Some estimates of the number of Diophantine quadruples

By ANDREJ DUJELLA (Zagreb)

Abstract

A Diophantine m-tuple with the property $D(n)$, where n is an integer, is defined as a set of m positive integers such that the product of its any two distinct elements increased by n is a perfect square. In the present paper we show that if $|n|$ is sufficiently large and $n \equiv 1(\bmod 8)$, or $n \equiv 4(\bmod 32)$, or $n \equiv 0(\bmod 16)$, then there exist at least six, and if $n \equiv 8(\bmod 16)$, or $n \equiv 13,21(\bmod 24)$, or $n \equiv 3$, $7(\bmod 12)$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the numbers $x, x+2,4 x+4$ and $9 x+6$, where $x=\frac{1}{16}$, have the following property: the product of any two of them increased by 1 is a square of a rational number (see [3, pp. 103-104, 232]). The first set of four positive integers with the above property was found by Fermat, and it was $\{1,3,8,120\}$. In 1969, Baker and Davenport [1] showed that if positive integers $1,3,8$ and d have this property then d must be 120 .

In [2] and [4], the more general problem was considered. Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus of order n, symbolically $D(n)$, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple. It was proved in [2] that if n is an integer of the form $4 k+2$, $k \in \mathbb{Z}$, then there does not exist Diophantine quadruple with the property $D(n)$ (see also [8, p. 802] and [9, Theorem 10]). In [4, Theorems 5 and 6],

Mathematics Subject Classification: Primary 11D09. Secondary 11A41, 11C08, 11 Y 50. Key words and phrases: Diophantine quadruple, property of Diophantus, SchinzelSierpiński conjecture.
it was proved that if an integer n is not of the form $4 k+2$ and $n \notin$ $S=\{-4,-3,-1,3,5,8,12,20\}$, then there exists at least one, and if $n \notin$ $S \cup T$, where $T=\{-15,-12,-7,7,13,15,21,24,28,32,48,60,84\}$, then there exist at least two distinct Diophantine quadruples with the property $D(n)$ (see also [5, p. 315]).

In the present paper we give some improvements of these results. Namely, we show that if $|n|$ is sufficiently large and $n \equiv 1(\bmod 8)$, or $n \equiv 4(\bmod 32)$, or $n \equiv 0(\bmod 16)$, then there exist at least six, and if $n \equiv 8(\bmod 16)$, or $n \equiv 13,21(\bmod 24)$, or $n \equiv 3,7(\bmod 12)$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

2. Some polynomial formulas for Diophantine quadruples

The proof of $[4$, Theorems 5 and 6$]$ is based on the fact that the sets

$$
\begin{gather*}
\left\{x, x(3 y+1)^{2}+2 y, x(3 y+2)^{2}+2 y+2,9 x(2 y+1)^{2}+8 y+4\right\}, \tag{1}\\
\left\{x, x y^{2}-2 y-2, x(y+1)^{2}-2 y, x(2 y+1)^{2}-8 y-4\right\} \tag{2}
\end{gather*}
$$

have the property $D(2 x(2 y+1)+1)$. The formulas of this type were systematically derived in [6]. It was shown in [6, Theorems 1 and 2] that the set

$$
\begin{equation*}
\left\{x, x y^{2}+2 y-2, x(y+1)^{2}+2 y+4, x(2 y+1)^{2}+8 y+4\right\} \tag{3}
\end{equation*}
$$

has the property $D(2 x(2 y+1)+9)$, the set

$$
\begin{gather*}
\left\{x, x y^{2}+2\left(y^{2}+y+1\right), x(y-1)^{2}+2 y(y-1)\right. \\
\left.x(y+1)^{2}+2(y+1)(y+2)\right\} \tag{4}
\end{gather*}
$$

has the property $D\left(2 x\left(y^{2}-1\right)+(2 y+1)^{2}\right)$, and the set

$$
\begin{gather*}
\left\{x, x(3 y+1)^{2}+2\left(3 y^{2}+3 y+1\right), x(3 y+2)^{2}+2(y+1)(3 y+2),\right. \\
\left.9 x y^{2}+2 y(3 y+1)\right\} \tag{5}
\end{gather*}
$$

has the property $D\left(2 x y(3 y+2)+(2 y+1)^{2}\right)$.

