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Some estimates of the number of Diophantine quadruples

By ANDREJ DUJELLA (Zagreb)

Abstract. A Diophantine m-tuple with the property D(n), where n is an integer,
is defined as a set of m positive integers such that the product of its any two distinct
elements increased by n is a perfect square. In the present paper we show that if |n|
is sufficiently large and n ≡ 1 (mod 8), or n ≡ 4 (mod 32), or n ≡ 0 (mod 16), then
there exist at least six, and if n ≡ 8 (mod 16), or n ≡ 13, 21 (mod 24), or n ≡ 3,
7 (mod 12), then there exist at least four distinct Diophantine quadruples with the
property D(n).

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the
numbers x, x + 2, 4x + 4 and 9x + 6, where x = 1

16 , have the following
property: the product of any two of them increased by 1 is a square of
a rational number (see [3, pp. 103–104, 232]). The first set of four pos-
itive integers with the above property was found by Fermat, and it was
{1, 3, 8, 120}. In 1969, Baker and Davenport [1] showed that if positive
integers 1, 3, 8 and d have this property then d must be 120.

In [2] and [4], the more general problem was considered. Let n be
an integer. A set of positive integers {a1, a2, . . . , am} is said to have the
property of Diophantus of order n, symbolically D(n), if aiaj + n is a
perfect square for all 1 ≤ i < j ≤ m. Such a set is called a Diophantine
m-tuple. It was proved in [2] that if n is an integer of the form 4k + 2,
k ∈ Z, then there does not exist Diophantine quadruple with the property
D(n) (see also [8, p. 802] and [9, Theorem 10]). In [4, Theorems 5 and 6],
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it was proved that if an integer n is not of the form 4k + 2 and n /∈
S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one, and if n /∈
S ∪ T , where T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then
there exist at least two distinct Diophantine quadruples with the property
D(n) (see also [5, p. 315]).

In the present paper we give some improvements of these results.
Namely, we show that if |n| is sufficiently large and n ≡ 1 (mod 8), or
n ≡ 4 (mod 32), or n ≡ 0 (mod 16), then there exist at least six, and
if n ≡ 8 (mod 16), or n ≡ 13, 21 (mod 24), or n ≡ 3, 7 (mod 12), then
there exist at least four distinct Diophantine quadruples with the property
D(n).

2. Some polynomial formulas for Diophantine quadruples

The proof of [4, Theorems 5 and 6] is based on the fact that the sets

{x, x(3y + 1)2 + 2y, x(3y + 2)2 + 2y + 2, 9x(2y + 1)2 + 8y + 4},(1)

{x, xy2 − 2y − 2, x(y + 1)2 − 2y, x(2y + 1)2 − 8y − 4}(2)

have the property D(2x(2y + 1) + 1). The formulas of this type were
systematically derived in [6]. It was shown in [6, Theorems 1 and 2] that
the set

(3) {x, xy2 + 2y − 2, x(y + 1)2 + 2y + 4, x(2y + 1)2 + 8y + 4}

has the property D(2x(2y + 1) + 9), the set

(4)
{x, xy2 + 2(y2 + y + 1), x(y − 1)2 + 2y(y − 1),

x(y + 1)2 + 2(y + 1)(y + 2)}

has the property D(2x(y2 − 1) + (2y + 1)2), and the set

(5)
{x, x(3y + 1)2 + 2(3y2 + 3y + 1), x(3y + 2)2 + 2(y + 1)(3y + 2),

9xy2 + 2y(3y + 1)}

has the property D(2xy(3y + 2) + (2y + 1)2).
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3. Some estimates of the number of Diophantine quadruples

Theorem 1. If n is an integer such that n ≡ 1 (mod 8) and n /∈
V1 = {−15,−7, 17, 33}, then there exist at least six distinct Diophantine

quadruples with the property D(n).

