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Convergence of semitypes

By MARK M. MEERSCHAERT (Reno) and

HANS-PETER SCHEFFLER1,2 (Reno)

Abstract. Convergence of types is a basic tool in limit theory for sums of ran-
dom variables. In this paper we present the new concept of convergence of semitypes,
which is the appropriate generalization for problems concerning domains of semistable
attraction. We also show that the growth rate of the sampling sequence {kn} in

a−1
n µkn ∗ δ(sn) ⇒ ν for a semistable but not stable limit law ν is uniquely determined

by µ.

1. Introduction

Convergence of types is a basic tool in probability theory (see for
example Feller [6], VIII.2). Two distributions ν and ν1 on R1 are of the
same type if ν1 = aν ∗ δ(s) for some a > 0 and s ∈ R1. Here aν{dx} =
ν{a−1 dx}, ∗ denotes convolution and δ(s) is the point mass at s. The
main assertion of the convergence of types theorem is that if for some
bn > 0 we have b−1

n µn ∗ δ(sn) ⇒ ν nondegenerate and there exists an > 0
such that a−1

n µn ∗ δ(s′n) ⇒ ν1 nondegenerate then bn/an → a > 0 and
ν1 = aν ∗ δ(s). One important application of convergence of types is
to domains of attraction (see for example Feller [6], XVII.5). We say
that µ belongs to the domain of attraction of a stable law ν, and we write
µ ∈ DOA(ν), if there exist bn > 0 and sn ∈ R1 such that b−1

n µn∗δ(sn) ⇒ ν.
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We say that two different infinitely divisible laws ν, ν1 are of the same
semitype if

(1.1) ν1 = aνλ ∗ δ(s)

for some a > 0, s ∈ R1, and λ > 0, where νλ denotes the λ-fold con-
volution power of ν, defined in terms of characteristic functions. We say
that µ belongs to the domain of semistable attraction of a nondegenerate
probability distribution ν if for some sequence of positive integers kn →∞
with kn+1/kn → c ≥ 1 there exist bn > 0 and sn ∈ R1 such that

(1.2) b−1
n µkn ∗ δ(sn) ⇒ ν.

In this case we write µ ∈ DOSA(ν, c). It follows from Kruglov [10] or
Mejzler [16] that ν is (b, c) semistable. This means that

(1.3) νc = bν ∗ δ(s)

for some b ≥ √
c and some shift s ∈ R. It is interesting to note that infin-

itely divisible laws satisfying (1.3) with s = 0 were originally introduced
by Lévy [11].

Semistable laws and their domains of semistable attraction were
generalized to finite dimensional real vector spaces (see Jajte [8] and
 Luczak [12]) and to simply connected nilpotent Lie groups (Nobel [17]).
An application of Theorem 3.2 in Mejzler [16] or Proposition 7 in No-

bel [17] yields that if (1.2) holds and additionally there exist an > 0,
s′n ∈ R1 and positive integers k′n →∞ with k′n+1/k′n → c such that

(1.4) a−1
n µk′n ∗ δ(s′n) ⇒ ν1

for some nondegenerate distribution ν1 then (1.1) holds, so ν and ν1 are
of the same semitype. This result is then used to show that domains of
semistable attraction are either equal or disjoint (see Nobel [17] Corol-
lary 5).

But in many situations one would also like to know a relationship be-
tween kn and k′n (resp. an and a′n) as in the convergence of types theorem.
This is done in this paper. We prove a convergence of semitype theorem
(Theorem 2.7 below) which shows that in this situation if ν is semistable
and not stable then k′n/kn → λ > 0 and bn/an → a > 0 as in the classical
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convergence of types theorem. As a corollary we get that the growth rate
of the sampling sequence {kn} in (1.2) is uniquely determined by µ when
ν is semistable but not stable. If ν is stable then obviously nothing can be
said about {kn}.

As a corollary of our approach we derive a representation of the tail
function of a measure attracted to a nonnormal semistable law which is
the key to a series representation for these laws derived in Meerschaert

and Scheffler [14].

