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On the Cartan connection
for a class of generalized Lagrange spaces

By D. HRIMIUC (Edmonton)

Abstract. In this paper we determine the Cartan connection of the generalized

Lagrange space (M, aij) with metric tensor aij = θ(x, y)
◦
hij + ψ

�
F 2(x, y)

�
e2α(x)

◦
li

◦
lj ,

which includes particular metrics frequently encountered in applications in Physical and
Biological problems. The results obtained are employed on the problem of equivalence
of geodesics for certain metrics.

Introduction

The geometrical theory of spaces endowed with metrics having the
forms

(i) aij = e2αgij or (ii) gij = gij + β
◦
yi
◦
yj

where gij is the metric tensor of a Finsler manifold and α, β are functions
of position and direction has been studied in many papers [15], [19], [2],
[4], [5], [12], [13], [14], [20], [21], [22]. Of course, these spaces used as ge-
ometrical models for gravitation and electromagnetism generally are not
Lagrange manifolds and new geometrical ideas, initiated in [18] have been
used. It is clear that such metrics are useful for a constructive axiomatic
theory of general relativity based on conditions formulated by Ehlers,

Pirani and Schild ([10], [19]), as well as for a geometrical model con-
struction of relativistic optic [7], [8], [9], [15], [18], [19], [20], [21]. It seems
that these metrics can be successfully used for biological models as well,
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as already given in the particular case of Finsler manifolds [3], or more
general for some special Lagrangians [2], [4], [5].

The main result is given in Section 3 where the Cartan connection for
a special GL-space is obtained. This is a substantial extension of similar
results from Riemannian geometry (Levi-Civita connection) and Finsler
geometry (Cartan connection).

The Cartan connection was obtained in [2] for homogeneous case and
more general for ϕ-Lagrangians (different proof) [4], [5]. However, for these
GL-spaces the obvious modifications of standard techniques (e.g. Finsler,
m-homogeneous, ϕ-Lagrange) do not work.

The canonical d-connection used for the geometrical study of gener-
alized Lagrange manifolds with metrics of type (i) or (ii) have in general
nonvanishing deflection tensor. This is an unpleasant situation from at
least two points of view: the energy functional is nonconservative along
the paths of nonlinear connection, and the horizontal lift of these paths
are not h-paths. In the present work, making a conformal change of met-
ric (ii), we will find other metrics without the inconveniences alluded to
above.

1. Preliminaries

Let M be a C∞-real n-dimensional differentiable manifold and π :
TM → M its tangent bundle.

If (xi), i = 1, . . . , n is a local system of coordinates on a domain U of
a chart on M then (xi, yi) is the induced local system of coordinates on
π−1(U) in TM .

We put ∂i := ∂/∂xi and ∂̇i := ∂/∂yi.
A change of coodinates on TM is given by

(1.1) xi′ = xi′(xi), yi′ = (∂ix
i′)yi, rank (∂ix

i′) = n.

A nonlinear connection on M is defined by a distribution HTM over TM

supplementary to the vertical distribution i.e. the kernel of the differential
of π.

In HTM there exists a local frame defined by the local vector fields

(1.2) δi := ∂i −Nk
i ∂̇k
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(Nk
i ) are called the coefficients of the nonlinear connection. We can intro-

duce some special tensor fields, called d-tensor field as an object of algebra
spanned by {1, δi, ∂̇i} over the ring F(TM) of smooth real valued functions
on TM .

For a change of coordinates given by (1.1) the components of a d-
tensor are transformed in exactly the same way as a tensor on M , in spite
of yi dependence.

Definition 1.1 ([18]). A generalized Lagrange space (briefly GL-space)
is a pair

(
M,aij(x, y)

)
where aij is a symmetric and nondegenerate d-

tensor field on
◦
TM = TM\{0x, x ∈ M}.

If there exists a smooth function L : TM → R such that aij =
1/2 ∂̇i∂̇jL, then the pair (M, aij) or (M, L) is called a Lagrange space.

A Finsler space is a particular Lagrange space and of course, a partic-

ular GL-space. In this case L is smooth on
◦
TM , positively homogeneous

and the quadratic form aij(x, y) is positive definite.
The geometry of GL-space can be developed by the same methods as

those employed in Lagrange or Finsler space [18], [6], [16].
In a GL-space endowed with the nonlinear connection (N i

j) we can
introduce so called d-connection.