Proof. The proof is based on the facts that the sets

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k},(6)

{4, k2 − 3k, k2 + k + 2, 4k2 − 4k},(7)
{
8, 1

2k(k + 3) + 3, 1
2k(k − 5) + 1, 2k2 − 2k

}
,(8)

{
8, 1

2k(9k − 11) + 1, 1
2k(9k + 13) + 3, 18k2 + 2k

}
(9)

have the property D(8k + 1), the sets

{m− 3, 4m, 9m− 1, 16m− 8},(10)

{4m, 25m + 1, 49m + 3, 144m + 8}(11)

have the property D(16m + 1), and the sets

{m, 16m + 8, 25m + 14, 36m + 20},(12)

{m− 1, 4m, 9m + 5, 16m + 8}(13)

have the property D(16m + 9).
The sets (6) and (7) are exactly the sets [4, (8) and (9)]. The set (8)

is obtained from (3), for x = 8 and y = k−3
4 . From (1), for x = 8 and

y = k−2
4 we get the set (9), and for x = 4m and y = 1

2 we get the set (11).
From (4), for x = m− 3 and y = 3 we get the set (10), and for x = m− 1
and y = −3 we get the set (13). Finally, the set (12) is obtained from (5),
for x = m and y = −2.

We are left with the task of determining the values of k and m for
which the above sets have at least two equal elements or elements with
different signs, and the values of k and m for which the corresponding sets
coincide. An easy computation shows that the above cases appear in the
sets (6)–(9) iff k ∈ {−5,−2,−1, 0, 1, 2, 3, 4, 7}, in the sets (10) and (11) iff
m ∈ {−1, 0, 1, 2, 3}, and in the sets (12) and (13) iff m ∈ {−1, 0, 1}.
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Comparing the sets (6)–(9) with the sets (10) and (11) we conclude
that for all integers n of the form 16m + 1, where m 6∈ {−2,−1, 0, 1, 2, 3},
there exist at least six distinct Diophantine quadruples with the property
D(n). The same conclusion can be drawn for all integers n of the form
16m + 9, where m 6∈ {−3,−1, 0, 1, 3}.

Thus we have proved that for every integer n such that n ≡ 1 (mod 8)
and n /∈ {−39,−31,−15,−7, 1, 9, 17, 25, 33, 49, 57} there exist at least six
distinct Diophantine quadruples with the property D(n). But for the
numbers 1, 9, 25 and 49 the assertion of Theorem is valid since they are
perfect squares (see [4]). From (6)–(13) for n = −39 and n = 57 we get
five, and for n = −31 we get four distinct Diophantine quadruples with the
property D(n). A trivial verification shows that the sets {1, 40, 47, 56} and
{1, 40, 287, 320} have the property D(−31), and the sets {1, 43, 48, 3520}
and {1, 7, 24, 232} have the properties D(−39) and D(57) respectively,
which completes the proof. ¤

Corollary 1. If n is an integer such that n ≡ 4 (mod 32) and n /∈ V2 =
{−28, 68}, then there exist at least six distinct Diophantine quadruples

with the property D(n).

Proof. Since multiplying all elements of the set with the property
D(8k + 1) by 2 we get the set with the property D(32k + 4), by Theo-
rem 1, it is sufficient to prove the Corollary for n = −60 and n = 132. But
the sets {1, 60, 736, 1216}, {1, 64, 96, 316}, {1, 124, 256, 736}, {4, 15, 19, 64},
{4, 19, 31, 96} and {8, 48, 92, 272} have the property D(−60), and the sets
{1, 12, 37, 64}, {1, 12, 64, 1312}, {2, 6, 32, 272}, {3, 64, 103, 148}, {8, 248,

348, 1184} and {16, 102, 202, 596} have the property D(132). ¤

Remark 1. For the elements of the sets V1 and V2, the following holds:
the set {4, 24, 46, 136} has the property D(−15), the set {1, 8, 11, 16} has
the property D(−7), the sets {1, 8, 19, 208} and {4, 26, 52, 152} have the
property D(17), the sets {1, 3, 16, 136}, {4, 124, 174, 592} and {8, 51, 101,

296} have the property D(33), the sets {1, 32, 37, 352}, {1, 32, 172, 352},
{2, 16, 22, 32}, {4, 7, 11, 32} and {4, 23, 43, 128} have the property D(−28),
and the sets {1, 13, 32, 1376}, {1, 32, 53, 76}, {2, 16, 38, 416}, {4, 127, 179,
608} and {8, 52, 104, 304} have the property D(68).
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Theorem 2. If n is an integer such that n ≡ 8 (mod 16) and n /∈
V3 = {−8, 8, 24, 40}, then there exist at least four distinct Diophantine

quadruples with the property D(n).