3. Some estimates of the number of Diophantine quadruples

Theorem 1. If n is an integer such that $n \equiv 1(\bmod 8)$ and $n \notin$ $V_{1}=\{-15,-7,17,33\}$, then there exist at least six distinct Diophantine quadruples with the property $D(n)$.

Proof. The proof is based on the facts that the sets

$$
\begin{gather*}
\left\{4,9 k^{2}-5 k, 9 k^{2}+7 k+2,36 k^{2}+4 k\right\}, \tag{6}\\
\left\{4, k^{2}-3 k, k^{2}+k+2,4 k^{2}-4 k\right\}, \tag{7}\\
\left\{8, \frac{1}{2} k(k+3)+3, \frac{1}{2} k(k-5)+1,2 k^{2}-2 k\right\}, \tag{8}\\
\left\{8, \frac{1}{2} k(9 k-11)+1, \frac{1}{2} k(9 k+13)+3,18 k^{2}+2 k\right\} \tag{9}
\end{gather*}
$$

have the property $D(8 k+1)$, the sets

$$
\begin{gather*}
\{m-3,4 m, 9 m-1,16 m-8\} \tag{10}\\
\{4 m, 25 m+1,49 m+3,144 m+8\} \tag{11}
\end{gather*}
$$

have the property $D(16 m+1)$, and the sets

$$
\begin{gather*}
\{m, 16 m+8,25 m+14,36 m+20\} \tag{12}\\
\{m-1,4 m, 9 m+5,16 m+8\} \tag{13}
\end{gather*}
$$

have the property $D(16 m+9)$.
The sets (6) and (7) are exactly the sets [4, (8) and (9)]. The set (8) is obtained from (3), for $x=8$ and $y=\frac{k-3}{4}$. From (1), for $x=8$ and $y=\frac{k-2}{4}$ we get the set (9), and for $x=4 m$ and $y=\frac{1}{2}$ we get the set (11). From (4), for $x=m-3$ and $y=3$ we get the set (10), and for $x=m-1$ and $y=-3$ we get the set (13). Finally, the set (12) is obtained from (5), for $x=m$ and $y=-2$.

We are left with the task of determining the values of k and m for which the above sets have at least two equal elements or elements with different signs, and the values of k and m for which the corresponding sets coincide. An easy computation shows that the above cases appear in the sets (6)-(9) iff $k \in\{-5,-2,-1,0,1,2,3,4,7\}$, in the sets (10) and (11) iff $m \in\{-1,0,1,2,3\}$, and in the sets (12) and (13) iff $m \in\{-1,0,1\}$.

Comparing the sets (6)-(9) with the sets (10) and (11) we conclude that for all integers n of the form $16 m+1$, where $m \notin\{-2,-1,0,1,2,3\}$, there exist at least six distinct Diophantine quadruples with the property $D(n)$. The same conclusion can be drawn for all integers n of the form $16 m+9$, where $m \notin\{-3,-1,0,1,3\}$.

Thus we have proved that for every integer n such that $n \equiv 1(\bmod 8)$ and $n \notin\{-39,-31,-15,-7,1,9,17,25,33,49,57\}$ there exist at least six distinct Diophantine quadruples with the property $D(n)$. But for the numbers $1,9,25$ and 49 the assertion of Theorem is valid since they are perfect squares (see [4]). From (6)-(13) for $n=-39$ and $n=57$ we get five, and for $n=-31$ we get four distinct Diophantine quadruples with the property $D(n)$. A trivial verification shows that the sets $\{1,40,47,56\}$ and $\{1,40,287,320\}$ have the property $D(-31)$, and the sets $\{1,43,48,3520\}$ and $\{1,7,24,232\}$ have the properties $D(-39)$ and $D(57)$ respectively, which completes the proof.

Corollary 1. If n is an integer such that $n \equiv 4(\bmod 32)$ and $n \notin V_{2}=$ $\{-28,68\}$, then there exist at least six distinct Diophantine quadruples with the property $D(n)$.