2. Convergence of semitypes

Suppose there exist norming constants bn, shifts sn, and a sampling
sequence kn → ∞ such that (1.2) holds for some nondegenerate distribu-
tion ν. Then the limit measure ν must be infinitely divisible. If one obtains
the same limit in (1.2) for any choice of sampling sequence kn then ν is
stable, and we have the usual convergence of types theorem. On the other
hand, if the limit depends on an arbitrary sampling sequence then we say
that µ belongs to the domain of partial attraction of ν. For a modern
approach to domains of partial attraction using quantile constructions see
Csörgő [3] and Csörgő–Dodunekova [5]. It is possible to construct
so-called universal laws, which belong to the domain of partial attraction
of every infinitely divisible law (see for example Feller [6], XVII.9 and
Csörgő–Totik [4]). Thus in order to obtain a useful extension of the
convergence of types theorem, it is necessary to place some restriction on
the sampling sequence. In this section we will restrict our attention to the
situation where (1.2) holds for some sampling sequence kn which satisfies
kn+1/kn → c ≥ 1. It follows from Theorem 2.3 of Mejzlar [16] or from
Jatje [8] that if c = 1 then ν is stable, and otherwise ν is (b, c) semistable,
that is, (1.3) holds. If b =

√
c then ν is a normal law, and hence stable. In

the following we will only consider the case where ν is not stable, so that
necessarily b >

√
c.

Suppose then that (1.2) holds for some (b, c) semistable limit law ν

which is not stable. In this section, we will prove that if additionally (1.4)
holds for some an > 0 and some sequence of positive integers k′n → ∞
with k′n+1/k′n → c then bn/an → a and k′n/kn → λ. In particular ν, ν1 are
of the same semitype.
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Theorem 1 of Kruglov [10] or Theorem 4.1 of Mejzlar [16] implies
that the Lévy measure φ of the nonnormal (b, c) semistable law ν satisfies

(2.1) φ{t : |t| > x} = x−αθ(log x)

where α = log c/ log b is necessarily in the interval (0, 2), and θ is periodic
with period log b. In the case where θ is a constant function, ν is actually
stable, but we have assumed that this is not the case. In view of the fact
that the left hand side in (2.1) is monotone, we also have

(2.2)
θ(y + δ) ≤ eαδθ(y)

θ(y − δ) ≥ e−αδθ(y)

for all y, δ > 0. Scheffler ([18]) shows that if µ ∈ DOSA(ν, c) and (1.2)
holds the tail function V0(x) = µ{t : |t| > x} satisfies

(2.3) knV0(bnx) → x−αθ(log x)

for all x > 0 such that x is a continuity point of the limit. Since V0 is
monotone, it follows immediately that if xn → x > 0 and x is a continuity
point of the limit in (2.3) then knV0(bnxn) → x−αθ(log x).

The following construction will be useful in the proof of the main
result of this section. For all x > b1 define n(x) = sup{n : bn ≤ x}, and let
b(x) = bn(x), g(x) = x/b(x). Convergence of types along with (2.1) yields
bn+1/bn → b, and so {g(x) : x > b1} is relatively compact in (0,∞) with
every limit point lying in the interval [1, b].

Lemma 2.1. Let 1 ≤ λ < b. Then for some x0 > b1, for all x ≥ x0

we have

(2.4)

g(x/λ) = g(x)/λ if g(x) ≥ λ

g(x/λ) = g(x)/λ · bn(x)

bn(x)−1
if g(x) < λ

g(λx) = λg(x) if λg(x) ≤ b

g(λx) = λg(x) · bn(x)

bn(x)+1
if λg(x) > b.