Proof. The proof is based on the fact that the sets

{1, 4k2 − 8k − 4, 4k2 − 4k + 1, 16k2 − 24k − 7},(14)

{1, 36k2 + 20k + 1, 36k2 + 32k + 8, 144k2 + 104k + 17},(15)

{1, k2 − 10k + 1, k2 − 8k + 8, 4k2 − 36k + 17},(16)

{1, 9k2 + 2k + 1, 9k2 − 4k − 4, 36k2 − 4k − 7}(17)

have the property D(16k + 8).
The sets (14) and (15) are obtained directly from [4, (20) and (10)].

Multiplying all elements of the sets (2) and (1) by 4, for x = 1
4 and

y = k − 1, we get the sets (16) and (17) respectively.
Analysis similar to that in the proof of Theorem 1 shows that for all in-

tegers n of the form 16k+8, where k /∈ {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
there exist at least four distinct Diophantine quadruples with the property
D(n).

Therefore, the proof is completed by showing that the assertion of
Theorem is valid for n ∈ Y = {−24, 56, 72, 88, 104, 120, 136, 152, 168}.
For every n ∈ Y the sets (14), (15) and (17) give three distinct Dio-
phantine quadruples with the property D(n). A trivial verification shows
that the sets {3, 8, 11, 35}, {1, 25, 44, 65}, {7, 72, 127, 391}, {3, 11, 36, 91},
{1, 17, 185, 220}, {1, 49, 76, 4641}, {1, 33, 305, 540}, {11, 232, 347,1147} and
{1, 57, 793, 1276} have the properties D(−24), D(56), D(72), D(88),
D(104), D(120), D(136), D(152) and D(168) respectively, which com-
pletes the proof. ¤

Remark 2. For the elements of the set V3, the following holds: the sets
{1, 8, 9, 33} and {1, 12, 17, 57} have the property D(−8), the set {1, 57, 76,
265} has the property D(24), and the sets {1, 24, 41, 129}, {1, 185, 216, 801}
and {3, 52, 83, 267} have the property D(40). No Diophantine quadruple
with the property D(8) is known.
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Theorem 3. If n is an integer such that n ≡ 0 (mod 16) and n /∈
V4 = {−16, 32, 48, 80}, then there exist at least six distinct Diophantine

quadruples with the property D(n).

Proof. If n ≡ 0 (mod 16), then necessarily n can be represented in
one of the forms

32k + 16, 64k + 32, 128k + 64, 128k,

and the proof will be divided into four cases.
Let us first observe that the sets

{1, k2 − 6k + 1, k2 − 4k + 4, 4k2 − 20k + 9},(18)

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}(19)

have the property D(8k), and the sets

{1, k2 − 20k + 20, k2 − 18k + 33, 4k2 − 76k + 105},(20)

{1, 9k2 − 14k − 7, 9k2 − 8k, 36k2 − 44k − 15},(21)

{1, k2 − 6k − 3, k2 − 2k + 5, 4k2 − 16k},(22)

{1, 9k2 − 2k − 3, 9k2 + 10k + 5, 36k2 + 16k}(23)

have the property D(32k + 16).
The sets (18) and (19) are exactly the sets (20) and (10) from [4].

Multiplying all elements of the sets (2) and (8) by 8, for x = 1
8 and

y = k − 2, we get the sets (20) and (21) respectively, and multiplying the
same elements by 4, for x = 1 and y = k−1

2 , we get the sets (22) and (23).
Analyzing the sets (18)–(23), as in the proof of Theorem 1, we con-

clude that for all integers n of the form 32k +16, where k /∈ {−2,−1, 0, . . .