Proof. Since multiplying all elements of the set with the property $D(8 k+1)$ by 2 we get the set with the property $D(32 k+4)$, by Theorem 1 , it is sufficient to prove the Corollary for $n=-60$ and $n=132$. But the sets $\{1,60,736,1216\},\{1,64,96,316\},\{1,124,256,736\},\{4,15,19,64\}$, $\{4,19,31,96\}$ and $\{8,48,92,272\}$ have the property $D(-60)$, and the sets $\{1,12,37,64\},\{1,12,64,1312\},\{2,6,32,272\},\{3,64,103,148\},\{8,248$, $348,1184\}$ and $\{16,102,202,596\}$ have the property $D(132)$.

Remark 1. For the elements of the sets V_{1} and V_{2}, the following holds: the set $\{4,24,46,136\}$ has the property $D(-15)$, the set $\{1,8,11,16\}$ has the property $D(-7)$, the sets $\{1,8,19,208\}$ and $\{4,26,52,152\}$ have the property $D(17)$, the sets $\{1,3,16,136\},\{4,124,174,592\}$ and $\{8,51,101$, $296\}$ have the property $D(33)$, the sets $\{1,32,37,352\},\{1,32,172,352\}$, $\{2,16,22,32\},\{4,7,11,32\}$ and $\{4,23,43,128\}$ have the property $D(-28)$, and the sets $\{1,13,32,1376\},\{1,32,53,76\},\{2,16,38,416\},\{4,127,179$, $608\}$ and $\{8,52,104,304\}$ have the property $D(68)$.

Theorem 2. If n is an integer such that $n \equiv 8(\bmod 16)$ and $n \notin$ $V_{3}=\{-8,8,24,40\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

Proof. The proof is based on the fact that the sets

$$
\begin{gather*}
\left\{1,4 k^{2}-8 k-4,4 k^{2}-4 k+1,16 k^{2}-24 k-7\right\}, \tag{14}\\
\left\{1,36 k^{2}+20 k+1,36 k^{2}+32 k+8,144 k^{2}+104 k+17\right\}, \tag{15}\\
\left\{1, k^{2}-10 k+1, k^{2}-8 k+8,4 k^{2}-36 k+17\right\}, \tag{16}\\
\left\{1,9 k^{2}+2 k+1,9 k^{2}-4 k-4,36 k^{2}-4 k-7\right\} \tag{17}
\end{gather*}
$$

have the property $D(16 k+8)$.
The sets (14) and (15) are obtained directly from [4, (20) and (10)]. Multiplying all elements of the sets (2) and (1) by 4 , for $x=\frac{1}{4}$ and $y=k-1$, we get the sets (16) and (17) respectively.

Analysis similar to that in the proof of Theorem 1 shows that for all integers n of the form $16 k+8$, where $k \notin\{-2,-1,0,1,2,3,4,5,6,7,8,9,10\}$, there exist at least four distinct Diophantine quadruples with the property $D(n)$.

Therefore, the proof is completed by showing that the assertion of Theorem is valid for $n \in Y=\{-24,56,72,88,104,120,136,152,168\}$. For every $n \in Y$ the sets (14), (15) and (17) give three distinct Diophantine quadruples with the property $D(n)$. A trivial verification shows that the sets $\{3,8,11,35\},\{1,25,44,65\},\{7,72,127,391\},\{3,11,36,91\}$, $\{1,17,185,220\},\{1,49,76,4641\},\{1,33,305,540\},\{11,232,347,1147\}$ and $\{1,57,793,1276\}$ have the properties $D(-24), D(56), D(72), D(88)$, $D(104), D(120), D(136), D(152)$ and $D(168)$ respectively, which completes the proof.

Remark 2. For the elements of the set V_{3}, the following holds: the sets $\{1,8,9,33\}$ and $\{1,12,17,57\}$ have the property $D(-8)$, the set $\{1,57,76$, $265\}$ has the property $D(24)$, and the sets $\{1,24,41,129\},\{1,185,216,801\}$ and $\{3,52,83,267\}$ have the property $D(40)$. No Diophantine quadruple with the property $D(8)$ is known.

