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Strong laws of large numbers for pairwise independent
random variables with multidimensional indices

By ISTVÁN FAZEKAS (Debrecen) and TIBOR TÓMÁCS (Eger)

Abstract. Pairwise independent random variables with multidimensional indices
are studied. The Kolmogorov and the Marcinkiewicz strong laws of large numbers and
Spitzer’s theorem are proved in the case of exponent r ≤ 1.

1. Introduction

Several papers are devoted to the study of the strong law of large
numbers for non independent random variables (see e.g. Révész [14] and
Csörgő, Tandori and Totik [1]). Etemadi [2] proved that the Kol-
mogorov strong law of large numbers holds for identically distributed and
pairwise independent random variables. Kruglov [11] extended that
result and obtained the Marcinkiewicz strong law of large numbers and
Spitzer’s theorem in the pairwise independent case if r < 1.

On the other hand, the strong law of large numbers has been extended
to the case where the index set is the positive integer d-dimensional lattice
points (see e.g. Gut [6], Klesov [9] and [10], Fazekas [3]). Moreover, the
assumption of identical distribution can also be weakened. Among others
Hu, Móricz and Taylor [8], Gut [7] and Fazekas [4] used domination
of distributions instead of identical distribution.
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In this paper the Kolmogorov and the Marcinkiewicz strong laws (if
0 < r < 1) are proved for pairwise independent identically distributed
random variables with multidimensional indices. Spitzer’s theorem is ob-
tained for pairwise independent dominated random variables with multi-
dimensional indices. Our theorems in sections 3 and 4 are extensions of
Theorems 1 and 2 of Kruglov [11]. Some parts of our theorems have
been proved in Etemadi [2]. In section 5 we prove Spitzer’s theorem (for
r < 1) for weakly mean dominated random variables without assuming
any independence.

We remark that there is a huge literature of laws of large numbers for
mixing sequences (see e.g. Rio [15]) and for Banach space valued random
variables (see e.g. Fazekas [3], Nguyen Van Giang [12] for the multiin-
dex case). However, in this paper we concentrate on real-valued pairwise
independent random variables.

2. Notation and preliminary lemmas

Let Nd be the positive integer d-dimensional lattice points, where d

is a positive integer. For n, m ∈ Nd, n ≤ m is defined coordinatewise,
(n, m] =

∏d
i=1(ni,mi] is a d-dimensional rectangle and |n| =

∏d
i=1 ni,

where n = (n1, . . . , nd), m = (m1, . . . , md).
∑
n will denote the summa-

tion for all n ∈ Nd. 1 = (1, . . . , 1) ∈ Nd. I(A) denotes the indicator func-
tion of the set A. We shall assume that random variables (r.v.’s) {Xn, n ∈
Nd} are defined on the same probability space (Ω,A,P ). E stands for
the expectation. The following notation will be used: Sn =

∑
k≤nXk,

X+
n = max{0, Xn}, X−

n = max{0,−Xn}. Obviously, Xn = X+
n − X−

n ,
|Xn| = X+

n +X−
n . Different constants will be denoted by the same letter c.

The following two lemmas are proved e.g. in Gut [6] and in Faze-

kas [3].

Lemma 2.1. Let X be a r.v. For r > 0 the following statements are

equivalent:

1) E
(
|X|r (

log+ |X|)d−1
)

< ∞,

2)
∑
n
|n|αr−1P (|X| ≥ |n|αε) < ∞, for any α > 0, ε > 0.

Proof. We show 1) ⇒ 2) in a particular case because later we shall
use the inequality obtained. Let d(k) = Card

{
n : n ∈ Nd, |n| = k

}
and
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M(x) =
∑

k≤x d(k) (here k is a positive integer and x is a positive real

number). It is known that M(x) ∼ const.x
(
log+ x

)d−1
, where log+ de-

notes the positive part of function log. We have

∑
n

P (|X| ≥ |n|) =
∑
n

∑

i≥|n|
P (i ≤ |X| < i + 1)

=
∑

i

M(i)P (i ≤ |X| < i + 1)

≤ c
∑

i

i
(
log+ i

)d−1
P (i ≤ |X| < i + 1) ≤ cE

(
|X| (log+ |X|)d−1

)
.