. . . , 18, 19}, there exist at least six distinct Diophantine quadruples with
the property D(n). It is easy to check on a computer that for all of the
remaining cases, except for n ∈ {−16, 48, 80}, there exist at least six Dio-
phantine quadruples with the property D(n). This proves the theorem in
case n ≡ 16 (mod 32).

Let now n = 32k. For k /∈ {0, 1} the sets (18) and (19) give two dis-
tinct Diophantine quadruples with the property D(n) (see [4, Theorem 6]).
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Each of these two quadruples contain the number 1. Multiplying all el-
ements of the sets (18) and (19) by 2 we get the sets with the property
D(32k). By the proof of [4, Theorem 6], for k /∈ {0, 1, 2, 3, 4, 5, 6} these
sets are two distinct Diophantine quadruples which do not contain the
number 1, and therefore they are different from two quadruples obtained
before.

Let n = 64k + 32. By Theorem 2, for k /∈ {−1, 0, 1, 2} there exist at
least four distinct Diophantine quadruples with the property D(16k+8).
Multiplying all elements of these sets by 2 we get four Diophantine quadru-
ples with even elements with the property D(64k + 32). Therefore, for
k /∈ {−1, 0, 1, 2} there exist at least six Diophantine quadruples with the
property D(64k + 32).

Consider now the case n = 128k + 64. As we have proved before, for
k /∈ {−1, 1, 2} there exist at least six distinct Diophantine quadruples with
the property D(32k + 16). Multiplying all elements of these quadruples
by 2 we get the quadruples with the property D(128k + 64). All elements
of those quadruples are even and, accordingly, they do not contain the
number 1. Thus we proved that for k /∈ {−1, 1, 2} there exist at least eight
distinct Diophantine quadruples with the property D(128k + 64).

It remains to consider the case n = 128k. But we have already
proved that for k /∈ {0, 1, 2, 3, 4, 5, 6} there exist at least four distinct
Diophantine quadruples with the property D(32k). Multiplying all ele-
ments of those quadruples by 2 we get four Diophantine quadruples with
the property D(128k) which do not contain the number 1. Therefore, for
k /∈ {0, 1, 2, 3, 4, 5, 6} there exist at least six Diophantine quadruples with
the property D(128k).

An easy verification on a computer shows that for every n ∈ {−32, 96,

160,−64, 192, 320, 0, 128, 256, 384, 512, 768} there exist six distinct Dioph-
antine quadruples with the property D(n), which completes the proof.

¤

Remark 3. For the elements of the set V4, the following holds: the sets
{1, 16, 17, 65} and {1, 41, 52, 185} have the property D(−16), the set {1,112,

137, 497} has the property D(32), the set {1, 276, 313, 1177} has the prop-
erty D(48), and the sets {1, 41, 64, 209}, {1, 820, 881, 3401} and {4, 29, 61,

176} have the property D(80).
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Theorem 4. If n is an integer such that n ≡ 13 (mod 24) and n /∈
V5 = {−11, 13}, or n ≡ 21 (mod 24) and n /∈ V6 = {−27,−3, 21, 45, 117},
then there exist at least four distinct Diophantine quadruples with the
property D(n).

Proof. The proof in the case n = 24k + 13 is based on the fact that
the sets

{6, 54k2 + 38k + 6, 54k2 + 74k + 26, 216k2 + 224k + 58},(24)

{6, 6k2 − 2k − 2, 6k2 + 20k + 6, 24k2 + 16k + 2}(25)

have the property D(24k + 13).
These sets are obtained from (1) and (2), for x = 6 and y = k. Analyz-

ing the sets (24), (25) and the sets (9) and (19) from [4] we conclude that
for k /∈ {−1, 0} there exist at least four distinct Diophantine quadruples
with the property D(24k + 13), which is the desired conclusion.