Theorem 3. If n is an integer such that $n \equiv 0(\bmod 16)$ and $n \notin$ $V_{4}=\{-16,32,48,80\}$, then there exist at least six distinct Diophantine quadruples with the property $D(n)$.

Proof. If $n \equiv 0(\bmod 16)$, then necessarily n can be represented in one of the forms

$$
32 k+16, \quad 64 k+32, \quad 128 k+64, \quad 128 k,
$$

and the proof will be divided into four cases.
Let us first observe that the sets

$$
\begin{align*}
& \left\{1, k^{2}-6 k+1, k^{2}-4 k+4,4 k^{2}-20 k+9\right\}, \tag{18}\\
& \left\{1,9 k^{2}-8 k, 9 k^{2}-2 k+1,36 k^{2}-20 k+1\right\} \tag{19}
\end{align*}
$$

have the property $D(8 k)$, and the sets

$$
\begin{gather*}
\left\{1, k^{2}-20 k+20, k^{2}-18 k+33,4 k^{2}-76 k+105\right\}, \tag{20}\\
\left\{1,9 k^{2}-14 k-7,9 k^{2}-8 k, 36 k^{2}-44 k-15\right\}, \tag{21}\\
\left\{1, k^{2}-6 k-3, k^{2}-2 k+5,4 k^{2}-16 k\right\}, \tag{22}\\
\left\{1,9 k^{2}-2 k-3,9 k^{2}+10 k+5,36 k^{2}+16 k\right\} \tag{23}
\end{gather*}
$$

have the property $D(32 k+16)$.
The sets (18) and (19) are exactly the sets (20) and (10) from [4]. Multiplying all elements of the sets (2) and (8) by 8 , for $x=\frac{1}{8}$ and $y=k-2$, we get the sets (20) and (21) respectively, and multiplying the same elements by 4 , for $x=1$ and $y=\frac{k-1}{2}$, we get the sets (22) and (23).

Analyzing the sets (18)-(23), as in the proof of Theorem 1, we conclude that for all integers n of the form $32 k+16$, where $k \notin\{-2,-1,0, \ldots$ $\ldots, 18,19\}$, there exist at least six distinct Diophantine quadruples with the property $D(n)$. It is easy to check on a computer that for all of the remaining cases, except for $n \in\{-16,48,80\}$, there exist at least six Diophantine quadruples with the property $D(n)$. This proves the theorem in case $n \equiv 16(\bmod 32)$.

Let now $n=32 k$. For $k \notin\{0,1\}$ the sets (18) and (19) give two distinct Diophantine quadruples with the property $D(n)$ (see [4, Theorem 6]).

Each of these two quadruples contain the number 1. Multiplying all elements of the sets (18) and (19) by 2 we get the sets with the property $D(32 k)$. By the proof of $[4$, Theorem 6], for $k \notin\{0,1,2,3,4,5,6\}$ these sets are two distinct Diophantine quadruples which do not contain the number 1, and therefore they are different from two quadruples obtained before.

Let $n=64 k+32$. By Theorem 2, for $k \notin\{-1,0,1,2\}$ there exist at least four distinct Diophantine quadruples with the property $D(16 k+8)$. Multiplying all elements of these sets by 2 we get four Diophantine quadruples with even elements with the property $D(64 k+32)$. Therefore, for $k \notin\{-1,0,1,2\}$ there exist at least six Diophantine quadruples with the property $D(64 k+32)$.

Consider now the case $n=128 k+64$. As we have proved before, for $k \notin\{-1,1,2\}$ there exist at least six distinct Diophantine quadruples with the property $D(32 k+16)$. Multiplying all elements of these quadruples by 2 we get the quadruples with the property $D(128 k+64)$. All elements of those quadruples are even and, accordingly, they do not contain the number 1. Thus we proved that for $k \notin\{-1,1,2\}$ there exist at least eight distinct Diophantine quadruples with the property $D(128 k+64)$.

It remains to consider the case $n=128 k$. But we have already proved that for $k \notin\{0,1,2,3,4,5,6\}$ there exist at least four distinct Diophantine quadruples with the property $D(32 k)$. Multiplying all elements of those quadruples by 2 we get four Diophantine quadruples with the property $D(128 k)$ which do not contain the number 1 . Therefore, for $k \notin\{0,1,2,3,4,5,6\}$ there exist at least six Diophantine quadruples with the property $D(128 k)$.

