components S̄hijk =
ShkSij−ShjSik and Phijk = ghkSij +gijShk−ghjSik−gikShj , respectively.
Thus our assumption can be written in the form

R = φS̄ + µP + ηG.

This leads to
R ·R = φR · S̄ + µR · P.
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Using (26) we now can verify that R · P = −LRQ(S, G), which in view of
Lemma 3.5 turns into R · P = LRQ(g, P ). In the same manner we can
verify that R · S̄ = LRQ(g, S̄). Thus we have

R ·R = φLRQ(g, S̄) + µLRQ(g, P ) = LRQ(g, φS̄ + µP )

= LRQ(g, φS̄ + µP + ηG) = LRQ(g,R).

The equality (23) is thus proved.
Finally, computing in the same manner as in the proof of Theorem 4.1

and using the equality Q(S, P ) = −Q(g, S̄) (see Lemma 3.5) we get

Q(S,R)− LRQ(g, R) =
(

LR +
µ

φ

)
Q(g, C)

which, in virtue of (23) leads to (24). This completes the proof.

As an application of the above theorem we have the following

Proposition 4.3. Let (M, g) be an essentially conformally symmetric
manifold (see Example 2.2). If rankS = 2 at x ∈ M , then the condition
(∗∗) is satisfied at x.

Proof. Any e.c.s. manifold M admits a unique function F such that
FChijk = ShkSij−ShjSik ([12], Theorem 3). Clearly, F (x) = 0 if and only
if rankS ≤ 1 at x. Thus we have F (x) 6= 0 and Chijk = 1

F (ShkSij−ShjSik)
at x. Using now (6), in virtue of κ = 0 ([11], Theorem 7), we obtain

Rhijk =
1
F

(ShkSij − ShjSik) +
1

n− 2
(Shkgij + Sijghk − Shjgik − Sikghj).

Applying Theorem 4.2, we get LR = 0 and Q(S, R) + F
n−2Q(g, C) = 0.

Thus the relation (3) holds at x with L = F
n−2 . This completes the proof.

From the above proposition and Example 2.2 we can conclude that
every e.c.s. manifold satisfies (∗) and (∗∗).

Now let (M, g) be an s.c.r. manifold (see Example 2.3) with non-
parallel Ricci tensor. In view of Theorems 3 and 4 of [25], we can follow step
by step the proof of Proposition 4.3 and taking into account Example 2.3,
we obtain the same conclusion for s.c.r. manifolds. We summarise the
above in

Theorem 4.3. Every essentially conformally symmetric manifold as
well as every simple conformally recurrent manifold with non-parallel Ricci
tensor satisfy (∗) and (∗∗).
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PL – 50–370 WROCÃLAW
POLAND

(Received November 25, 1996)