Let us now consider the case n = 24k + 21. We start with the obser-
vation that the sets

{2, 2k2 − 6k − 6, 2k2 − 2k + 2, 8k2 − 16k − 10},(26)

{6, 6k2 + 2k − 2, 6k2 + 14k + 10, 24k2 + 32k + 10}(27)

have the property D(24k + 21).
The set (26) is obtained by multiplication of all elements of the set

(2) by 3, for x = 2
3 and y = k, and the set (27) is obtained from (3), for

x = 6 and y = k.
From (26), (27) and [4, (9) and (19)] it follows that for k /∈ {−2,−1, 0,

1, 2, 3, 4} there exist at least four distinct Diophantine quadruples with the
property D(24k+21). But the sets {6, 62, 110, 170} and {22, 154, 294, 874}
have the properties D(69) and D(93) respectively, which completes the
proof. ¤

Remark 4. For the exceptions from the sets V5 and V6, the follow-
ing holds: the sets {2, 6, 10, 30}, {2, 10, 18, 30} and {2, 30, 46, 150} have
the property D(−11), the set {2, 34, 54, 174} has the property D(13), the
sets {2, 26, 38, 126} and {2, 194, 234, 854} have the property D(−27), the
set {2, 102, 134, 470} has the property D(21), the sets {2,38, 62, 198} and
{2,522, 590,2222} have the property D(45), and the sets {2, 362, 422, 1566},
{2, 3726, 3902, 15254} and {6, 102, 162, 522} have the property D(117). No
Diophantine quadruple with the property D(−3) is known.
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Corollary 2. If n is an integer such that n ≡ 52 (mod 96) and n /∈
V7 = {52}, or n ≡ 84 (mod 96) and n /∈ V8 = {−108,−12, 84, 180}, then

there exist at least four distinct Diophantine quadruples with the property

D(n).

Proof. The corollary is direct consequence of Theorem 4, Remark 4
and the fact that the sets {3, 15, 20, 276} and {1, 1132, 2668, 7276} have
the properties D(−44) and D(468) respectively. ¤

Remark 5. Note that the sets {3, 36, 84, 228} and {4, 531, 9559, 14596}
have the properties D(−108) and D(180) respectively. Thus, from Re-
mark 4 it follows that there exist at least three Diophantine quadruples
with the properties D(−108) and D(180).

Theorem 5. If n is an integer such that n ≡ 3 (mod 12) and n /∈
V9 = {−9, 3, 15, 27, 63}, or n ≡ 7 (mod 12) and n /∈ V10 = {−5, 7}, then

there exist at least four distinct Diophantine quadruples with the property

D(n).

Proof. Let n = 12k + 3. The sets

{1, k2 − 8k + 1, k2 − 6k + 6, 4k2 − 28k + 13},(28)

{3, 3k2 − 4k − 1, 3k2 + 2k + 2, 12k2 − 4k − 1}(29)

have the property D(12k + 3).
The set (28) is obtained by multiplication of all elements of the set

(2) by 3, for x = 1
3 and y = k − 1, and the set (29) is obtained from (3),

for x = 3 and y = k − 1.
From (28), (29) and [4, (7) and (17)] it follows that for k /∈ {−1, 0, 1, 2,

3, 4, 5, 6, 7, 8} there exist at least four distinct Diophantine quadruples
with the property D(12k + 3). The fact that the sets {3, 35, 62, 95},
{1, 13, 70, 145}, {1, 69, 94, 325}, {1, 2413, 12013, 25194} and {1, 70, 801,

1345} have the properties D(39), D(51), D(75), D(87) and D(99) respec-
tively, establishes the first part of the theorem.