An easy verification on a computer shows that for every $n \in\{-32,96$, $160,-64,192,320,0,128,256,384,512,768\}$ there exist six distinct Diophantine quadruples with the property $D(n)$, which completes the proof.

Remark 3. For the elements of the set V_{4}, the following holds: the sets $\{1,16,17,65\}$ and $\{1,41,52,185\}$ have the property $D(-16)$, the set $\{1,112$, $137,497\}$ has the property $D(32)$, the set $\{1,276,313,1177\}$ has the property $D(48)$, and the sets $\{1,41,64,209\},\{1,820,881,3401\}$ and $\{4,29,61$, $176\}$ have the property $D(80)$.

Theorem 4. If n is an integer such that $n \equiv 13(\bmod 24)$ and $n \notin$ $V_{5}=\{-11,13\}$, or $n \equiv 21(\bmod 24)$ and $n \notin V_{6}=\{-27,-3,21,45,117\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

Proof. The proof in the case $n=24 k+13$ is based on the fact that the sets

$$
\begin{gather*}
\left\{6,54 k^{2}+38 k+6,54 k^{2}+74 k+26,216 k^{2}+224 k+58\right\}, \tag{24}\\
\left\{6,6 k^{2}-2 k-2,6 k^{2}+20 k+6,24 k^{2}+16 k+2\right\} \tag{25}
\end{gather*}
$$

have the property $D(24 k+13)$.
These sets are obtained from (1) and (2), for $x=6$ and $y=k$. Analyzing the sets (24), (25) and the sets (9) and (19) from [4] we conclude that for $k \notin\{-1,0\}$ there exist at least four distinct Diophantine quadruples with the property $D(24 k+13)$, which is the desired conclusion.

Let us now consider the case $n=24 k+21$. We start with the observation that the sets

$$
\begin{gather*}
\left\{2,2 k^{2}-6 k-6,2 k^{2}-2 k+2,8 k^{2}-16 k-10\right\} \tag{26}\\
\left\{6,6 k^{2}+2 k-2,6 k^{2}+14 k+10,24 k^{2}+32 k+10\right\} \tag{27}
\end{gather*}
$$

have the property $D(24 k+21)$.
The set (26) is obtained by multiplication of all elements of the set (2) by 3 , for $x=\frac{2}{3}$ and $y=k$, and the set (27) is obtained from (3), for $x=6$ and $y=k$.

From (26), (27) and [4, (9) and (19)] it follows that for $k \notin\{-2,-1,0$, $1,2,3,4\}$ there exist at least four distinct Diophantine quadruples with the property $D(24 k+21)$. But the sets $\{6,62,110,170\}$ and $\{22,154,294,874\}$ have the properties $D(69)$ and $D(93)$ respectively, which completes the proof.

Remark 4. For the exceptions from the sets V_{5} and V_{6}, the following holds: the sets $\{2,6,10,30\},\{2,10,18,30\}$ and $\{2,30,46,150\}$ have the property $D(-11)$, the set $\{2,34,54,174\}$ has the property $D(13)$, the sets $\{2,26,38,126\}$ and $\{2,194,234,854\}$ have the property $D(-27)$, the set $\{2,102,134,470\}$ has the property $D(21)$, the sets $\{2,38,62,198\}$ and $\{2,522,590,2222\}$ have the property $D(45)$, and the sets $\{2,362,422,1566\}$, $\{2,3726,3902,15254\}$ and $\{6,102,162,522\}$ have the property $D(117)$. No Diophantine quadruple with the property $D(-3)$ is known.

Corollary 2. If n is an integer such that $n \equiv 52(\bmod 96)$ and $n \notin$ $V_{7}=\{52\}$, or $n \equiv 84(\bmod 96)$ and $n \notin V_{8}=\{-108,-12,84,180\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

Proof. The corollary is direct consequence of Theorem 4, Remark 4 and the fact that the sets $\{3,15,20,276\}$ and $\{1,1132,2668,7276\}$ have the properties $D(-44)$ and $D(468)$ respectively.