Lemma 2.2. Let {Xn,n ∈ Nd} be a sequence of identically dis-

tributed (i.d.) r.v.’s, 0 < r < p ≤ 2, ε > 0 and define

Yn = XnI
{|Xn| ≤ ε|n|1/r

}
. If

E
(
|X1|r

(
log+ |X1|

)d−1
)

< ∞,

then
∑
n

E
∣∣∣|n|−1/rYn

∣∣∣
p

< ∞.

Several classical theorems for identically distributed random variables
remain valid for non identically distributed case if an appropriate domina-
tion condition is assumed. We shall use the so called weak mean domina-
tion (see e.g. Gut [7]).

Definition 2.3. It is said that the sequence {Xn, n ∈ Nd} is weakly
mean dominated by the r.v. X if, for some 0 < c < ∞,

(WMD)
1
|n|

∑

k≤n
P (|Xk| > x) ≤ cP (|X| > x)

for all n ∈ Nd and x > 0.
Besides truncation, we shall use the following operations on r.v.’s. Let

Z be a r.v., λ > 0, then define

(2.1) Z(λ) = |Z|I {|Z| > λ}
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and

(2.2) Z∗(λ) = |Z|I {|Z| ≤ λ}+ λI {|Z| > λ} .

The following lemma is a variant of Lemma 2.1 of Gut [7]. (See also
Lemma 2.7 of Fazekas [4]).

Lemma 2.4. Let {Xn, n ∈ Nd} be weakly mean dominated by X.

Let p > 0, λ > 0, and let Xn(λ) and X∗
n(λ) be defined according to (2.1)

and (2.2), respectively. Then

1
|n|

∑

k≤n
E (X∗

k(λ))p ≤ cE (X∗(λ))p
,(2.3)

and
1
|n|

∑

k≤n
E (Xk(λ))p ≤ cE (X(λ))p

.(2.4)

Proof. For a non-negative r.v. Y we have EY p=p
∞∫
0

yp−1P (Y >y)dy.

By this equality and condition (WMD) it follows that

1
|n|

∑

k≤n
E (X∗

k(λ))p =
1
|n|

∑

k≤n
p

∫ ∞

0

yp−1P (X∗
k(λ) > y) dy

= p

∫ λ

0

yp−1 1
|n|

∑

k≤n
P (|Xk| > y) dy

≤ p

∫ λ

0

yp−1cP (|X| > y)dy = cE (X∗(λ))p
.

Therefore (2.3) is proved. Similarly, (2.4) follows, since

1
|n|

∑

k≤n
E (Xk(λ))p = p

∫ ∞

0

yp−1 1
|n|

∑

k≤n
P (Xk(λ) > y) dy

= p

∫ λ

0

yp−1 1
|n|

∑

k≤n
P (|Xk| > λ) dy

+ p

∫ ∞

λ

yp−1 1
|n|

∑

k≤n
P (|Xk| > y) dy
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≤ p

∫ ∞

0

yp−1cP (X(λ) > y)dy = cE(X(λ))p.

This completes the proof of Lemma 2.4.

Lemma. 2.5. Let {Xn, n ∈ Nd} be a sequence of pairwise inde-
pendent r.v.’s, and let {an, n ∈ Nd} be a sequence of positive numbers.
If {

an−v
an

: n ∈ Nd, v ∈ V

}

is a bounded set, where V = {v = (v1, . . . , vd) : vi ∈ {0, 1}} and

Sn
an

→ 0 almost surely (a.s.) as |n| → ∞,

then
∑
n

P (|Xn| ≥ an) < ∞.

The lemma follows from the Borel–Cantelli lemma for pairwise in-
dependent events (see e.g. Petrov [13] p. 214) by taking d-dimensional
differences.

Lemma 2.6 (Kronecker). Let xn and bn be non-negative numbers
(n ∈ Nd). Suppose that bm ≤ bn if m ≤ n and bn → ∞ if |n| → ∞. If∑
n xn is finite then

1
bn

∑

k≤n
bkxk → 0 as |n| → ∞.