CΓ(N i
j) = (Li

jk, Ci
jk), which allows us to define the h- and v-covariant

derivative like for Finsler spaces. For example, the h- and v-covariant
derivative of the metric tensor aij , denoted by “ | ” and respectively “

∣∣ ”
are given by

aij|k = δkaij − Ls
kiasj − Ls

kjais; aij |k= ∂̇kaij − Cs
kiasj − Cs

kjais.

The following result (see [18], page 186) will be used:

Theorem 1.2. Let (M, aij) be a GL-Lagrange space and (N i
j) a fixed

nonlinear connection. Then there exist only one d-connectionq CΓ(N i
j) =

(Li
jk, Ci

jk) with the following properties

1◦ aij|k = 0 (h-metrical), 2◦ aij |k = 0 (v-metrical),

3◦ T i
jk = Li

jk − Li
kj = 0, 4◦ Si

jk = Ci
jk − Ci

kj = 0.
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The coefficients of this d-connection are given by

Li
jk = 1

2 aip(δjapk + δkajp − δpajk)

Ci
jk = 1

2 aip(∂̇japk + ∂̇kajp − ∂̇pajk)

This connection will be called the canonical d-connection of the GL-space
(M, aij).

A systematic presentation of the geometry of a GL-space is given
in [18]. Also, throughout this paper we shall use the usual set up for
general theory of Finsler manifolds. We follow closely the exposition of
basic Finsler geometry in [6], [16].

2. Deflection free connection on GL-spaces

Let C
◦
Γ = (

◦
N i

j , F
i
jk,

◦
Ci

jk) be the Cartan connection of the Finsler space
Fn =

(
M, F (x, y)

)
and gij := 1/2 ∂̇i∂̇jF

2 the metric tensor. In general,
the geometrical objects related to the Finsler space will be indicated by
“0” on the top.

For example
◦
yi = gijy

j ,
◦
`i =

◦
yi/F ,

◦
`i = yi/F ,

◦
hij = gij −

◦
`i

◦
`j . We

consider a GL-space whose metric tensor is of the form

(2.1) aij = e2αgij , gij = gij + β
◦
yi
◦
yj ,

where α = α(x, y), β = β(x, y) are smooth scalar functions such that
1 + βF 2 > 0. It is easy to see that the reciprocal components of aij are
given by

(2.2) aij = e−2αgij , gij = gij − β

1 + F 2β
yiyj .

We put

U i
jk := δi

kαj+δi
jαk−gjkgihαh+ 1

2 gih(βj
◦
yh
◦
yk+βk

◦
yj
◦
yh−βh

◦
yj
◦
yk)(2.3)

U̇ i
jk := δi

kα̇j+δi
jα̇k−gjkgihα̇h+ 1

2 gih(β̇j
◦
yh
◦
yk+β̇k

◦
yj
◦
yh−β̇h

◦
yj
◦
yk)(2.4)

where αi := δiα, α̇i := ∂̇iα. We have



On the Cartan connection for a class of generalized Lagrange spaces 137

Proposition 2.1. Let C
◦
Γ = (

◦
N i

j , F
i
jk,

◦
Ci

jk) be the Cartan connection

of the Finsler space Fn =
(
M, F (x, y)

)
. The coefficients of the canonical

d-connection CΓ(
◦
N i

j) = (Li
jk, Ci

jk) of the GL-space (M, aij) are given by

Li
jk = F i

jk + U i
jk(2.5)

Ci
jk =

◦
Ci

jk + U̇ i
jk +

β

1 + βF 2
gjkyi.(2.6)

Proof. We can apply Theorem 1.2 or we look for Li
jk in the following

form:
Li

jk = F i
jk + Ai

jk

where Ai
jk is a symmetric d-tensor field.

From aij|k = 0 ⇐⇒ a
ij
◦
|k
−ahjA

h
ik−aihAh

jk = 0 using the Christoffel

process, after a tedious calculation we obtain (2.5). Similarly, we get (2.6).

For the d-connection CΓ(
◦
N i

j) = (Li
jk, Ci

jk) we put the following ques-
tions:

a) When the horizontal lift of the paths of the nonlinear connection (
◦
N i

j),
(in fact the geodesics of the Finsler spaces, parametrized by arc length)
are h-paths? (This is equivalent with Di

0 = Li
00.)

b) For which α and β the deflection tensor, Di
j , vanishes?

