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Classes of uniformly starlike functions

By K. G. SUBRAMANIAN (Madras), T. V. SUDHARSAN (Gowrivakham),

P. BALASUBRAHMANYAM (Madras) and H. SILVERMAN (Charleston)

Abstract. We give coefficient characterizations for analytic functions with nega-
tive coefficients to be in subclasses of uniformly starlike and uniformly convex families.
This leads to extremal properties and neighborhood criteria.

1. Introduction

Let S denote the class of functions

(1) f(z) = z +
∞∑

n=2

anzn

that are analytic and univalent in the unit disk ∆ = {z : |z| < 1}. For
0 ≤ α < 1, let S∗(α) and K(α) denote the subfamilies of S consisting
of functions starlike of order α and convex of order α, respectively. For
convenience, we write S∗(0) = S∗ and K(0) = K. Motivated by geometric
considerations, Goodman [1], [2] introduced the classes UCV and UST

of uniformly convex and uniformly starlike functions. Ma and Minda [3]
and Ronning [5] gave a one-variable analytic characterization for UCV ,
namely, a function f of the form (1) is in UCV if and only if

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ , z ∈ ∆.
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Goodman [1] showed that the classical Alexander result f ∈ K ⇐⇒
zf ′ ∈ S∗ does not hold between the classes UCV and UST . Ronning [5]
introduced the class Sp consisting of functions zf ′, f ∈ UCV , and in [4]
the class Sp(α) of functions of the form (1) for which

Re
{

zf ′(z)
f(z)

− α

}
≥

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ , −1 ≤ α < 1.

He also defined the class UCV (α), uniformly convex functions of order α,
of functions f for which zf ′ ∈ Sp(α).

The subfamily of S consisting of functions of the form

(2) f(z) = z −
∞∑

n=2

anzn, an ≥ 0,

is denoted by T . In [7], Silverman investigated functions in the classes
T ∗(α) = T ∩ S∗(α) and C(α) = T ∩ K(α). In particular, he proved the
following theorem.

Theorem A. A sufficient condition for f of the form (1) to be in

S∗(α) is that
∑∞

n=2((n − α)/(1 − α))an ≤ 1 and for f to be in K(α) is

that
∑∞

n=2(n(n−α)/(1−α))an ≤ 1. If f is of the form (2), this sufficient

condition is also necessary.

In this note, we investigate the classes

(3) TSp(α) = T ∩ Sp(α), TV (α) = T ∩ UCV (α).

We will give sufficient conditions for f of the form (1) to be in Sp(α) and
UCV (α) and will show these conditions to also be necessary when f is of
the form (2). This leads to extremal properties for these classes.

Ruscheweyh in [6] defined a δ-neighborhood for f of the form (1) by

(4) Nδ(F ) =

{
g(z) = z +

∞∑
n=2

bnzn :
∞∑

n=2

n|an − bn| ≤ δ

}
.
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We will determine neighborhoods of TSp(α) and TV (α) that consist of
subclasses of starlike functions.

2. The classes TSp(α) and TV (α)

A function f of the form (2) is said to be in TSp(α), −1 ≤ α < 1, if

Re
{

zf ′(z)
f(z)

− α

}
≥

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣

and is in TV (α) if zf ′ ∈ TSp(α). Note that these definitions are equivalent
to those given in (3).

We begin with some sufficient coefficient conditions.

Theorem 1. (a) If
∑∞

n=2[2n − (α + 1)] |an| ≤ 1 − α, −1 ≤ α < 1,

then f of the form (1) is in Sp(α).

(b) If
∑∞

n=2 n[2n− (α + 1)] |an| ≤ 1− α, then f of the form (1) is in

UCV (α).

Proof of (a). It suffices to show that
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣− Re

{
zf ′(z)
f(z)

− 1
}
≤ 1− α, z ∈ ∆.

We have
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣− Re

{
zf ′(z)
f(z)

− 1
}
≤ 2

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣

≤
2
∞∑

n=2
(n− 1)|an| |z|n−1

1−
∞∑

n=2
|an| |z|n−1

≤
2
∞∑

n=2
(n− 1)|an|

1−
∞∑

n=2
|an|

.

This last expression is bounded above by 1−α if
∑∞

n=2[2n− (α+1)]|an| ≤
1− α, and the proof is complete.

Since by definition f ∈ UCV (α) if and only if zf ′ ∈ Sp(α), (b) follows
from (a).

We now look at the subclasses for which these coefficient conditions
are also necessary.
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Theorem 2. (a) A necessary and sufficient condition for f of the

form (2) to be in TSp(α), −1 ≤ α < 1, is that
∑∞

n=2[2n−(α+1)]an ≤ 1−α.

(b) A necessary and sufficient condition for f of the form (2) to be in

TV (α) is that
∑∞

n=2 n[2n− (α + 1)]an ≤ 1− α.

Proof. In view of Theorem 1, we need only prove the necessity. We
do this for (a) only, since (b) then follows from the linear transformation.