Remark 5. Note that the sets $\{3,36,84,228\}$ and $\{4,531,9559,14596\}$ have the properties $D(-108)$ and $D(180)$ respectively. Thus, from Remark 4 it follows that there exist at least three Diophantine quadruples with the properties $D(-108)$ and $D(180)$.

Theorem 5. If n is an integer such that $n \equiv 3(\bmod 12)$ and $n \notin$ $V_{9}=\{-9,3,15,27,63\}$, or $n \equiv 7(\bmod 12)$ and $n \notin V_{10}=\{-5,7\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

Proof. Let $n=12 k+3$. The sets

$$
\begin{align*}
& \left\{1, k^{2}-8 k+1, k^{2}-6 k+6,4 k^{2}-28 k+13\right\}, \tag{28}\\
& \left\{3,3 k^{2}-4 k-1,3 k^{2}+2 k+2,12 k^{2}-4 k-1\right\} \tag{29}
\end{align*}
$$

have the property $D(12 k+3)$.
The set (28) is obtained by multiplication of all elements of the set (2) by 3 , for $x=\frac{1}{3}$ and $y=k-1$, and the set (29) is obtained from (3), for $x=3$ and $y=k-1$.

From (28), (29) and [4, (7) and (17)] it follows that for $k \notin\{-1,0,1,2$, $3,4,5,6,7,8\}$ there exist at least four distinct Diophantine quadruples with the property $D(12 k+3)$. The fact that the sets $\{3,35,62,95\}$, $\{1,13,70,145\},\{1,69,94,325\},\{1,2413,12013,25194\}$ and $\{1,70,801$, $1345\}$ have the properties $D(39), D(51), D(75), D(87)$ and $D(99)$ respectively, establishes the first part of the theorem.

Let us now consider the case $n=12 k+7$. The sets

$$
\begin{gather*}
\left\{3,27 k^{2}+20 k+3,27 k^{2}+38 k+14,108 k^{2}+116 k+31\right\}, \tag{30}\\
\left\{3,3 k^{2}-2 k-2,3 k^{2}+4 k+3,12 k^{2}+4 k-1\right\} \tag{31}
\end{gather*}
$$

have the property $D(12 k+7)$.

These sets are obtained from (1) and (2), for $x=3$ and $y=k$. The formulas (30), (31) and [4, (7) and (17)] imply that for $k \notin\{-1,0,1\}$ there exist at least four distinct Diophantine quadruples with the property $D(12 k+7)$. But the set $\{1,17,30,45\}$ has the property $D(19)$, and the proof is complete.

Remark 6. For the elements of the sets V_{9} and V_{10}, the following holds: the sets $\{1,10,13,45\}$ and $\{1,45,58,205\}$ have the property $D(-9)$, the set $\{1,106,129,469\}$ has the property $D(15)$, the sets $\{1,22,37,117\}$, $\{1,373,414,1573\}$ and $\{11,18,59,143\}$ have the property $D(27)$, the sets $\{1,193,226,837\},\{1,2146,2241,8773\}$ and $\{3,54,87,279\}$ have the property $D(63)$, the sets $\{1,5,6,21\}$ and $\{1,14,21,69\}$ have the property $D(-5)$, and the set $\{1,18,29,93\}$ has the property $D(7)$. No Diophantine quadruple with the property $D(3)$ is known.

Note that by [4, Remark 3], the number of Diophantine quadruples with the property $D(16 k+12)$ is equal to the number of Diophantine quadruples with the property $D(4 k+3)$. Thus we can rephrase Theorem 5 as follows.

Corollary 3. If n is an integer such that $n \equiv 12(\bmod 48)$ and $n \notin$ $V_{11}=\{-36,12,60,108,252\}$, or $n \equiv 28(\bmod 48)$ and $n \notin V_{12}=\{-20,28\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$.

4. Connection with the Schinzel-Sierpiński conjecture

Let U denote the set of all integers n, not of the form $4 k+2$, such that there exist at most two distinct Diophantine quadruple with the property $D(n)$. One open question is whether the set U is finite or not. The following corollary is the direct consequence of the results of Section 3.