Theorem 2.2. Let CΓ(
◦
N i

j) = (Li
jk, Ci

jk) the canonical d-connection

given by (2.5), (2.6) and E = aijy
iyj the energy function. Then

(i) E|k = 0 ⇐⇒ 2α = σ − log (1 + F 2β) with σk = 0 ⇐⇒ Di
0 = 0

(ii) Di
k = 0 ⇐⇒ 2α = σ− log (1+F 2β) with σk = 0 and β0 := yiβi = 0.

Proof. (i) The h-covariant derivatie of E = e2α(1 + βF 2)F 2 is

(2.7) E|k = e2αF 2
(
2(1 + βF 2)αk + F 2βk

)
.

Thus

E|k = 0 ⇐⇒ 2αk = − βkF 2

1 + βF 2
⇐⇒ 2α = σ − log (1 + βF 2)

where σ = σ(x, y) and σk = 0.
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On the other hand

Di
j = Li

j0 −
◦
N i

j = U i
j0.

That is

gihDh
j = (gijαk + gikαj − gjkαi)yk + 1

2 (βk
◦
yi
◦
yj + βj

◦
yi
◦
yk − βi

◦
yj
◦
yk)yk.

Taking (2.1) into account we get

(2.8)

gihDh
j =

(
(βαk + 1

2 βk)
◦
yi
◦
yj + (βαj + 1

2 βj)
◦
yi
◦
yk

− (βαi + 1
2 βi)

◦
yj
◦
yk

)
yk

+ (gijαk + gikαj − gjkαi)yk.

Using αk = − F 2βk

2(1+βF 2) we obtain after same computations

(2.9) gihDh
j =

β0

2(1 + βF 2)
(
◦
yi
◦
yj − F 2gij).

Transvecting by yj in (2.8) we get Di
0 = 0. Now, suppose that Di

0 = 0.
From (2.8) we have

(2.10) 2αo
◦
yi − αiF

2 + (2βα0 + β0)F 2◦yi − (βαi + 1
2 βi)F 4 = 0

Transvecting by yi we get

2α0 = − β0F
2

1 + βF 2
.

Using again (2.10) we obtain

(2.11) 2αk = − βkF 2

1 + βF 2

and (i) follows.

(ii) If Di
k = 0 then Di

0 = 0 and using (i) we get 2α = σ− log(1+F 2β)
with σk = 0. On the other hand making use of (2.9) we obtain β0 = 0.
The converse implication follows from (2.8) and (2.9).
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Corollary 2.3. In the GL-space with metric tensor (2.1) horizontal lift

of the paths of the nonlinear connection
◦
N i

j (the same with the geodesics of

Fn =
(
M, F (x, y)

)
parametrized by arc length) are h-paths of CΓ(

◦
N i

j) =

(Li
jk, Ci

jk) iff 2αk = βkF 2

1+βF 2 .

From the Theorem 2.2 is clear that starting with the Cartan connec-

tion C
◦
Γ of the Finsler space Fn =

(
M, F (x, y)

)
the deflection tensor of

the canonical d-connection of GL-space (M, aij) vanishes iff

(2.12) aij = eσ−log(1+F 2β)(gij + β
◦
yi
◦
yj)

where σ = σ(x, y) with σk = 0. We can write (2.12) after changing
notation to the following form

(2.13) aij = eσ
(
θgij + (1− θ)

◦
`i

◦
`j)

where θ = θ(x, y), θ 6= 0 and σk = 0.
These results have suggested we give up use at the start of the Car-

tan nonlinear connection
◦
N i

j and look for the Cartan connection of more
general metrics than (2.13).

Remark. For the GL-manifold (M, gij) the deflection tensor of

CΓ(
◦
N i

j) = (Li
jk, Ci

jk) is null iff βk = 0. Then a conformal change of
this metric leads to a new GL-space for which the horizontal lift of the
geodesics of its associated Finsler space (parametrized by arc length) are
h-paths, in less restrictive conditions.

3. The Cartan connection for some special GL-space

We consider the GL-space (M, aij) with metric tensor given by

aij = θgij +
(
ψ(F 2)e2α − θ

)◦
`i

◦
`j(3.1)

where

θ = θ(x, y), α = α(x) are smooth scalar functions, θ 6= 0,
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and ψ : (0,∞) → (0,∞) is a smooth function such that ψ(t) + tψ′(t) 6= 0
∀ t ∈ (0,∞).