Let us now consider the case n = 12k + 7. The sets

{3, 27k2 + 20k + 3, 27k2 + 38k + 14, 108k2 + 116k + 31},(30)

{3, 3k2 − 2k − 2, 3k2 + 4k + 3, 12k2 + 4k − 1}(31)

have the property D(12k + 7).
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These sets are obtained from (1) and (2), for x = 3 and y = k.
The formulas (30), (31) and [4, (7) and (17)] imply that for k /∈ {−1, 0, 1}
there exist at least four distinct Diophantine quadruples with the property
D(12k + 7). But the set {1, 17, 30, 45} has the property D(19), and the
proof is complete. ¤

Remark 6. For the elements of the sets V9 and V10, the following
holds: the sets {1, 10, 13, 45} and {1, 45, 58, 205} have the property D(−9),
the set {1, 106, 129, 469} has the property D(15), the sets {1, 22, 37, 117},
{1, 373, 414, 1573} and {11, 18, 59, 143} have the property D(27), the sets
{1, 193, 226, 837}, {1, 2146, 2241, 8773} and {3, 54, 87, 279} have the prop-
erty D(63), the sets {1, 5, 6, 21} and {1, 14, 21, 69}have the propertyD(−5),
and the set {1, 18, 29, 93} has the property D(7). No Diophantine quadru-
ple with the property D(3) is known.

Note that by [4, Remark 3], the number of Diophantine quadruples
with the property D(16k + 12) is equal to the number of Diophantine
quadruples with the property D(4k+3). Thus we can rephrase Theorem 5
as follows.

Corollary 3. If n is an integer such that n ≡ 12 (mod 48) and n /∈
V11 = {−36, 12, 60, 108, 252}, or n ≡ 28 (mod 48) and n /∈ V12={−20, 28},
then there exist at least four distinct Diophantine quadruples with the

property D(n).

4. Connection with the Schinzel–Sierpiński conjecture

Let U denote the set of all integers n, not of the form 4k+2, such that
there exist at most two distinct Diophantine quadruple with the property
D(n). One open question is whether the set U is finite or not. The
following corollary is the direct consequence of the results of Section 3.

Corollary 4. If n ∈ U \ U1, where U1 = {−36,−27,−20,−16,−15,

−12,−9,−8,−7,−5,−3,3,7,8,12,13,15,17,21,24,28,32,45,48,52,60,84},
then n can be represented in one of the following forms:

12k + 11, 24k + 5, 48k + 44, 96k + 20.

Proof. Let U2 =
⋃12

i=1 Vi, where Vi, i = 1, . . . , 12, are defined in Sec-
tion 3. Then U1 = U2 \U3, where U3 = {−108,−28,−11, 27, 33, 40, 63, 68,
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80, 108, 117, 180, 252}. It is clear from Remarks 1–6 that U3 ∩ U = ∅. It
implies that U \ U2 = U \ U1, which completes the proof. ¤

Note that multiplying all elements of quadruples with the properties
D(12k+11) and D(24k+5) by 2, we obtain the quadruples with the prop-
erties D(48k + 44) and D(96k + 20), and by [4, Remark 3], all quadruples
with the property D(48k + 44) can be obtained on this way.

In [7, Theorems 1 and 2], it was proved that the elements of the set U

which have the form 4k+3 or 8k+5 must satisfy some primality conditions.
The main idea was to analyze the construction of the polynomial formulas
for Diophantine quadruples from [6]. It was shown that the additional
Diophantine quadruples with the property D(n) can be obtained if factors
of the values of some linear polynomials in n are known. These results can
be rephrased as follows.

Theorem 6. Let n be an integer such that n ≡ 11 (mod 12), n /∈
{−1, 11} and n ∈ U . Then the integers |n− 1|/2, |n− 9|/2 and |9n− 1|/2
are primes. Furthermore, either |n| is prime or n is the product of twin

primes.

Theorem 7. Let n be an integer such that n ≡ 5 (mod 24), n 6= 5
and n ∈ U . Then the integers |n|, |n − 1|/4, |n − 9|/4 and |9n − 1|/4 are

primes.

Corollary 5. Let n be an integer such that n ∈ U and |n| ≤ 10000.