Corollary 4. If $n \in U \backslash U_{1}$, where $U_{1}=\{-36,-27,-20,-16,-15$, $-12,-9,-8,-7,-5,-3,3,7,8,12,13,15,17,21,24,28,32,45,48,52,60,84\}$, then n can be represented in one of the following forms:

$$
12 k+11, \quad 24 k+5, \quad 48 k+44, \quad 96 k+20 .
$$

Proof. Let $U_{2}=\bigcup_{i=1}^{12} V_{i}$, where $V_{i}, i=1, \ldots, 12$, are defined in Section 3. Then $U_{1}=U_{2} \backslash U_{3}$, where $U_{3}=\{-108,-28,-11,27,33,40,63,68$,
$80,108,117,180,252\}$. It is clear from Remarks $1-6$ that $U_{3} \cap U=\emptyset$. It implies that $U \backslash U_{2}=U \backslash U_{1}$, which completes the proof.

Note that multiplying all elements of quadruples with the properties $D(12 k+11)$ and $D(24 k+5)$ by 2 , we obtain the quadruples with the properties $D(48 k+44)$ and $D(96 k+20)$, and by [4, Remark 3], all quadruples with the property $D(48 k+44)$ can be obtained on this way.

In [7, Theorems 1 and 2], it was proved that the elements of the set U which have the form $4 k+3$ or $8 k+5$ must satisfy some primality conditions. The main idea was to analyze the construction of the polynomial formulas for Diophantine quadruples from [6]. It was shown that the additional Diophantine quadruples with the property $D(n)$ can be obtained if factors of the values of some linear polynomials in n are known. These results can be rephrased as follows.

Theorem 6. Let n be an integer such that $n \equiv 11(\bmod 12), n \notin$ $\{-1,11\}$ and $n \in U$. Then the integers $|n-1| / 2,|n-9| / 2$ and $|9 n-1| / 2$ are primes. Furthermore, either $|n|$ is prime or n is the product of twin primes.

Theorem 7. Let n be an integer such that $n \equiv 5(\bmod 24), n \neq 5$ and $n \in U$. Then the integers $|n|,|n-1| / 4,|n-9| / 4$ and $|9 n-1| / 4$ are primes.

Corollary 5. Let n be an integer such that $n \in U$ and $|n| \leq 10000$. Then $n \in W=U_{1} \cup W_{1}$, where U_{1} is defined in Corollary 4, and $W_{1}=$ $\{-8563,-7732,-7723,-7492,-6892,-6637,-6427,-6073,-5923,-5413$, $-5233,-5107,-4603,-4363,-4243,-3508,-3028,-2188,-1933,-1873$, $-1723,-877,-757,-652,-547,-268,-172,-163,-148,-67,-52,-43$, $-37,-19,-13,-4,-1,5,11,20,23,44,83,92,167,173,227,293,332,668,908$, 983, 1172, 1487, 2477, 2903, 3167, 3533, 3932, 4283, 4373, 4703, 5507, 5948, 8573, 9908\}.

Proof. If $n \notin U_{1}$ then, by Corollary $4, n$ has one of the following forms:

$$
12 k+11, \quad 24 k+5, \quad 48 k+44, \quad 96 k+20
$$

Let $n=12 k+11$ and $n \notin\{-1,11\}$. Then, by Theorem 6 , the integers $|n-1| / 2,|n-9| / 2$ and $|9 n-1| / 2$ are primes, and either $|n|$ is prime or n is a product of twin primes. There exist exactly 25 integers $n,|n| \leq 10000$,
which satisfy these conditions. Note that the sets $\{1,494,989,2881\}$, $\{1,2,737,26197\},\{1,146,9073,11521\}$ and $\{1,3421,24158,45761\}$ have the properties $D(35), D(47), D(143)$ and $D(1763)$ respectively. Hence, we proved that if $n \equiv 11(\bmod 12),|n| \leq 10000$ and $n \notin W_{2}=\{-6637$, $-6073,-5413,-5233,-1933,-1873,-877,-757,-37,-13,-1,11,23,83$, $167,227,983,1487,2903,3167,4283,4703,5507\}$, then there exist at least three distinct Diophantine quadruples with the property $D(n)$.