It is easy to check that the reciprocal components of aij are given by

(3.2) aij =
1
θ

gij +
(

1
ψ

e−2α − 1
θ

) ◦
`i
◦
`j .

Using the angular metric tensor
◦
hij = gij −

◦
`i

◦
`j we can rewrite (3.1) and

(3.2) in the following simple forms:

aij = θ
◦
hij + ψe2α

◦
`i

◦
`j(3.1)′

aij =
1
θ

◦
hij +

1
ψ

e−2α
◦
`i
◦
`j(3.2)′

where
◦
hij = gipgjq

◦
hpq = gij −

◦
`i
◦
`j .

The metric tensor aij is quite general and many other particular met-
rics used in different papers can be obtained from it.

Examples. 1. For ψ = 1, α = 0, θ = c, gij(x, y) = γij(x) (Riemannian
metric)

(3.3) aij = cγij + (1− c)
◦
`i

◦
`j

which has been used in [7], [8], [21] in problems of post-Newtonian estima-
tion, and also in [22].

2. For ψ(t) = 1
c2 t + 1 (c ∈ R∗), α = 0, θ = 1 the metric tensor is

given by

(3.4) aij = gij +
1
c2

◦
yi
◦
yj

which have been used in [15], [9], [21], [18] for applications in relativistic
geometric optics.

3. For α = 0, θ(x, y) = ϕ′
(
F 2(x, y)

)
, ψ = 2ϕ′′(t)t + ϕ′(t) we obtain

(3.5) aij = ϕ′gij + 2ϕ′′
◦
yi
◦
yj

which is nothing but the metric tensor of a ϕ-Lagrange [3], [4] which have
been used for applications in Biology and Physics.
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In particular for ϕ(t) = tm/2 we get

(3.6) aij =
m

2
Fm−2

(
gij + (m− 2)

◦
`i

◦
`j)

which is the metric tensor for m-homogeneous Lagrange space [2], [12],
[13].

4. If θ = 1, ψ = 1, 2α(x) = `n
(
1− α(x)

)
thus

(3.7) aij = gij − α(x)
◦
`i

◦
`j

and we get the GL-space studied in [14].
5. For θ = θ(x, y)e2α(x), θ 6= 0

(3.8) aij = e2α(x)[θgij + (ψ − θ)
◦
`i

◦
`j ]

which is a conformal change of metric gij = θgij +(ψ−θ)
◦
`i

◦
`j more general

as in [11].

The central problem of this paper is to determine the Cartan connec-
tion of the GL-space (M,aij) where aij is given by (3.1) or (3.1)′.

Following [6], [16] the Cartan connection is a triple CΓ=(N i
j , L

i
jk, Ci

jk)
which must verify the following axioms (Matsumoto’s axioms).

1◦ aij|k = 0 2◦ aij |k = 0

3◦ Di
j = Li

j0 −N i
j = 0 4◦ T i

jk = Li
jk − Li

kj = 0

5◦ Si
jk = Ci

jk − Ci
kj = 0.

We shall use the following notations:

yi := aijy
i, ‖y‖2 := yiy

i = aijy
iyj = E(3.9)

`i := yi/‖y‖,(3.10)

`i := yi/‖y‖ (normalized supporting element)

hij := aij − `i`j (angular metric tensor).(3.11)
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The following properties are immediate

yi = ϕe2α◦yi; ‖y‖2 = ψF 2e2α(3.12)

`i = aij`
j ; `i`j = ψe2α

◦
`i

◦
`j(3.13)

hij = θ
◦
hij ; hi

j : = aikhkj =
◦
hi

j .(3.14)

Theorem 3.1. In the GL-space (M, aij) with aij given by (3.1) there

exists a unique d-connection CΓ = (N i
j , L

i
jk, Ci

jk) which satisfies the Mat-

sumoto’s axioms.

Proof. We look for CΓ which verifies 1◦ − 5◦. From 1◦ and 3◦ we
get ‖y‖2|k = 0 and making use of (3.12) we obtain

(3.15) F 2
|k =

−2αkψF 2

ψ + ψ′F 2
,

where αk := ∂kα.
From (3.1) using (3.13) we get the following expression for the metric

tensor of Fn

(3.16) gij =
1
θ

aij +
(e−2α

ψ
− 1

θ

)
`i`j .