Proof. Note that x = g(x)bn for all x > b1, where n = n(x). If λ ≤
g(x) then n(x/λ) = n(x) and so g(x/λ) = (x/λ)/bn = (x/bn)/λ = g(x)/λ.
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Similarly, if λg(x) ≤ b then n(λx) = n(x) and so g(λx) = λx/bn = λg(x).
Choose n0 so that bn/bn−1 > λ for all n ≥ n0. Since n(x) → ∞ as
x → ∞ we may choose x0 so that n(x) ≥ n0 for all x ≥ x0. If λ > g(x)
then n(x/λ) < n(x). For all such x, setting n = n(x) as before, we
have x/λ ≥ bn/λ > bn−1 and so n(x/λ) = n(x) − 1. Then g(x/λ) =
(x/λ)/bn−1 = (g(x)bn)/λbn−1 = (g(x)/λ)·(bn/bn−1). Similarly, if λg(x)>b

then n(λx) > n(x). For all such x we have λx < λbn+1 < bn+2 and
so n(λx) = n(x) + 1. Then g(λx) = (λx)/bn+1 = λ(g(x)bn)/bn+1 =
(λg(x)) · (bn/bn+1).

Since µ ∈ DOSA(ν, c) and ν is a nonnormal (b, c) semistable law, a
result of Scheffler ([19]) shows that

∫ |x|ρdµ(x) is finite if 0 <ρ < α and
infinite if ρ > α. Since by (1.4) we also have µ ∈ DOSA(ν1, c) where ν1

is (b′, c) semistable, for some b′ ≥ √
c, in view of this moment result we

see that log b′/ log c = α. Then b′ = b and hence νc
1 = bν1 ∗ δ(s1) for some

s1 ∈ R. Suppose that ν1 is stable. Then Theorem 2.1 of Meerschaert

and Scheffler [15] implies that µ ∈ DOA(ν1) and hence we also have
d−1

n µkn ∗ δ(s′n) ⇒ ν1 for some dn > 0 and some shifts s′n ∈ R. Then con-
vergence of types together with (1.2) implies that ν is also stable, which is
a contradiction. Hence ν1 is also a (b, c) semistable law which is not sta-
ble. Let φ1 be the Lévy measure of ν1. Another application of Theorem 1
of Kruglov [10] yields φ1{t : |t| > x} = x−αθ1(log x) where θ1 is log b

periodic. As in (2.3) we obtain

(2.5) k′nV0(anx) → x−αθ1(log x)

at continuity points x of the limit. By a simple change of scale, we may
assume without loss of generality that x = 1 is a continuity point of both
limits, and that θ(0) = 1. Now write V0(x) = x−αL(x)f(x) where

(2.6)
L(x) = xαg(x)−αV0(bn(x))

f(x) = g(x)αV0(x)/V0(bn(x)).

Lemma 2.2. The function L(x) defined in (2.6) above is slowly vary-

ing.

Proof. Apply Lemma 2.1. It suffices to show that L(λx)/L(x) → 1
for all 1 ≤ λ < b (see for example Seneta [20, p. 8]). When λg(x) ≤ b we
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have L(λx)/L(x) = 1 and in the remaining case when λg(x) > b, setting
n = n(x) as before, we have

L(λx)
L(x)

= (bn/bn+1)−α kn+1V0(bn+1)
knV0(bn)

kn

kn+1

where bn/bn+1 → b−1 and kn/kn+1 → c−1 = b−α. Using this along with
(2.3) the result follows easily.

Lemma 2.3. The function f(x) defined in (2.6) above satisfies

(a) f(λx) ≤ λαf(x)E(x) with E(x) → 1 as x →∞(2.7)

(b) f(x/λ) ≥ λ−αf(x)Ẽ(x) with Ẽ(x) → 1 as x →∞(2.8)

for all 1 ≤ λ < b.

Proof. The proof of (a) and (b) is similar, so we will only prove
part (b). Apply Lemma 2.1. In the case g(x) ≥ λ we have f(x/λ)/f(x) =
λ−αV0(x/λ)/V0(x) ≥ λ−α in view of the fact that V0 is monotone. In the
case g(x) < λ we have f(x/λ)/f(x) = λ−αẼ(x)V0(x/λ)/V0(x) ≥ λ−αẼ(x)
by monotonicity of V0 where, setting n = n(x) as before, we have

Ẽ(x) =
bα
nV0(bn)

bα
n−1V0(bn−1)

→ 1

since bn/bn−1 → b and V0(bn)/V0(bn−1) → b−α as x →∞.