If f ∈ TSp(α) and z is real, then

1−
∞∑

n=2
nanzn−1

1−
∞∑

n=2
anzn−1

− α ≥

∞∑
n=2

(n− 1)anzn−1

1−
∞∑

n=2
anzn−1

.

Letting z → 1 along the real axis, we obtain the desired inequality∑∞
n=2[2n− (α + 1)an] ≤ 1− α.

Ronning in [4] showed that Sp(α) is properly contained in S∗
(

1+α
2

)
.

Thus the special case α = −1 in Theorem 1 yields the classical sufficient
coefficient bounds for starlike and convex functions, respectively. For func-
tions of the form (2) we can do better than inclusion in one direction.

Theorem 3. For −1 ≤ α < 1, TSp(α) = T ∗
(

1+α
2

)
and TV (α) =

C
(

1+α
2

)
.

Proof. Replacing α with 1+α
2 in the necessary and sufficient coef-

ficient conditions in Theorem A, we obtain the corresponding coefficient
condition of Theorem 2.

Remark. In [9], the family UCT (α), α ≥ 0, is defined for functions of
the form (2) by Re{1+ zf ′′(z)/f ′(z)} ≥ α|zf ′′(z)/f ′(z)|, z ∈ ∆. It can be
shown from the coefficient conditions there that TV (α) = UCT

(
1+α
1−α

)
,

−1 ≤ α < 1.
A consequence of Theorem 3 is that any information known about

T ∗(α) and C(α) can be transformed into corresponding results for TSp(α)
and TV (α). We state two such corollaries based on theorems that may be
found in [7].
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Corollary 1. The extreme points of TSp(α), −1 ≤ α < 1, are

f1(z)=z and fn(z) = z − 1−α
2n−(α+1)z

n, n = 2, 3, . . . . The extreme points of

TV (α) are f1(z) = z and fn(z) = z − 1−α
n(2n−(α+1))z

n, n = 2, 3, . . . .

Corollary 2. (a) If f ∈ TSp(α), −1 ≤ α < 1, then

r − 1− α

3− α
r2 ≤ |f(z)| ≤ r +

1− α

3− α
r2,

1− 2(1− α)
3− α

r ≤ |f ′(z)| ≤ 1 +
2(1− α)
3− α

r, |z| = r.

(b) If f ∈ TV (α), then

r − 1− α

2(3− α)
r2 ≤ |f(z)| ≤ r +

1− α

2(3− α)
r2,

1− 1− α

3− α
r ≤ |f ′(z)| ≤ 1 +

1− α

3− α
r.

The results are best possible.

3. Neighborhoods

For δ-neighborhoods defiend by (4), the following was proved in [8].

Theorem B. For 0 ≤ α < 1, Nδ(T ∗(α)) ⊂ S∗(β) when δ = α
2−α − β

and Nδ(C(α)) ⊂ S∗(β) when δ = 1
2−α − β.

In view of Theorem 3, a consequence of Theorem B is that Nδ(TSp(α))
= Nδ

(
T ∗

(
1+α

2

))⊂ S∗(β) when δ = 1+α
3−α−β, −1 ≤ α < 1, and Nδ(TSp(α))

⊂ S∗
(

1+β
2

)
when δ = 1+α

3−α − 1+β
2 = 3α−1−β(3−α)

2(3−α) . Noting that Sp(β)

⊂ S∗
(

1+β
2

)
, we can improve on this last inclusion. But first we need the

following lemma.

Lemma A [8]. For f of the form (2), if f ∈ T ∗(α) then
∑∞

n=2 nan ≤
2(1− α)/(2− α) and if f ∈ C(α) then

∑∞
n=2 nan ≤ (1− α)/(2− α).

Theorem 4. For −1 ≤ α < 1 and −1 ≤ β ≤ (3α − 1)/(3 − α),
Nδ(TSp(α)) ⊂ Sp(β) when δ = 3α−1−β(3−α)

2(3−α) .
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Proof. Applying Lemma A to Theorem 3, we see that
∑∞

n=2 nan ≤
2(1− α)/(3− α) when f ∈ TSp(α). From (4) we have,

∞∑
n=2

n|bn| ≤
∞∑

n=2

nan + δ ≤ 2(1− α)/(3− α) + δ = (1− β)/2.

We may now apply Theorem 1 to this last inequality to conclude that
g ∈ Sp(β).

Corollary. For −1 ≤ α < 1 and −1 ≤ β ≤ (1+α)/(3−α), Nδ(TV (α))
⊂ Sp(β) when δ = 1+α−β(3−α)

2(3−α) .

Proof. From Lemma A we see that

∞∑
n=2

n|bn| ≤
∞∑

n=2

nan + δ ≤ (1− α)/(3− α) + δ = (1− β)/2,

and the result follows.

Finally, we remark that there is no δ-neighborhood of TV (α) for any α

that contains only convex functions. For f(z) = z and gn(z) = z+zn/n3/2

we have gn ∈ Nδ(f) when n > 1/δ2 even though gn /∈ K.
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