The proof is the same as in the case d = 1.

3. A general a.s. convergence theorem

The following result is a generalization of Theorem 1 of Kruglov [11].

Theorem 3.1. Let {Xn, n ∈ Nd} be a sequence of non-negative r.v.’s,
and let {bn, n ∈ Nd} be a bounded sequence of non-negative numbers, and
Bn =

∑
k≤n

bk. If

(3.1)
∑
n

1
|n|P

(
|Sn −Bn| > ε|n|1/r

)
< ∞
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for every ε > 0, where 0 < r ≤ 1, then

(3.2)
1

|n|1/r
(Sn −Bn) → 0 a.s. as |n| → ∞.

Proof. Fix α > 1, ε > 0, denote the integer part of αni by kni

(i = 1, . . . , d) and let kn = (kn1 , . . . , knd
). It follows from the inequalities

∑
n

|kn+1 − kn|
|kn+1| min

k∈(kn,kn+1]
P

(
|Sk −Bk| > ε|k|1/r

)

≤
∑
n

∑

k∈(kn,kn+1]

1
|k|P

(
|Sk −Bk| > ε|k|1/r

)

≤
∑
n

1
|n|P

(
|Sn −Bn| > ε|n|1/r

)

and condition (3.1) that there exists a sequence mn = (mn1 , . . . , mnd
),

αni < mni ≤ αni+1 (i = 1, . . . , d) such that the series

(3.3)
∑
n

P
(
|Smn −Bmn | > ε|mn|1/r

)

converges. By the Borel–Cantelli lemma, convergence of the series (3.3)
implies

(3.4)
1

|mn|1/r
|Smn −Bmn | ≤ ε

except for finitely many values of mn a.s. For any t ∈ Nd there exists an
index n ∈ Nd such that t ∈ (mn,mn+1]. By non-negativity of Xk we
have

(3.5)

1
|t|1/r

(Bmn −Bt) +
1

|t|1/r
(Smn −Bmn) ≤ 1

|t|1/r
(St −Bt)

≤ 1
|t|1/r

(
Smn+1 −Bmn+1

)
+

1
|t|1/r

(
Bmn+1 −Bt

)
.

Put b = sup
n

bn and observe that

1
|t|1/r

(Bt −Bmn) ≤ (
α2d − 1

)
bα(1−1/r)

Pd
i=1 ni ≤ (

α2d − 1
)
b
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and

1
|t|1/r

(
Bmn+1 −Bt

) ≤ (
α2d − 1

)
b,

as 0 < r ≤ 1. In view of the inequality |t|−1/r ≤ α2d/r|mn+1|−1/r, (3.4)
and (3.5) give

1
|t|1/r

|St −Bt| ≤ εα2d/r +
(
α2d − 1

)
b

except for finitely many t a.s. For any δ > 0 we can find an ε > 0 and an
α > 1 such that εα2d/r +

(
α2d − 1

)
b < δ. Therefore (3.2) is proved.

4. Kolmogorov’s SLLN

The following result extends Theorem 2 of Kruglov [11] for multi-
index case.

Theorem 4.1. Let {Xn, n ∈ Nd} be a sequence of pairwise indepen-

dent r.v.’s. Assume that

1) supnE|Xn| < ∞,

2) condition (WMD) is satisfied with a r.v. X such that

E
(
|X| (log+ |X|)d−1

)
< ∞. Then

(4.1)
1
|n| (Sn −ESn) → 0 a.s. as |n| → ∞,

moreover, for any ε > 0

(4.2)
∑
n

1
|n|P

(|Sn −ESn| > ε|n|) < ∞.