We have, making use of 1◦ and 3◦

gij|k = −θk

θ
aij +

θk

θ2
`i`j − 2e−2α

ψ
αk`i`j − ψ′e−2α

ψ2
F 2
|k`i`j

= −θk

θ2
hij − 2e−2α

ψ
αk`i`j +

ψ′e−2α

ψ2

2ψF 2

ψ + ψ′F 2
αk`i`j .

From (3.13), (3.14) and the equality above it follows

gij|k = −θk

θ

◦
hij − 2αk

◦
`i

◦
`j +

2F 2ψ′

ψ + F 2ψ′
αk

◦
`i

◦
`j .

Therefore

(3.17) Lp
ikgpj + Lp

jkgip = δkgij +
1
θ
θk

◦
hij +

2
1 + A

αk

◦
`i

◦
`j
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where we have put

(3.18) A :=
ψ′(F 2)
ψ(F 2)

F 2.

Using the Christoffel process and 4◦ we get

(3.19)

Li
jk =

1
2

gip(δjgpk + δkgjp − δpgjk)

+
1
2θ

gip (θj

◦
hpk + θk

◦
hjp − θp

◦
hjk)

+
1

1 + A
(αj

◦
`k

◦
`i + αk

◦
`j

◦
`i −

◦
`j

◦
`kαi).

Introducing the generalized Christoffel symbols

γi
jk =

1
2

gip(∂jgpk + ∂kgjp − ∂pgjk)

(3.19) can be rewritten in the following form

Li
jk = γi

jk −Nr
j

◦
Ci

rk −Nr
k

◦
Ci

rj + gipNr
p

◦
Crjk(3.20)

+
1
2θ

(θj

◦
hi

k + θk

◦
hi

j − θi
◦
hjk)

+
1

1 + A
(αj

◦
`k

◦
`i + αk

◦
`j

◦
`i −

◦
`j

◦
`kαi)

with θi := gipθp.
Transvecting by yk and then by yj and using again 3◦ we get

N i
j = γi

j0 −Nr
0

◦
Ci

rj +
1
2θ

θ0

◦
hi

j(3.21)

+
1

1 + A
(Fαj

◦
`i + α0

◦
`j

◦
`i − F

◦
`jα

i)

N i
0 = γi

00 +
1

1 + A
(2Fα0

◦
`i − F 2αi)(3.22)

where αi := gijαj and

(3.23) θ0 = yk(∂kθ −N i
kθ̇i) = ∂0θ − γi

00θ̇i − 1
1 + A

(2α0θ̇0 − F 2αiθ̇i).
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Therefore, making use of (3.22) a direct calculation gives

N i
j = γi

j0 −
◦
Ci

jkγk
00 +

F 2

1 + A

◦
Ci

jkαk

+
1

1 + A

(
αjy

i +
1

F 2
α0

◦
yjy

i − ◦
yjα

i
)

+
θ0

2θ

◦
hi

j .

That is

N i
j =

◦
N i

j +
1

1 + A
(δi

jα0 + αjy
i − ◦

yjα
i + F 2

◦
Ci

jkαk)

(3.24)

+
(

θ0

2θ
− α0

1 + A

) ◦
hi

j

where ◦
N i

j = γi
j0 −

◦
Ci

jkγk
00

is the Cartan nonlinear connection of the Finsler space Fn =
(
M, F (x, y)

)
.

Li
jk given by (3.19) with (N i

j) from (3.24) verifies 1◦, 3◦, 4◦.
Now, from 2◦ and 5◦ we get by standard calculatin

Ci
jk =

1
2

aik(∂̇japk + ∂̇kajp − ∂̇pajk).

Remark. 1. Bi
j := δi

jα0 + αjy
i − ◦

yiα
i + F 2

◦
Ci

jkαk from (3.24) is just
the tensor which perturbs the Cartan nonlinear connection of a Finsler
space after a conformal change of metric tensor (see [10]).

In fact, this theorem gives us the change of the Cartan connection

C
◦
Γ = (

◦
N i

j , L
i
jk,

◦
Ci

jk) after a distorted conformal change of the metric
tensor gij

gij → θgij + (ψ − θ)
◦
`i

◦
`j → eα(x)

(
θgij + (ψ − θ)

◦
`i

◦
`j

)
.