Lemma 2.4. For all x > 0, every limit point of {f(anx)} lies between

m,M where

(2.9)
m = inf{θ(log y) : 1 ≤ y ≤ b}
M = sup{θ(log y) : 1 ≤ y ≤ b}

Proof. If f(alx) → t along a subsequence, then we can choose a
further subsequence along which g(alx) → y as well. If y is a continuity
point of the limit in (2.3) then along this subsequence, writing nl = n(alx),
we have

(2.10) f(alx) = g(alx)α V0(g(alx)bnl
)

V0(bnl
)

→ yα · y−αθ(log y)
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and so t = θ(log y). This certainly gives m ≤ t ≤ M . On the other hand,
if y is not a continuity point then we will apply Lemma 2.3 to show that
θ(log y+) ≤ t ≤ θ(log y−). Note that in view of the definition (2.1) we
will always have θ(log y−) ≥ θ(log y+). Choose λ > 1 arbitrarily close
to 1 such that y/λ is a continuity point, with g(alx/λ) = g(alx)/λ for all
large l. Then g(alx/λ) → y/λ and it follows as above that f(alx/λ) →
θ(log t/λ) along the chosen subsequence. Then Lemma 2.3 implies that
f(alx) ≤ λαf(alx/λ)/Ẽ(alx) and so t ≤ λαθ(log y/λ) for λ > 1 arbitrarily
close to 1, and it follows that t ≤ θ(log y−). Next choose λ > 1 arbitrarily
close to 1 such that λy is a continuity point, with g(λalx) = λg(alx) for
all large l. Essentially the same argument as before yields t ≥ θ(log y+).

Lemma 2.5. Suppose that for all x > 0, either 1 or b is a limit point

of {g(anx)}. Then for every x > 0, every λ ∈ [1, b] is a limit point of

{g(anx)}.
Proof. Suppose that g(aly) → 1 along a subsequence. Given x > 0

and λ ∈ (1, b), let y = x/λ. Then along this same subsequence we have
for all large l that g(alx) = g(alλy) = λg(aly) → λ. On the other hand,
suppose that g(aly) → b along a subsequence. Given x > 0 and λ ∈ (1, b),
let y = λx. Then along this same subsequence we have for all large l that
g(alx) = g(aly/λ) = g(aly)/λ → b/λ. Then every λ ∈ (1, b) is a limit
point of {g(anx)}, and it follows easily that both 1, b are also limit points.

Lemma 2.6. Both {bn/an} and {kn/k′n} are relatively compact in

(0,∞).

Proof. First suppose that for some x > 0 we have 1 < a ≤ g(anx) ≤
d < b for all n ≥ n0. Choose ε < min{ba/d− 1, 1−d/ba} and enlarge n0 if
necessary to ensure that (1− ε)b ≤ an+1/an ≤ (1 + ε)b for all n ≥ n0. Let
nl = n(alx) so that alx = g(alx)bnl

and observe that for all l sufficiently
large to make nl ≥ n0 we have

bnl+1

bnl

=
al+1

al

g(alx)
g(al+1x)

≤ (1 + ε)b
d

a
< b2

as well as bnl+1/bnl
≥ (1− ε)ba/d > 1. This second inequality implies that

nl+1 ≥ nl + 1 for all large l. But if nl+1 ≥ nl + 2 infinitely often then we
contradict the first inequality, since then bnl+1/bnl

≥ bnl+2/bnl
infinitely

often, and this last term tends to b2 in the limit. Hence for all large l
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we have nl+1 = nl + 1, and this implies that for some integer k we have
nl = l + k for all large l. Then we may write al = bl+kg(alx)/x for all
large l, and since g is bounded and bl+k/bl → bk we see that {bn/an} is
relatively compact.