It implies that if $n \equiv 44(\bmod 48),|n| \leq 10000$ and $n \notin W_{3}=$ $\{-7732,-7492,-3508,-3028,-148,-52,-4,44,92,332,668,908,3932$, $5948\}$, then there exist at least three distinct Diophantine quadruples with the property $D(n)$.

Let $n=24 k+5, n \neq 5$. Then, by Theorem 7 the integers $|n|,|n-1| / 4$, $|n-9| / 4$ and $|9 n-1| / 4$ are primes. There exist exactly 19 integers n, $|n| \leq 10000$, which satisfy these conditions. Hence, we proved that if $n \equiv 5$ $(\bmod 24),|n| \leq 10000$ and $n \notin W_{4}=\{-8563,-7723,-6427,-5923,-5107$, $-4603,-4363,-1723,-547,-163,-67,-43,-19,5,173,293,2477,3533$, $4373,8573\}$, then there exist at least three distinct Diophantine quadruples with the property $D(n)$.

From this and the fact that the sets $\{4,23,35,1540\}$ and $\{1,92,7772$, $7957\}$ have the properties $D(-76)$ and $D(692)$ respectively, we conclude that if $n \equiv 20(\bmod 96),|n| \leq 10000$ and $n \notin W_{5}=\{-6892,-2188,-652$, $-268,-172,20,1172,9908\}$, then there exist at least three distinct Diophantine quadruples with the property $D(n)$.

This proves the corollary, since it is obvious that

$$
W_{1}=W_{2} \cup W_{3} \cup W_{4} \cup W_{5} .
$$

It is not yet known, whether the set U is finite or not. Note that if U is infinite then at least one of the sets
$A=\{k \in \mathbb{Z}:|6 k+1|,|6 k+5|,|12 k+11|$ and $|54 k+49|$ are primes $\}$,
$B=\left\{l \in \mathbb{N}: 6 l-1,6 l+1,18 l^{2}-5,18 l^{2}-1\right.$ and $162 l^{2}-5$ are primes $\}$, $C=\{k \in \mathbb{Z}:|6 k-1|,|6 k+1|,|24 k+5|$ and $|54 k+11|$ are primes $\}$
is infinite. Let us observe that the polynomials appearing in the sets A, B and C satisfy the conditions of following Schinzel-Sierpiński conjecture ([11], [10, p. 312]):

Let $s \geq 1$, let $f_{1}(x), \ldots, f_{s}(x)$ be irreducible polynomials with integral coefficients and positive leading coefficients. Assume that the following condition holds:

There does not exist any integer $n>1$ dividing all the products $f_{1}(k) f_{2}(k) \cdots f_{s}(k)$ for every integer k.

Then there exist infinitely many natural numbers m such that all numbers $f_{1}(m), f_{2}(m), \ldots, f_{s}(m)$ are primes.

Therefore, the validity of the Schinzel-Sierpiński conjecture would imply that the sets A, B and C are infinite.

References

[1] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[2] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[3] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers (I. G. Bashmakova, ed.), Nauka, Moscow, 1974. (in Russian)
[4] A. Dujella, Generalization of a problem of Diophantus, Acta Arith 65 (1993), 15-27.
[5] A. Dujella, Diophantine quadruples for squares of Fibonacci and Lucas numbers, Portugal. Math. 52 (1995), 305-318.
[6] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30.
[7] A. Dujella, A problem of Diophantus and Dickson's conjecture, Proceedings of the Number Theory Conference, Eger, 1996, de Gruyter, Berlin (to appear).
[8] H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799-804.
[9] S. P. Mohanty and M. S. Ramasamy, On $P_{r, k}$ sequences, Fibonacci Quart. 23 (1985), 36-44.
[10] P. Ribenboim, The Book of Prime Number Records, Springer-Verlag, Berlin, 1989.
[11] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; Corrigendum 5 (1959), 259.

ANDREJ DUJELLA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ZAGREB
BIJENIČKA CESTA 30
10000 ZAGREB
CROATIA
E-mail: duje@math.hr
(Received May 12, 1997; revised September 2, 1997)