Proof. First we prove (4.2). Put Yk = XkI {|Xk| ≤ |n|}, k ≤ n,
Tn =

∑
k≤n Yk. Remark that pairwise independence of Xk implies that

of Yk. Condition 2) and (2.3) in Lemma 2.4 (with λ = |n|, p = 2) imply
the inequality

1
|n|

∑

k≤n
EY 2

k ≤ c|n|2P (|X| > |n|) + cE
(
X2I {|X| ≤ |n|}) .
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Further, we have

∑
n

1
|n|3 D2Tn =

∑
n

1
|n|3

∑

k≤n
D2Yk ≤

∑
n

1
|n|3

∑

k≤n
EY 2

k

≤ c
∑
n

P (|X| > |n|) + c
∑
n

1
|n|2 E

(
X2I {|X| ≤ |n|}) .

Obviously

P (|Sn −ETn| > ε|n|)≤P (|Tn −ETn| > ε|n|) + P

( ⋃

k≤n
{|Xk| > |n|}

)
.

Therefore, by the Chebyshev inequality, Lemma 2.1 and Lemma 2.2, we
have

∑
n

1
|n|P (|Sn −ETn| > ε|n|)

≤ 1
ε2

∑
n

1
|n|3 D2Tn +

∑
n

1
|n|

∑

k≤n
P (|Xk| > |n|)

≤ c

(
1 +

1
ε2

) ∑
n

P (|X| > |n|) +
c

ε2

∑
n

1
|n|2 E

(
X2I {|X| ≤ |n|}) < ∞.

Hence (4.2) follows, since

1
|n| |ESn −ETn| ≤ 1

|n|
∑

k≤n
E

(
|Xk|I {|Xk| > |n|}

)

≤ cE
(
|X|I {|X| > |n|}

)
→ 0,

as |n| → ∞, by (2.4) in Lemma 2.4 (with λ = |n|, p = 1). Remark that
assumption 1) is not used to prove (4.2). Now we turn to (4.1). It follows
from the equality |Xn| = X+

n + X−
n and condition 2) that

1
|n|

∑

k≤n
P

(
X±
n > x

) ≤ cP (|X| > x)
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for all n ∈ Nd and x > 0. Therefore (4.2) holds with Xk replaced by X+
k

and X−
k . By Theorem 3.1 it follows that

1
|n|

∑

k≤n

(
X±
k −EX±

k

) → 0 a.s. as |n| → ∞.

Therefore (4.1) is proved.

Now we generalize Corollary 1 of Kruglov [11].

Corollary 4.2. Let {Xn,n ∈ Nd} be a sequence of pairwise indepen-

dent i.d.r.v.’s. The following statements are equivalent:

1) E|X1|
(
log+ |X1|

)d−1
< ∞,

2) |n|−1Sn → c a.s., where c is some constant,

3) for any ε > 0 and some b ≥ 0

∑
n

1
|n|P




∣∣∣∣∣
∑

k≤n

(|Xk| − b
)
∣∣∣∣∣ > ε|n|


 < ∞.

Proof. Theorem 4.1 implies 1) ⇒ 2) and 1) ⇒ 3) with b = E|X1|.
Implication 2) ⇒ 1) is a consequence of Lemma 2.5 and Lemma 2.1. It
remained to prove implication 3) ⇒ 1). By Theorem 3.1 we have

1
|n|

∑

k≤n
|Xk| → b a.s. as |n| → ∞.

So implication 3) ⇒ 1) follows from implication 2) ⇒ 1).

5. The Marcinkiewicz SLLN without assuming independence

It is known, that the Marcinkiewicz strong law of large numbers holds
for identically distributed r.v.’s with arbitrary dependence structure, if
0 < r < 1 (see e.g. Petrov [13], Chapter IV, Theorem 16). Now, we shall
prove Spitzer’s theorem and the Marcinkiewicz SLLN for non-independent
r.v.’s satisfying condition (WMD) if 0 < r < 1. (We remark, that the
following result is implicitly contained in the proof of Theorem 4.1 of
Fazekas [4].)
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Theorem 5.1. Let {Xn, n ∈ Nd} be weakly mean dominated by X

such that

E
(
|X|r (

log+ |X|)d−1
)

< ∞,

where 0 < r < 1. Then

∑
n

1
|n|P

(
|Sn| > ε|n|1/r

)
< ∞

for any ε > 0, and

Sn
|n|1/r

→ 0 a.s. as |n| → ∞.