Otherwise Lemma 2.5 holds, and in this case we will derive a contra-
diction. If x > 0 is a continuity point of the limit in (2.5’) then

k′na−α
n L(an)f(anx) → θ1(log x)

in view of Lemma 2.2. Then every limit point of k′na−α
n L(an) is of the

form θ1(log x)/t where t is a limit point of {f(anx)}. Given ε > 0 we can
choose y1, y2 ∈ [1, b] such that both are continuity points of θ(log y) and
t1 = θ(log y1) < m + ε while t2 = θ(log y2) > M − ε. Then (2.10) implies
that f(anx) has both t1, t2 as limit points, and so in view of Lemma 2.4
and the fact that ε > 0 is arbitrarily small we have

lim sup
n→∞

k′na−α
n L(an) =

θ1(log x)
m

lim inf
n→∞

k′na−α
n L(an) =

θ1(log x)
M

for any continuity point x. But the left hand side of the above expressions
do not depend on x, hence θ1(log x) is a constant. This is a contradiction,
since we have assumed that ν1 is not stable.

Then {bn/an} is relatively compact. Suppose bn/an → a along a
subsequence, and choose x > 0 such that x is a continuity point of θ(log x)
and ax is a continuity point of θ1(log x). From (2.3) and (2.5’) we have
along this same subsequence that

kn

k′n
k′nV0

(
an

bn

an
x

)
→ x−αθ(log x)

k′nV0

(
an

bn

an
x

)
→ (ax)−αθ1(log ax)

which implies that

(2.11)
kn

k′n
→ x−αθ(log x)

(ax)−αθ1(log ax)

along this subsequence. It follows that {kn/k′n} is relatively compact.
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Theorem 2.7 (Convergence of semitypes). Suppose that for some se-

quence of positive integers kn → ∞ with kn+1/kn → c > 1 there exist

bn > 0 and sn ∈ R1 such that b−1
n µkn ∗ δ(sn) ⇒ ν, a semistable law

which is not stable. If there exist an > 0, s′n ∈ R1, and a sequence of

positive integers satisfying k′n+1/k′n → c such that a−1
n µk′n ∗ δ(s′n) ⇒ ν1

nondegenerate then bn/an → a and k′n/kn → λ.

Proof. Apply Lemma 2.6. If along a subsequence we have
(bn/an, k′n/kn) → (a, λ) then we have both

(2.12)
a−1

n µk′n ∗ δ(s′n) ⇒ ν1

a−1
n bnb−1

n µknk′n/kn ∗ δ(s̄n) ⇒ aνλ

for some sequence of shifts s̄n, so that ν1 = aνλ ∗δ(s) for some s ∈ R1. We
know that ν is (b, c) semistable, and although (b, c) are not unique, Theo-
rem 3.2 of  Luczak [12] implies that we can always choose the unique small-
est b > 1. If (a0, λ0) is another limit point of the sequence (bn/an, kn/k′n)
then aνλ = a0ν

λ0 , and then it follows from (2.1) that a0 = abk for some
integer k. Then all limit points of bn/an are of the form abk, and by rela-
tive compactness there are only a finite number of these. To show that in
fact there is only one limit point, we will argue by contradiction. If there
are more than one limit point then there is a subsequence along which
bn/an → a and bn+1/an+1 → abk for some k 6= 0. But since an+1/an → b

and bn+1/bn → b we must have bn+1/an+1 ∼ bn/an, which is a contra-
diction. So bn/an → a, and then it follows by the same argument as
for (2.11) that k′n/kn converges, and so we must have k′n/kn → λ. This
proves the direct half of the theorem, and the converse follows immediately
from (2.12).

In the theorem above, the assumption that b−1
n µkn ∗ δ(sn) ⇒ ν for

some kn+1/kn → c > 1 already implies that ν is either stable or semistable.
If ν is not stable then neither is ν1. If ν is stable, then so is ν1, and in
this case we can say nothing about the behavior of the sequence {kn/k′n}
or the sequence {bn/an}. But if ν is semistable and not stable we have
shown:
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Corollary 2.8. Suppose that µ ∈ DOSA(ν, c) for some nondegenerate

semistable law ν which is not stable. Then the growth rate of the sampling

sequence {kn} is uniquely determined by µ, meaning that if

a−1
n µkn ∗ δ(sn) ⇒ ν for some {kn} with

kn+1

kn
→ c

and

b−1
n µk′n ∗ δ(s′n) ⇒ ν for some {k′n} with

k′n+1

k′n
→ c

then there exists an integer j such that kn+j/k′n → 1 as n →∞.