2. The d-connection CΓ = (N i
j , L

i
jk, Ci

jk) has the coefficients given as
follows

Li
jk =

1
2

aip(δjapk + δkajp − δpajk)(3.25)

Ci
jk =

1
2

aip(∂̇japk + ∂̇kajp − ∂pajk)(3.25)′
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with N i
j from (3.24).

We can also express these coefficients in terms of the Cartan connec-
tion of the Finsler space

(
M, F (x, y)

)
.

3. The following formulae hold:

i) gij|k = − θk

θ

◦
hij − 2

1+Aαk

◦
`i

◦
`j

ii)
◦
`i|k = − 1

1+Aαk

◦
`i,

◦
`i
|k = 1

1+Aαk

◦
`i

iii)
◦
hij|k = − θk

θ

◦
hij .

4. The d-connection obtained in Theorem 3.1 will be called the Cartan
connection of the GL-space (M,aij).

From Theorem 3.1 we get

Theorem 3.2. The Cartan connection CΓ = (N i
j , L

i
jk, Ci

jk) of the GL-

space (M, gij) where gij = θgij +(ψ− θ)
◦
`i

◦
`j has the following coefficients:

Li
jk = F i

jk +
1
2θ

(θj

◦
hi

k + θk

◦
hi

j − θi
◦
hjk)− θ0

2θ

◦
Ci

jk(3.26)

Ci
jk =

◦
Ci

jk +
1
2θ

(θ̇j

◦
hi

k + θ̇k

◦
hi

j − θ̇i
◦
hjk)(3.27)

+
ψ′F
ψ

◦
`j

◦
`k

◦
`i +

ψ − θ

Fψ

(
1 +

θ̇0

2θ

)◦
hjk

◦
`i

N i
j =

◦
N i

j +
θ0

2θ

◦
hi

j .(3.28)

Corollary 3.3. The coefficients of the Cartan connection for a m-

homogeneous Lagrange manifold are given as follows

Li
jk = F i

jk, N i
j =

◦
N i

j(3.29)

Ci
jk =

◦
Ci

jk +
m− 2
2F

(δi
j

◦
`k + δi

k

◦
`j)(3.30)

+
m− 2

(m− 1)F

◦
hjk

◦
`i − m− 2

2F

◦
`j

◦
`k

◦
`i

(see [4], [12]).
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Corollary 3.4. The Cartan connection of GL-space (M, gij), gij =

θgij + (1− θ)
◦
`i

◦
`j with θ = const. are as follows:

Li
jk = F i

jk, N i
j =

◦
N i

j(3.31)

Ci
jk =

◦
Ci

jk +
1− θ

F 2
hjkyi.(3.32)

Proposition 3.5. The Cartan connection given in Theorem 3.2 has

the property Ci
j0 = 0 iff θ is 0-homogeneous and ψ = const. (n ≥ 2).

Proof. Transvecting in (3.27) by yk we get:

0 = Ci
j0 = − 1

2θ
θ̇0h

i
j +

ψ′F 2

ψ

◦
`j

◦
`i.

Transvecting again by yj we obtain ψ′ = 0 and then θ̇0 = 0, therefore
θ is 0-homogeneous and ψ = const.

Let us see now about geodesics of GL-space (M, gij) with

gij = θgij + (ψ − θ)
◦
`i

◦
`j .

The energy functional is given by

E = ψ(F 2)F 2.

We remark that (M, E) is a ϕ-Lagrange space with ϕ(t) = ψ(t) · t and from
a result of [4] the geodesics of the Finsler space

(
M, F (x, y)

)
parametrized

by arc length coincide with the extremals of energy integral and with the

paths of
◦
N i

j .

From (3.28) we obtain that
◦
N i

j and N i
j have the same paths and from

the deflection free property these are the h-paths of GL-space (M, gij).

Therefore, we can state:

Theorem 3.6. For the GL-space (M, gij) the geodesic of the associate

Finsler space (parametrized by arc length), the extremals of the action

integral and the paths of nonlinear connection N i
j (or

◦
N i

j) coincide. The

horizontal lifts of these curves are h-paths.
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Remark. For the metric gij(x, y) = γij(x)+β(x, y)
◦
`i

◦
`j where γij(x) is

a Riemannian metric used in the geometric relativistic optic (see [17]) we

can make a conformal change aij = e−`n
(
1+β(x,y)

)(
γij + β(x, y)

◦
`i

◦
`j)

)
and

the new GL-space (M, aij) have the properties of these from Theorem 3.2
and Theorem 3.6.
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