Proof. Let Yk = XkI{|Xk| ≤ |n|1/r} for k ≤ n. Then

∑
n

1
|n|P

(
|Sn| > ε|n|1/r

)
≤

∑
n

1
|n|P

(
max
k≤n

|Xk| > |n|1/r

)

+
∑
n

1
|n|P

(∣∣∣
∑

k≤n
Yk

∣∣∣ > ε|n|1/r
)
.

By (WMD) and Lemma 2.1

∑
n

1
|n|P

(
max
k≤n

|Xk| > |n|1/r

)
≤

∑
n

1
|n|

∑

k≤n
P

(
|Xk| > |n|1/r

)

≤ c
∑
n

P
(
|X| > |n|1/r

)
< ∞.

Let δ > 0 such that r + δ < 1. Then by Markov’s and cp-inequalities and
Lemma 2.4

∑
n

1
|n|P




∣∣∣∣∣∣
∑

k≤n
Yk

∣∣∣∣∣∣
> ε|n|1/r


 ≤

∑
n

1
|n|

1
|n|(r+δ)/r

1
εr+δ

E

∣∣∣∣∣∣
∑

k≤n
Yk

∣∣∣∣∣∣

r+δ

≤
∑
n

1
|n|

1
|n|(r+δ)/r

1
εr+δ

∑

k≤n
E |Yk|r+δ ≤ c

∑
n

|n|−(r+δ)/rE |X ′|r+δ
,
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where X ′ = XI{|X| ≤ |n|1/r} + |n|1/rI{|X| > |n|1/r}. It is easy to see
that

E|X ′|r+δ =
∫ |n|(r+δ)/r

0

P
(|X|r+δ > x

)
dx

=
∫ 1

0

|n|(r+δ)/rsδ/r r + δ

r
P

(
|X| > |n|1/rs1/r

)
ds.

Now let 0 < % < δ/r and %0 = %/(d − 1) if d > 1. Then by the above
inequalities and the proof of Lemma 2.1 we get:

∑
n

1
|n|P




∣∣∣∣∣∣
∑

k≤n
Yk

∣∣∣∣∣∣
> ε|n|1/r


 ≤ c

∫ 1

0

sδ/r
∑
n

P
(
|X| > |n|1/rs1/r

)
ds

≤ c

∫ 1

0

sδ/rE
(
|X|rs−1

(
log+(|X|rs−1)

)d−1
)

ds

≤ c

∫ 1

0

sδ/rE
(
|X|rs−1

(
log+ |X|r + s−%0

)d−1
)

ds

≤ c

∫ 1

0

sδ/r−1−%E
(
|X|r (

log+ |X|)d−1
)

ds < ∞.

The following corollary is an extension of Theorem 3 of Kruglov [11].

Corollary 5.2. Let {Xn,n ∈ Nd} be a sequence of pairwise indepen-

dent i.d.r.v.’s and 0 < r < 1. The following statements are equivalent:

1) E|X1|r
(
log+ |X1|

)d−1
< ∞,

2)
∑
n |Xn|/|n|1/r is convergent a.s.,

3) |n|−1/rSn → 0 a.s.,

4) for any ε > 0

∑
n

1
|n|P

(∑

k≤n
|Xk| > ε|n|1/r

)
< ∞.
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Proof. First we prove implication 3) ⇒ 1). By Lemma 2.5 we have

∑
n

P
(
|X1| ≥ |n|1/r

)
< ∞.

So 1) is a consequence of Lemma 2.1. Implication 4) ⇒ 3) follows from
Theorem 3.1. Now we prove 1) ⇒ 2). Let Yn = XnI{|Xn| ≤ |n|1/r}.
Then by Lemma 2.2 we have

∑
nE

∣∣|n|−1/rYn
∣∣ < ∞.

That is
∑
n |n|−1/r|Yn| is integrable, so it is finite a.s. By Lemma 2.1∑

n P (Xn 6= Yn) < ∞ therefore Borel–Cantelli lemma implies 2). Impli-
cation 2) ⇒ 3) is a consequence of Lemma 2.6.
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