Proof. Convergence of semitypes yields that k′n/kn → λ where ν =
aνλ ∗ δ(s) for some λ, a > 0 and some s ∈ R. Since ν is (b, c) semistable
and not stable we must have λ = cj for some integer j. The result follows
easily.

3. Remarks

In order for a probability measure µ to belong to some stable domain
of attraction, the tails of this measure must satisfy a regular variation con-
dition. In particular, in order that b−1

n µn ∗ δ(sn) → ν nondegenerate non-
normal we must have V0(t) = µ{x : |x| > t} regularly varying with some
index −α ∈ (0, 2). The number α is the index of the stable limit law ν.
The norming constants can be constructed from the tail function by letting
bn = sup{t : nV0(t) ≥ 1}. Our results illuminate the tail behavior of a
probability measure µ which belongs to some domain of semistable attrac-
tion, as well as the relation between the tails and the norming constants.
Suppose that (1.2) holds. Then arguing as in the proof of Lemma 2.6
it is easy to see that knb−α

n L(bn)f(bnx) → θ(log x) for continuity points
x > 0 of the limit. In particular, since f(bn) = 1 by definition, we have
knb−α

n L(bn) → 1. Define R(t) = t−αL(t) regularly varying. Then we can
always take bn = sup{t : knR(t) ≥ 1}. The representation

(3.1) V0(x) = x−αL(x)f(x)

expresses the tail of µ as the product of a regularly varying function and
a bounded, asymptotically log periodic function f . This representation
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is one of the key ingrediences of a series representation for nonnormal
semistable laws considered in Meerschaert and Scheffler [14]. In
fact we have f(bnx) → θ(log x) at continuity points, together with the
inequalities of Lemma 2.3 at discontinuity points. Since continuity points
are dense, this gives sharp bounds on the behavior of f . If the Lévy
measure φ of the limit ν is continuous, then we can write

(3.2) V0(x) = x−αL(x)[θ(log g(x)) + h(x)]

where L is slowly varying and h(x) → 0 as x →∞. This extends a recent
result of Grinevich and Khokhlov [7]. In the case where φ has jumps,
it seems that no such representation is possible.

A stable measure ν satisfies ν{x : |x| > t} = Cx−α for some C > 0.
For a (b, c) semistable measure we obtain from (2.6) that ν{x : |x| > t} =
x−αf(t) where f is a bounded, asymptotically log periodic function. In
this case we may take bn = bn and kn = cn, so that g(x) = x/bn(x). If the
Lévy measure φ of ν is continuous then ν{x : |x| > t} = x−α[θ(log x) +
h(x)] where h(x) → 0. If ν1 = aνλ ∗ δ(s), so that both measures are
of the same semitype, then it follows from (2.3) and Theorem 2.7 that
θ1(log ax) = λaαθ(log x). Alternatively, this follows from (2.1) and the
Lévy representation. Then two different semistable laws which are of the
same semitype, but not the same type, are related by a phase shift in the
log periodic portion of the tail.

From a “statistical point of view”, domains of semistable attraction
are interesting because they place a weaker restriction on the tails of a
measure µ than domains of attraction. In the latter case, one can construct
norming constants from the empirical version of the tail function V0(t),
using the fact that V0(bn) ∼ n. For domains of semistable attraction, it is
necessary to first construct the norming constants bn, which capture the log
periodic behavior of the tail. The functions L and f can then be obtained
using an empirical estimate of the tail V0(x), and the sampling constants
can be chosen to satisfy knb−α

n L(bn) ∼ 1. The problem of constructing a
sequence bn from the data is still open.

Another interesting open problem is the multivariable analogue of
domains of semistable attraction. Suppose that (1.2) holds where µ, ν
are full probability measure on Rd and bn are linear operators. Then we
say that ν is operator semistable and that µ belongs to its generalized
domain of semistable attraction. The structure of generalized domain of
semistable attraction is discussed in Meerschaert and Scheffler [15].
The problem of convergence of semitypes, especially the assertion on the
growth rate of the sampling sequence {kn}, in the operator semistable case
is still an open and challenging problem.
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