Then n ∈ W = U1 ∪ W1, where U1 is defined in Corollary 4, and W1 =
{−8563,−7732,−7723,−7492,−6892,−6637,−6427,−6073,−5923,−5413,

−5233,−5107,−4603,−4363,−4243,−3508,−3028,−2188,−1933,−1873,

−1723,−877, −757,−652, −547,−268, −172,−163,−148,−67,−52,−43,

−37,−19,−13,−4,−1, 5,11, 20,23, 44,83, 92,167, 173,227, 293, 332, 668, 908,

983, 1172, 1487, 2477, 2903, 3167, 3533, 3932, 4283, 4373, 4703, 5507, 5948,

8573, 9908}.
Proof. If n /∈ U1 then, by Corollary 4, n has one of the following

forms:
12k + 11, 24k + 5, 48k + 44, 96k + 20.

Let n = 12k + 11 and n 6∈ {−1, 11}. Then, by Theorem 6, the integers
|n−1|/2, |n−9|/2 and |9n−1|/2 are primes, and either |n| is prime or n is
a product of twin primes. There exist exactly 25 integers n, |n| ≤ 10000,
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which satisfy these conditions. Note that the sets {1, 494, 989, 2881},
{1, 2, 737, 26197}, {1, 146, 9073, 11521} and {1, 3421, 24158, 45761} have
the properties D(35), D(47), D(143) and D(1763) respectively. Hence,
we proved that if n ≡ 11 (mod 12), |n| ≤ 10000 and n /∈ W2 = {−6637,

−6073,−5413,−5233,−1933,−1873,−877,−757,−37,−13,−1, 11, 23, 83,

167, 227, 983, 1487, 2903, 3167, 4283, 4703, 5507}, then there exist at least
three distinct Diophantine quadruples with the property D(n).

It implies that if n ≡ 44 (mod 48), |n| ≤ 10000 and n /∈ W3 =
{−7732,−7492,−3508,−3028,−148,−52,−4, 44, 92, 332, 668, 908, 3932,

5948}, then there exist at least three distinct Diophantine quadruples with
the property D(n).

Let n = 24k+5, n 6= 5. Then, by Theorem 7 the integers |n|, |n−1|/4,
|n − 9|/4 and |9n − 1|/4 are primes. There exist exactly 19 integers n,
|n| ≤ 10000, which satisfy these conditions. Hence, we proved that if n ≡ 5
(mod 24), |n| ≤ 10000 and n /∈ W4={−8563,−7723,−6427,−5923,−5107,

−4603,−4363,−1723,−547,−163,−67,−43,−19, 5, 173, 293, 2477, 3533,

4373, 8573}, then there exist at least three distinct Diophantine quadruples
with the property D(n).

From this and the fact that the sets {4, 23, 35, 1540} and {1, 92, 7772,

7957} have the properties D(−76) and D(692) respectively, we conclude
that if n ≡ 20 (mod 96), |n| ≤ 10000 and n /∈ W5 = {−6892,−2188,−652,

−268,−172, 20, 1172, 9908}, then there exist at least three distinct Dio-
phantine quadruples with the property D(n).

This proves the corollary, since it is obvious that

W1 = W2 ∪W3 ∪W4 ∪W5. ¤

It is not yet known, whether the set U is finite or not. Note that if U

is infinite then at least one of the sets

A = {k ∈ Z : |6k + 1|, |6k + 5|, |12k + 11| and |54k + 49| are primes},
B = {l ∈ N : 6l − 1, 6l + 1, 18l2 − 5, 18l2 − 1 and 162l2 − 5 are primes},
C = {k ∈ Z : |6k − 1|, |6k + 1|, |24k + 5| and |54k + 11| are primes}

is infinite. Let us observe that the polynomials appearing in the sets A,
B and C satisfy the conditions of following Schinzel–Sierpiński conjecture
([11], [10, p. 312]):
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Let s ≥ 1, let f1(x), . . . , fs(x) be irreducible polynomials with integral

coefficients and positive leading coefficients. Assume that the following

condition holds:

There does not exist any integer n > 1 dividing all the products

f1(k)f2(k) · · · fs(k) for every integer k.

Then there exist infinitely many natural numbers m such that all

numbers f1(m), f2(m), . . . , fs(m) are primes.

Therefore, the validity of the Schinzel–Sierpiński conjecture would
imply that the sets A, B and C are infinite.
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